Math 194, problem set \#1

For discussion Thursday October 3

You are strongly urged to write up and hand in a careful and complete solution to (at least) one of these problems. These can be either submitted by email, or as a hard copy.

1. Show that some multiple of 1232123432123454321 contains all 10 digits (at least once) when written in base 10 .
2. For each integer $n \geq 0$, let $S(n)=n-m^{2}$, where m is the greatest integer with $m^{2} \leq n$. Define a sequence $\left(a_{k}\right)_{k=0}^{\infty}$ by $a_{0}=A$ and $a_{k+1}=a_{k}+S\left(a_{k}\right)$ for $k \geq 0$. For what positive integers A is this sequence eventually constant?
(Putnam, 1991)
3. Determine $F(x)$ if, for all real x and $y, F(x) F(y)-F(x y)=x+y$.
4. A two-person game is played as follows. The players alternate placing a penny on a circular table. Each penny must lie completely on the table, and not overlap any previously-placed pennies. The first player unable to fit a penny on the table loses. (You can assume they have all the pennies they need.) Is it better to go first or second? Is there a winning strategy? Is the answer any different if the table is square? triangular?
5. Compute the determinant of the $n \times n$ matrix all of whose diagonal entries are 0 , and all of whose off-diagonal entries are 1 .
6. Show that every infinite sequence of distinct real numbers contains either a strictly increasing infinite subsequence or a strictly decreasing infinite subsequence.
7. (a) Give a sensible definition of the infinite tower of exponentials $t(x):=x^{x^{x^{x}}}$ for real numbers $x \geq 1$, when it makes sense.
(b) Show that $t(\sqrt{2})=2$.
(c) Show that there is no real number a such that $t(a)=4$.
(d) What can you say about the domain and range of t ?
8. Suppose x_{0} and x_{1} are given real numbers, and for $n \geq 2$ define

$$
x_{n}=\frac{x_{n-1}+x_{n-2}}{2} .
$$

Find $\lim _{n \rightarrow \infty} x_{n}$.

