Math 194

For discussion Tuesday, Nov. 16, 2010

You are *strongly urged* to write up and hand in a careful and complete solution to (at least) one of these problems.

1. Evaluate

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{k^2 + n^2}}.$$

(Larson 6.8.5)

2. Let $f(x) = \sum_{k=1}^{n} a_k \sin(kx)$ with $a_i \in \mathbf{R}$, $n \ge 1$. Prove that if $f(x) \le |\sin(x)|$ for every x, then

$$\left| \sum_{k=1}^{n} k a_k \right| \le 1.$$

(Putnam 1967)

3. Let f(x) be a continuous function on [0,1] such that f(0)=f(1)=0 and $2f(x)+f(y)=3f(\frac{2x+y}{3})$ for all $x,y\in[0,1]$. Prove that f(x)=0 for all $x\in[0,1]$. (Vietnamese Mathematical Olympiad, 1999)

4. Suppose $f: \mathbf{R} \to \mathbf{R}$ is a continuous function such that $|f(x) - f(y)| \ge |x - y|$ for every $x, y \in \mathbf{R}$. Show that the range of f is \mathbf{R} , i.e., for every $c \in \mathbf{R}$ there is an x such that f(x) = c.

(De Souza & Silva, Berkeley Problems in Mathematics)

5. Suppose that $f: \mathbf{R} \to \mathbf{R}$ is a continuous function, and define

$$g(x) = f(x) \int_0^x f(t)dt.$$

Prove that if g is a nonincreasing function, then f(x) = 0 for every x.

(Romanian Olympiad 1978)

6. Let $f:[0,1] \to \mathbf{R}$ be a function with a continuous derivative, such that f(0) = 0 and $0 < f'(x) \le 1$ for every x. Show that

$$\left(\int_{0}^{1} f(x)dx\right)^{2} \ge \int_{0}^{1} (f(x))^{3} dx.$$

(Putnam 1973)

7. Suppose f and g are n-times continuously differentiable functions in a neighborhood of a point a, such that $f(a) = g(a), f'(a) = g'(a), \ldots, f^{(n-1)}(a) = g^{(n-1)}(a)$, and $f^{(n)}(a) \neq g^{(n)}(a)$. Evaluate

$$\lim_{x \to a} \frac{e^{f(x)} - e^{g(x)}}{f(x) - g(x)}.$$

(N. Georgescu-Roegen)

8. Let n be a positive integer, and $f:[a,b] \to \mathbf{R}$ a continuous function, n-times differentiable on (a,b). Prove that if the graph of f has n+1 collinear points, then there is a point $c \in (a,b)$ such that $f^{(n)}(c) = 0$.

(G. Sireţchi, Mathematics Gazette, Bucharest)

9. Suppose $x_1, x_2, \ldots, x_n \in \mathbf{R}$. Find the real number(s) a that minimize the expression

$$|a-x_1|+|a-x_2|+\cdots+|a-x_n|.$$

(Andreescu & Gelca)

10. Prove that for every natural number $n \geq 2$ and every $x \in [-1, 1]$,

$$(1+x)^n + (1-x)^n \le 2^n.$$

(Exercises and Problems in Algebra, Bucharest 1983)