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LECTURE 1

Galois cohomology

We begin with a very quick and selective introduction to the facts from group
cohomology and Galois cohomology that will be needed for the following lectures.
For basic details see [AW, Gr, Se2], and for some of the more advanced results see
[Se1, Mi]. For another quick overview see the lectures of Tate [Ta3] from PCMI
1999. We omit most proofs, although accessible ones are often given as exercises.

1.1. G-modules.

Suppose G is a group. A G-module is an abelian group A with an action of G on
A that respects the group operation on A. That is, there is a map

G×A −→ A

such that, if we let ga (or sometimes ag) denote the image of (g, a) in A, then

(gh)a = g(ha), g(a+ b) = ga+ gb

for g, h ∈ G and a, b ∈ A. Define the fixed subgroup

AG = {a ∈ A : ga = a for every g ∈ G}.

Example 1.1.1. If X is an abelian group we can view X as a G-module with
trivial G action, and then XG = X.

Example 1.1.2. If F/K is a Galois extension of fields and G = Gal(F/K), then
F and F× are G-modules. More generally, if H is an algebraic group defined over
K, then the group of F -points H(F ) is a G-module and H(F )G = H(K).

Example 1.1.3. If A and B are G-modules and ϕ : A → B is a group homo-
morphism, we define a new group homomorphism gϕ for g ∈ G by (gϕ)(a) =
g(ϕ(g−1a)). This makes Hom(A,B) into a G-module, and Hom(A,B)G is the
group of G-module homomorphisms from A to B.

We say that a G module A is co-induced if A ∼= Hom(Z[G], X) for some abelian
group X.

Exercise 1.1.4. Suppose A is a G-module, and A0 is the G-module whose un-
derlying abelian group is A, but whose G action is trivial. Show that the map
a 7→ ϕa, where ϕa(g) = g−1a, is an injection from A to the co-induced module
Hom(Z[G], A0).

1.2. Characterization of the cohomology groups.

For this section suppose that the group G is finite. For every G-module A, there are
abelian (cohomology) groups Hi(G,A) for i ≥ 0. For an explicit definition using
cocycles and coboundaries, see [AW, Se2]. We will omit the definition, and just
make use of the following properties.
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6 LECTURE 1. GALOIS COHOMOLOGY

Theorem 1.2.1. There is a unique collection of functors Hi(G, · ) from G-modules
to abelian groups, for i ≥ 0, satisfying the following properties:

(1) H0(G,A) = AG for every G-module A.
(2) If 0 → A → B → C → 0 is a short exact sequence of G-modules, then

there is a (functorial) long exact sequence

0→ H0(G,A)→ H0(G,B)→ H0(G,C)→ H1(G,A)→ H1(G,B)→ · · ·
· · · → Hi(G,A)→ Hi(G,B)→ Hi(G,C)→ Hi+1(G,A)→ · · ·

(3) If A is co-induced, then Hi(G,A) = 0 for all i ≥ 1.

Exercise 1.2.2. Show that the three properties above determine the cohomology
groups Hi(G,A) uniquely (assuming they exist). Hint: use induction and the
fact (Exercise 1.1.4) that for every G-module A there is a short exact sequence
0→ A→ B → C → 0 with B co-induced.

In these lectures we will only make use of Hi(G,A) for i ≤ 2 (and mostly i ≤ 1).
When i = 0 the groups are described explicitly by condition (1) of Theorem 1.2.1;
when i = 1 we have the following explicit description.

Define C1(G,A) (the 1-cochains) to be the group of (set) maps from G to A.
Define subgroups of cocycles and coboundaries B1(G,A) ⊂ Z1(G,A) ⊂ C1(G,A)
by

Z1(G,A) = {f ∈ C1(G,A) : f(gh) = f(g) + g(f(h))}
B1(G,A) = {f ∈ C1(G,A) : for some a ∈ A, f(g) = ga− a for every g ∈ G}.

Proposition 1.2.3. H1(G,A) = Z1(G,A)/B1(G,A).

