Math 194, problem set \#7

For discussion Tuesday November 22
(1) Let $0<x_{i}<\pi, i=1, \ldots, n$ and set $x=\left(x_{1}+\cdots+x_{n}\right) / n$. Prove that

$$
\begin{equation*}
\prod_{i=1}^{n}\left(\frac{\sin x_{i}}{x_{i}}\right) \leq\left(\frac{\sin x}{x}\right)^{n} \tag{Putnam,1978}
\end{equation*}
$$

(2) If a, b, c are positive real numbers, show that

$$
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{3}{2} .
$$

(3) For every positive integer n, show that

$$
\sqrt{1+\sqrt{2+\sqrt{3+\cdots+\sqrt{n}}}}<2
$$

(4) If $f: \mathbf{Z}^{+} \rightarrow \mathbf{Z}^{+}$is an injective function, then for every n

$$
\sum_{k=1}^{n} \frac{f(k)}{k^{2}} \geq \sum_{k=1}^{n} \frac{1}{k}
$$

(5) Prove that for every positive integer n

$$
\frac{n^{n}}{e^{n-1}} \leq n!\leq \frac{n^{n+1}}{e^{n-1}}
$$

(6) Let $f(x)$ be a function such that $f(1)=1$ and for $x \geq 1$

$$
f^{\prime}(x)=\frac{1}{x^{2}+f(x)^{2}}
$$

Prove that $\lim _{x \rightarrow \infty} f(x)$ exists and is less than $1+\frac{\pi}{4}$.
(Putnam, 1947)
(7) Show that if $\epsilon(n)=1 / n$, then for every $n \geq 1$,

$$
2 \sqrt{n^{2}+n}-2 n-\epsilon(n)<\sum_{i=1}^{n} \frac{1}{\sqrt{n^{2}+i}}<2 \sqrt{n^{2}+n}-2 n .
$$

Can you improve the "error term" $\epsilon(n)$?

