Math 194

Thursday, Oct. 8, 2015

1. Show for positive integers a, b that if 7 divides $a^{2}+b^{2}$ then it divides both a and b.
2. Find positive integers n and $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
a_{1}+a_{2}+\cdots+a_{n}=1979
$$

and the product $a_{1} a_{2} \cdots a_{n}$ is as large as possible.
(Putnam, 1979)
3. (a) What are the last two digits of 3^{2009} ?
(b) What are the last two digits of 97^{2009} ?
4. Prove that if $2 n+1$ and $3 n+1$ are both perfect squares, then n is divisible by 40 .
5. Suppose that $P(x)$ is a polynomial with integer coefficients. If none of $P(1), P(2)$, $P(3), \ldots, P(2009)$ is divisible by 2009 , show that $P(x)$ has no integer roots.