There is a similar definition ofHi(G,A) for every i, where the cochains Ci(G,A)
(are) set maps from Gi to A, and Bi(G,A) ⊂ Zi(G,A) ⊂ Ci(G,A) are defined
appropriately.

Example 1.2.4. Suppose that G acts trivially on A. Then Z1(G,A) = Hom(G,A)
and B1(G,A) = 0, so in this case we conclude from Proposition 1.2.3 that

H1(G,A) = Hom(G,A).

Exercise 1.2.5. Suppose that G is a finite cyclic group. For every G-module A,
let AN := {a ∈ A :

∑
g∈G ga = 0} (here “N” stands for “norm”; AN is the kernel

of the norm map a 7→
∑
g∈G ga).

Show that if g is a generator of G, then the map f 7→ f(g) is an injective
homomorphism from Z1(G,A) to A with image AN . Deduce that in this case

H1(G,A) ∼= AN/(g − 1)A.

(Warning: note that this isomorphism depends on the choice of generator g.)

Exercise 1.2.6. Suppose 0→ A→ B → C → 0 is an exact sequence of G-modules,
and suppose c ∈ CG. Fix an element b ∈ B that maps to c.

Show that the map g 7→ gb− b defines a 1-cocycle fc ∈ Z1(G,A) (that depends
on the choice of b). Show that c 7→ fc induces a well-defined homomorphism
H0(G,C) → H1(G,A) and check that with this homomorphism, the beginning of
the long exact sequence of Theorem 1.2.1(2) is in fact exact.
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1.3. Continuous cohomology.

Now suppose that G is a profinite group (see for example [Gr]), i.e., there is an
isomorphism

(1.1) G = lim
←−

G/U

where U runs over open subgroups of G of finite index. This isomorphism gives G
natural topology, where we view each finite quotient G/U as a discrete topological
space, so the product

∏
(G/U) is a compact group with the product topology, and

then (1.1) identifies G with a closed (and hence compact) subset of
∏

(G/U).
Note that a finite group G is profinite, with the discrete topology.
If A is a G-module, we will view A as a topological group with the discrete

topology, and we call A a continuous G-module if the action of G on A (i.e., the
map G×A→ A) is continuous.

Exercise 1.3.1. Suppose A is a G-module. Show that the following are equivalent:
(1) A is a continuous G-module,
(2) for every a ∈ A, the stabilizer of a in G is open,
(3) A = ∪AU , union over open subgroups U ⊂ G.

Example 1.3.2. If F/K is an infinite Galois extension of fields, and we put G :=
Gal(F/K), then there is a natural isomorphism

G = lim
←−

Gal(L/K)

inverse limit over finite Galois extensions L of K in F . Thus G is a profinite group.
If H is an algebraic group over K as in Example 1.1.2, then

H(F ) = ∪H(L) = ∪H(F )Gal(L/K),

union over finite extensions L of K in F . Therefore G acts continuously on H(F )
by Exercise 1.3.1.

It follows (for example) that when F = Ksep is a separable closure of K, the
following G-modules are continuous: Ksep, (Ksep)×, µp∞ (the p-power roots of
unity in Ksep), E(Ksep) for an elliptic curve E, and E[p∞] (the p-power torsion in
E(Ksep)).

If A is a continuous G-module, we can define continuous cohomology groups
Hi(G,A), defined similarly to the case of finite groups G but with continuous
cochains (that is, Ci(G,A) consists of continuous maps from Gi to A). Theorem
1.2.1(1) and (2) also hold for continuous cohomology groups.

If G is finite, then all relevant maps are continuous and the continuous coho-
mology groups agree with the cohomology groups described in §1.2.

In the next section we will see (Proposition 1.4.7) how to describe the contin-
uous cohomology groups in terms of the cohomology of finite groups.

Until further notice we will always assume that the group G is profinite,
and G-module will mean continuous G-module, a discrete abelian group
with a continuous action of G.

1.4. Change of group.

Suppose H is a closed subgroup of a profinite group G, and A is a G-module. Then
A is an H-module, and AG ⊂ AH . For every i there is a restriction map on cochains
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Res : Ci(G,A)→ Ci(H,A), and these maps induce restriction maps

Res : Hi(G,A)→ Hi(H,A).

