Math 194, problem set \#2

For discussion Thursday October 10

1. Show that if the fraction a / b is expressed as a decimal number (where a, b are positive integers), it either terminates, or begins repeating after at most $b-1$ decimal places. (Hint: if you actually work out the long division, dividing a by b, what does it mean for the decimal expansion to repeat?)
2. The Fibonacci numbers are defined by the recurrence relationship

$$
F_{1}=1 \quad F_{2}=1 \quad F_{n+2}=F_{n+1}+F_{n} \quad \text { for } \quad n=1,2,3, \ldots
$$

Show

$$
F_{1}^{2}+F_{2}^{2}+\cdots+F_{n}^{2}=F_{n} F_{n+1}
$$

3. Inside a unit square, 101 points are placed. Show that some three of them form a triangle with area no more than .01 .
4. Show that for $n \geq 6$ a square can be dissected into n smaller squares, not necessarily all of the same size.
5. The Euclidean plane is divided into regions by drawing a a finite number of straight lines. Show that it is possible to color each of these regions either red or blue in such a way that no two adjacent regions have the same color.
(Putnam 1962)
6. Given any 5 distinct points on the surface of a sphere, show there exists a closed hemisphere that contains at least 4 of them.
(Putnam 2002)
7. Let S denote an $n \times n$ lattice square, $n \geq 3$. Show that it is possible to draw a polygonal path consisting of $2 n-2$ segments which will pass through all of the n^{2} lattice points of S.
8. In how many ways can a $2 \times n$ square be tiled with 2×1 dominos?
9. Show that in any group of 6 people there are either 3 mutual acquaintances or 3 mutual strangers.
10. The numbers from 1 to 10 are arranged in some order around a circle. Show that there are three consecutive numbers whose sum is at least 17 .
