Math 194

For discussion Oct 12, 2010

You are strongly urged to write up and hand in a careful and complete solution to (at least) one of these problems.

1. Show that every positive integer can be written as a sum of distinct Fibonacci numbers.
2. Let B be a set of more than $2^{n+1} / n$ distinct points with coordinates of the form $(\pm 1, \pm 1, \ldots, \pm 1)$ in n-dimensional space, with $n \geq 3$. Show that there are three distinct points in B which are the vertices of an equilateral triangle.
(Putnam, 2000)
3. Show that for every $n \geq 1$, a $2^{n} \times 2^{n}$ checkerboard with a single 1×1 corner square removed can be covered by pieces of the form
(a 2×2 square with a 1×1 corner removed).
(Gelca \& Andreescu)
4. Prove for every positive integer n that

$$
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

5. Prove that for some $n>0$, the Fibonacci number F_{n} is divisible by $1,000,000$.
(Irish Mathematical Olympiad 1999)
6. Show that every convex polyhedron has 2 faces with the same number of edges.
(Moscow Mathematical Olympiad)
7. Seventeen people correspond by email with one another (each one with all 16 others). A total of 3 different topics are discussed, in all the emails, and each pair of correspondents discusses only one of the topics. Prove that there at least 3 people who write to each other about the same topic.
(Larson 2.6.11)
8. Let $I_{n}=\int_{0}^{2 \pi} \sin ^{n}(x) d x$. Find a recurrence relation for I_{n}. Using this recurrence, what is the value of I_{n} ?
(Larson 2.5.15)
9. Suppose there are given a set of 25 points in the plane, such that among any three there exists a pair that are distance less than 1 apart. Prove that there is a circle of radius 1 that contains at least 13 of the given points.
10. Show that if more than half of the subsets of an n-element set are selected, then two of the selected subsets have the property that one is a subset of the other.