If [G : H] is finite, then there is also a norm map AH → AG, defined by
a 7→

∑
g ga, summing over a set of left coset representatives of G/H. This map

extends in a less obvious way to a corestriction map

Cor : Hi(H,A)→ Hi(G,A)

for every i.

Proposition 1.4.1. If [G : H] is finite, then Cor ◦ Res : Hi(G,A) → Hi(G,A) is
multiplication by [G : H].

Corollary 1.4.2. If G is finite, then for every G-module A and every i ≥ 1, we
have

|G| ·Hi(G,A) = 0.

Proof. Take H = {1} in Proposition 1.4.1. �

Exercise 1.4.3. Suppose m ∈ Z. Show that if mA = 0, then mHi(G,A) = 0 for
every i. Show that if m : A → A is an isomorphism, then mHi(G,A) = Hi(G,A)
for every i. Deduce that if |G| : A→ A is an isomorphism, then Hi(G,A) = 0.

Exercise 1.4.4. Suppose G is finite. Using Exercise 1.1.4, show that for i ≥ 1,
Hi(G,A) can be expressed in terms of Hi−1(G,C) for some G-module C. Use this
fact, the norm map on H0, and induction to define the corestriction map on Hi.

Using this definition, prove Proposition 1.4.1.

Now suppose that H is a closed normal subgroup of G. Then AH is a G/H-
module, and for every i there is an inflation map on cochains Inf : Ci(G/H,AH)→
Ci(G,A). These maps induce inflation maps

Inf : Hi(G/H,AH)→ Hi(G,A).

Theorem 1.4.5. If H is a normal subgroup of G and A is a G-module, then there
is an natural exact sequence

0→ H1(G/H,AH) Inf−−→ H1(G,A) Res−−→ H1(H,A)G/H

→ H2(G/H,AH)→ H2(G,A).

Corollary 1.4.6. Suppose H acts trivially on A, and

H1(G/H,A) = H2(G/H,A) = 0.

Then H1(G,A) ∼= Hom(H,A)G/H .

Proposition 1.4.7. If A is a G-module, then

Hi(G,A) = lim
−→

Hi(G/U,AU )

direct limit over open subgroups U ⊂ G, with respect to the inflation maps.

Exercise 1.4.8. Prove Proposition 1.4.7 when i = 1, using the description (Propo-
sition 1.2.3) of H1(G,A) in terms of cocycles.

Exercise 1.4.9. Use Proposition 1.4.7 to show that if A is a G-module, then
Hi(G,A) is a torsion group for i ≥ 1.



KARL RUBIN, EULER SYSTEMS AND KOLYVAGIN SYSTEMS 9

Proposition 1.4.10. Suppose G ∼= Ẑ := lim
←−

Z/nZ, and A is a torsion G-module.

(1) If γ is a topological generator of G, then evaluation of cocycles at γ induces
an isomorphism H1(G,A) ∼= A/(γ − 1)A.

(2) Hi(G,A) = 0 for i ≥ 2.

Proof. See [Se2, §XIII.1]. Assertion (1) is the following exercise. �

Exercise 1.4.11. Prove Proposition 1.4.10(1) using Exercise 1.2.5 and Proposition
1.4.7.

From now on, if F/K is a Galois extension and A is a Gal(F/K)-module, we
will write Hi(F/K,A) in place of Hi(Gal(F/K), A), and when F is a separable
closure Ksep of K we write simply GK := Gal(Ksep/K) and Hi(K,A) in place of
Hi(Ksep/K,A) = Hi(GK , A).

Definition 1.4.12. Suppose K is a nonarchimedean local field K of characteristic
zero, i.e., a finite extension of some Qp. Let IK ⊂ GK denote the inertia group,
Kur = K̄IK the maximal unramified extension of K, and ϕ ∈ Gal(Kur/K) the
Frobenius automorphism. Then Gal(Kur/K) = GK/IK ∼= Ẑ, generated by ϕ.

