Math 194

Problem set \#6

1. Evaluate

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{k^{2}+n^{2}}} \tag{Larson6.8.5}
\end{equation*}
$$

2. Let $f(x)=\sum_{k=1}^{n} a_{k} \sin (k x)$ with $a_{i} \in \mathbf{R}, n \geq 1$. Prove that if $f(x) \leq|\sin (x)|$ for every x, then

$$
\left|\sum_{k=1}^{n} k a_{k}\right| \leq 1
$$

(Putnam 1967)
3. Let $f(x)$ be a continuous function on $[0,1]$ such that $f(0)=f(1)=0$ and $2 f(x)+f(y)=$ $3 f\left(\frac{2 x+y}{3}\right)$ for all $x, y \in[0,1]$. Prove that $f(x)=0$ for all $x \in[0,1]$. (Vietnamese Mathematical Olympiad, 1999)
4. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is a continuous function such that $|f(x)-f(y)| \geq|x-y|$ for every $x, y \in \mathbf{R}$. Show that the range of f is \mathbf{R}, i.e., for every $c \in \mathbf{R}$ there is an x such that $f(x)=c$.
(De Souza \& Silva, Berkeley Problems in Mathematics)
5. Suppose that $f: \mathbf{R} \rightarrow \mathbf{R}$ is a continuous function, and define

$$
g(x)=f(x) \int_{0}^{x} f(t) d t
$$

Prove that if g is a nonincreasing function, then $f(x)=0$ for every x.
(Romanian Olympiad 1978)
6. Let $f:[0,1] \rightarrow \mathbf{R}$ be a function with a continuous derivative, such that $f(0)=0$ and $0<f^{\prime}(x) \leq 1$ for every x. Show that

$$
\begin{equation*}
\left(\int_{0}^{1} f(x) d x\right)^{2} \geq \int_{0}^{1}(f(x))^{3} d x \tag{Putnam1973}
\end{equation*}
$$

7. Suppose f and g are n-times continuously differentiable functions in a neighborhood of a point a, such that $f(a)=g(a), f^{\prime}(a)=g^{\prime}(a), \ldots, f^{(n-1)}(a)=g^{(n-1)}(a)$, and $f^{(n)}(a) \neq g^{(n)}(a)$. Evaluate

$$
\lim _{x \rightarrow a} \frac{e^{f(x)}-e^{g(x)}}{f(x)-g(x)}
$$

8. Let $n>1$ be an integer, and $f:[a, b] \rightarrow \mathbf{R}$ a continuous function, n-times differentiable on (a, b). Prove that if the graph of f has $n+1$ collinear points, then there is a point $c \in(a, b)$ such that $f^{(n)}(c)=0$.
(G. Sireţchi, Mathematics Gazette, Bucharest)
9. Suppose $x_{1}, x_{2}, \ldots, x_{n} \in \mathbf{R}$. Find the real number(s) a that minimize the expression

$$
\left|a-x_{1}\right|+\left|a-x_{2}\right|+\cdots+\left|a-x_{n}\right| .
$$

(Andreescu \& Gelca)
10. Prove that for every natural number $n \geq 2$ and every $x \in[-1,1]$,

$$
(1+x)^{n}+(1-x)^{n} \leq 2^{n} .
$$

(Exercises and Problems in Algebra, Bucharest 1983)

