Math 194, problem set \#7

For discussion Tuesday November 23

You are strongly urged to write up and hand in a careful and complete solution to (at least) one of these problems.

1. Prove for $n \geq 1$ that

$$
\begin{equation*}
\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdots \frac{2 n-1}{2 n} \leq \frac{1}{\sqrt{3 n+1}} \tag{Engel}
\end{equation*}
$$

2. Let $a_{1} / b_{1}, a_{2} / b_{2}, \ldots, a_{n} / b_{n}$ be n fractions with $b_{i}>0$ for $i=1,2, \ldots, n$. Show that the fraction

$$
\frac{a_{1}+a_{2}+\cdots+a_{n}}{b_{1}+b_{2}+\cdots+b_{n}}
$$

is a number between the largest and smallest of these fractions.
(Larson 7.1.10)
3. Prove that $\sqrt[n]{n}<1+\sqrt{2 / n}$ if n is a positive integer.
4. Prove that for every integer $n \geq 2$,

$$
\begin{equation*}
\prod_{k=1}^{n}\binom{n}{k} \leq\left(\frac{2^{n}-2}{n-1}\right)^{n-1} \tag{Storey}
\end{equation*}
$$

5. Prove that if a_{1}, \ldots, a_{n} are real numbers and $a_{1}+\cdots+a_{n}=1$, then

$$
a_{1}^{2}+\cdots+a_{n}^{2} \geq 1 / n
$$

6. Prove that the sequence $\left\{a_{n}\right\}$ defined by

$$
a_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}-\log (n)
$$

converges.
7. Show that for all x,

$$
1+x+\frac{x^{2}}{2!}+\cdots \frac{x^{2 n}}{(2 n)!}>0
$$

8. Given a point (a, b) with $0<b<a$, determine the minimum perimeter of a triangle with one vertex at (a, b), one on the x-axis, and one on the line $y=x$. You may assume that a triangle of minimum perimeter exists.
(Putnam, 1998)
9. Prove that for every positive $n, n!>(n / e)^{n}$.
(Larson 7.1.12)
10. Prove that

$$
\begin{equation*}
\left(\frac{a+1}{b+1}\right)^{b+1}>\left(\frac{a}{b}\right)^{b} \tag{Larson7.4.17}
\end{equation*}
$$

for every $a, b>0, a \neq b$.
11. Find all positive integers $n, k_{1}, k_{2}, \ldots, k_{n}$ such that $k_{1}+\cdots+k_{n}=5 n-4$ and

$$
\begin{equation*}
\frac{1}{k_{1}}+\cdots+\frac{1}{k_{n}}=1 \tag{Putnam2005}
\end{equation*}
$$