If A is a GK-module, define the unramified cohomology group H1
u(K,A) ⊂

H1(K,A) by

H1
u(K,A) := ker

[
H1(K,A) Res−−→ H1(Kur, A)

]
.

The inflation-restriction exact sequence (Theorem 1.4.5) shows that

(1.2) H1
u(K,A) = H1(Kur/K,AIK ).

If A is a GK-module, we will say that A is unramified if IK acts trivially on A.

Proposition 1.4.13. If A is a finite unramified GK-module, then:
(1) H1

u(K,A) = H1(Kur/K,A) = A/(ϕ− 1)A,
(2) H1(K,A)/H1

u(K,A) ∼= Hom(IK , A)GK .

Proof. This follows from Theorem 1.4.5 and Proposition 1.4.10. �

1.5. Selmer groups.

Suppose for this section that K is a number field, and A is a GK-module. For every
place v of K, we can view the decomposition group GKv as a subgroup of GK , so
we have restriction maps

Resv : Hi(K,A) −→ Hi(Kv, A).

Definition 1.5.1. A Selmer structure F for A is a collection of distinguished
subgroups

H1
F (Kv, A) ⊂ H1(Kv, A)

for every place v of K, such that H1
F (Kv, A) = H1

u(Kv, A) for all but finitely many
v.

If F is a Selmer structure for A, we define the Selmer group H1
F (K,A) by

H1
F (K,A) = ker

[
H1(K,A) ⊕Resv−−−−→

⊕
v

(H1(Kv, A)/H1
F (Kv, A))

]
.

In other words, H1
F (K,A) is the subgroup of all classes in H1(K,A) whose

localization lies in H1
F (Kv, A) for every v.
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Exercise 1.5.2. Suppose F is a Selmer structure, and suppose Σ is a finite set of
places of K containing all archimedean places, all places where A is ramified, and
all v such that H1

F (Kv, A) 6= H1
u(Kv, A). Let KΣ be the maximal extension of K

unramified outside of Σ. Show that

H1
F (K,A) = ker

[
H1(KΣ/K,A) ⊕Resv−−−−→

⊕
v∈Σ

(H1(Kv, A)/H1
F (Kv, A))

]
Proposition 1.5.3. If A is finite and F is a Selmer structure for A, then H1

F (K,A)
is finite.

Proof. With notation as in Exercise 1.5.2, a standard result (for example [Mi,
Corollary I.4.15]) shows that H1(KΣ/K,A) is finite. Thus H1

F (K,A) is finite by
Exercise 1.5.2. �

In what follows, Selmer groups will be arithmetically interesting objects (ideal
class groups, Selmer groups of elliptic curves, . . . ) and their orders should be related
to values of L-functions. We will see examples of Selmer groups in the next section.

Exercise 1.5.4. If B is a GK-quotient of A, show that a Selmer structure F for
A induces a Selmer structure for B (which we also denote by F), where we define
H1
F (Kv, B) to be the image of H1

F (Kv, A) under the canonical map H1(Kv, A) →
H1(Kv, B).

Similarly, show that if C is a GK-submodule of A, show that a Selmer structure
F for A induces one for C, where H1

F (Kv, C) is defined to be the inverse image of
H1
F (Kv, A) under the canonical map H1(Kv, C)→ H1(Kv, A).

1.6. Kummer theory.

Proposition 1.6.1. Suppose F/K is a Galois extension. Then

Hi(F/K,F ) =

{
K if i = 0
0 if i > 0,

Hi(F/K,F×) =

{
K× if i = 0
0 if i = 1.

Exercise 1.6.2. Use Proposition 1.4.7 to reduce the proof of Proposition 1.6.1 to
the case where F/K is finite.

Theorem 1.6.3. For every m > 0 prime to the characteristic of K, there is a
natural isomorphism

K×/(K×)m ∼= H1(K,µm).

Proof. The long exact cohomology sequence coming from the short exact
sequence

0 −→ µm −→ (Ksep)× m−−→ (Ksep)× −→ 0
begins

0 −→ µm(K) −→ K×
m−−→ K× −→ H1(K,µm) −→ H1(K, (Ksep)×).

