Math 194

Thursday, Oct. 15, 2015

1. Suppose $f(x)$ is a polynomial with real coefficients, and $a \in \mathbf{R}$. Show that $(x-a)^{k}$ divides $f(x)$ if and only if $f(a)=f^{\prime}(a)=f^{\prime \prime}(a)=\cdots f^{(k-1)}(a)=0$.
2. Consider all lines which meet the graph $y=2 x^{4}+7 x^{3}+3 x-5$ in four distinct points, say $\left(x_{i}, y_{i}\right), i=1,2,3,4$. Show that

$$
\frac{x_{1}+x_{2}+x_{3}+x_{4}}{4}
$$

is independent of the line, and find its value.
(Putnam 1977)
3. What is the remainder when the polynomial $x^{2009}-2009$ is divided by $x^{4}-2$?
4. Show that there are no polynomials $f(x), g(x)$ such that $e^{x}=f(x) / g(x)$ for every x.
5. Suppose the polynomials $x^{2}+a x+b$ and $x^{2}+p x+q$ have exactly one root in common. What is it?

