Math 194

Problem set #2

- 1. Show that every positive integer can be written as a sum of distinct Fibonacci numbers.
- 2. Let B be a set of more than $2^{n+1}/n$ distinct points with coordinates of the form $(\pm 1, \pm 1, ..., \pm 1)$ in n-dimensional space, with $n \ge 3$. Show that there are three distinct points in B which are the vertices of an equilateral triangle. (Putnam, 2000)
- 3. Show that for every $n \ge 1$, a $2^n \times 2^n$ checkerboard with a single 1×1 corner square removed can be covered by pieces of the form
 - (a 2×2 square with a 1×1 corner removed).

(Gelca & Andreescu)

4. Prove for every positive integer n that

$$\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$$

- 5. Prove that for some n > 0, the Fibonacci number F_n is divisible by 1,000,000. (Irish Mathematical Olympiad 1999)
- 6. Show that every convex polyhedron has 2 faces with the same number of edges. (Moscow Mathematical Olympiad)
- 7. Seventeen people correspond by email with one another (each one with all 16 others). A total of 3 different topics are discussed, in all the emails, and each pair of correspondents discusses only one of the topics. Prove that there at least 3 people who write to each other about the same topic. (Larson 2.6.11)
- 8. Let $I_n = \int_0^{2\pi} \sin^n(x) dx$. Find a recurrence relation for I_n . Using this recurrence, what is the value of I_n ? (Larson 2.5.15)
- 9. Suppose there are given a set of 25 points in the plane, such that among any three there exists a pair that are distance less than 1 apart. Prove that there is a circle of radius 1 that contains at least 13 of the given points.
- 10. Show that if more than half of the subsets of an n-element set are selected, then two of the selected subsets have the property that one is a subset of the other.