Math 194

For discussion Tuesday, Nov. 13, 2012

1. For what positive x does the series

$$
(x-1)+(\sqrt{x}-1)+(\sqrt[3]{x}-1)+\cdots+(\sqrt[n]{x}-1)+\cdots
$$

converge?
(The Wohascum County Problem Book, MAA, 1996)
2. Does the series $\sum_{n=1}^{\infty} \sin \left(\pi \sqrt{n^{2}+1}\right)$ converge?
(Gh. Sireţchi)
3. Show that

$$
\sum_{n=1}^{9999} \frac{1}{(\sqrt{n}+\sqrt{n+1})(\sqrt[4]{n}+\sqrt[4]{n+1})}=9
$$

(Mathematical Reflections)
4. Compute the product

$$
\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)\left(1-\frac{4}{36}\right) \ldots
$$

5. Compute the product

$$
\prod_{n=1}^{\infty}\left(1+x^{2^{n}}\right)
$$

6. Find a formula for the general term of the sequence

$$
\begin{aligned}
& 1,2,2,3,3,3,4,4,4,4,5,5,5,5,5, \ldots \\
& \quad \text { (Graham, Knuth \& Patashnik, Concrete Mathematics) }
\end{aligned}
$$

7. Define the sequence $a_{0}, a_{1}, a_{2}, \ldots$ by $a_{0}=0, a_{1}=1, a_{2}=2, a_{3}=6$, and

$$
a_{n+4}=2 a_{n+3}+a_{n+2}-2 a_{n+1}-a_{n}, \quad \text { for } n \geq 0
$$

Show that n divides a_{n} for every $n \geq 1$.
(D. Andrica, Timişoara Mathematics Gazette)
8. Suppose x_{1}, x_{2}, \ldots is a sequence of positive real numbers satisfying $x_{n+1} \leq x_{n}+1 / n^{2}$ for all $n \geq 1$. Prove that $\lim _{n \rightarrow \infty} x_{n}$ exists.
(De Souza \& Silva, Berkeley Problems in Mathematics)
9. Prove that if a and b are relatively prime odd positive integers, then

$$
\sum_{x=1}^{b-1}\left\lfloor\frac{a x}{b}\right\rfloor=\frac{(a-1)(b-1)}{2}
$$

10. Evaluate

$$
\sum_{n=1}^{\infty} \frac{n}{3^{n}}
$$

