Math 194

For discussion Tuesday, Oct. 26, 2010

1. Suppose A and B are two $n \times n$ matrices that commute (i.e., $A B=B A$), and for some positive integers r, s we have $A^{r}=I_{n}$ (the $n \times n$ identity matrix) and $B^{s}=0$ (the $n \times n$ zero matrix). Prove that $A+B$ is invertible, and find its inverse.
(Andreescu \& Gelca)
2. Suppose $a, b \geq 2$ are relatively prime integers. For every $n \geq 0$ show that $a^{2 n}+b^{2 n}$ is not divisible by $a+b$.
3. Find all polynomials $P(x)$ with real coefficients such that

$$
(x+1) P(x)=(x-2) P(x+1)
$$

4. Let $P(x)$ be a polynomial of odd degree with real coefficients. Show that the equation $P(P(x))=0$ has at least as many real roots as the equation $P(x)=0$, (counted without multiplicities).
(Russian Mathematical Olympiad, 2002)
5. Given an integer $n \geq 1$, find all polynomials $P(x)$ with real coefficients such that $P(x)^{n}=P\left(x^{n}\right)$ for all x.
6. Suppose you have a calculator, but the multiplication and division buttons are broken. You can add, subtract, and take the inverse of a number, but you can't multiply or divide. Show how to find the product of (any) two numbers, using at most 20 operations.
(Quantum)
7. Let S be the smallest set of rational functions (i.e., ratios of polynomials) in the variables x and y with real coefficients, containing $f(x, y)=x$ and $g(x, y)=y$ and closed under addition, subtraction, and taking reciprocals. Show that S does not contain the constant function $h(x, y)=1$. (American Mathematical Monthly, 1987)
8. Suppose $f(x)$ is a polynomial with integer coefficients, and for some integer k there are k consecutive integers $n, n+1, \ldots, n+k-1$ such that none of the values $f(n)$, $f(n+1), \ldots, f(n+k-1)$ are divisible by k. Prove that $f(x)$ has no integer roots.
(Putnam, 1940)
9. Suppose that a and b are different roots of $x^{3}+x-1$. Prove that $a b$ is a root of $x^{3}-x^{2}-1$.
10. Show that there are infinitely many positive integers a such that $n^{4}+a$ is not prime for any natural number n.