Now the theorem follows from Proposition 1.6.1. �

Exercise 1.6.4. Show using the description from Exercise 1.2.6 that the isomor-
phism of Theorem 1.6.3 is given by sending x ∈ K× to the cocycle g 7→ g( m

√
x)/ m
√
x

for g ∈ GK .

Corollary 1.6.5. If µm ⊂ K then K×/(K×)m ∼= Hom(GK ,µm).
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Exercise 1.6.6. Suppose µm ⊂ K and X is a finite subgroup of K×/(K×)m.
Show that the isomorphism of Corollary 1.6.5 identifies

X ∼= Hom(Gal(K( m
√
X)/K),µm),

where K( m
√
X) is the extension of K generated by m-th roots of all elements of

X. Show that the isomorphism of Corollary 1.6.5 induces a bijection between finite
subgroups of K×/(K×)m and finite abelian extensions of K of exponent dividing
m.

Definition 1.6.7. If K is a nonarchimedean local field of characteristic zero, define

H1
f (K,µm) ⊂ H1(K,µm)

to be the image under the Kummer map of Theorem 1.6.3

O×K/(O
×
K)m ↪→ K×/(K×)m ∼= H1(K,µm)

where OK is the ring of integers of K. If K is R or C, let H1
f (K,µm) = H1(K,µm).

Exercise 1.6.8. Show that if K is a number field, then the collection of subgroups
{H1

f (Kv,µm)} is a Selmer structure (i.e., show that H1
f (Kv,µm) = H1

u(Kv,µm)
for all v - m∞).

Proposition 1.6.9. The Selmer group H1
f (K,µm) defined with the Selmer struc-

ture above satisfies

0 −→ O×K/(O
×
K)m −→ H1

f (K,µm) −→ CK [m] −→ 0

where CK [m] is the m-torsion subgroup of the ideal class group of K.

Exercise 1.6.10. Prove Proposition 1.6.9 as follows. Viewing H1
f (K,µm) ⊂

K×/(K×)m, show that if x ∈ K× projects to an element of H1
f (K,µm), then

the fractional principal ideal xOK is am for some fractional ideal a. Show that
sending x to the class of a induces a surjective map H1

f (K,µm) � CK [m] with
kernel O×K/(O

×
K)m.

Theorem 1.6.3 has the following analogue for elliptic curves.

Theorem 1.6.11. Suppose E is an elliptic curve defined over K and m > 0 is
prime to the characteristic of K. There is an exact sequence

0 −→ E(K)/mE(K) −→ H1(K,E[m]) −→ H1(K,E(Ksep))[m] −→ 0.

Exercise 1.6.12. Prove Theorem 1.6.11 using the short exact sequence

0 −→ E[m] −→ E(Ksep) m−−→ E(Ksep) −→ 0.

Show that the injection E(K)/mE(K) ↪→ H1(K,E[m]) is given by sending x ∈
E(K) to the cocycle g 7→ gy − y, where y ∈ E(Ksep) satisfies my = x (and the
same y is used for all g).

Definition 1.6.13. If K is a nonarchimedean local field of characteristic zero, E
is an elliptic curve over K, and m > 0, define

H1
f (K,E[m]) ⊂ H1(K,E[m])

to be the image of the Kummer map of Theorem 1.6.11

E(K)/mE(K) ↪→ H1(K,E[m]).

If K is R or C, let H1
f (K,E[m]) = H1(K,E[m]).
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Suppose now that K is a number field and E is an elliptic curve over K. If
v - m∞ and E has good reduction at v, then H1

f (Kv, E[m]) = H1
u(Kv, E[m]) by

[Ca], so the collection of subgroups {H1
f (Kv, E[m])} is a Selmer structure. The cor-

responding Selmer group is the classical m-Selmer group of E/K, H1
f (K,E[m]) =

Selm(E/K) sitting in an exact sequence

(1.3) 0 −→ E(K)/mE(K) −→ Selm(E/K) −→X(E/K)[m] −→ 0

where X(E/K) is the Shafarevich-Tate group of E/K.

1.7. The Brauer group.

If K is a field, µ∞ will denote the roots of unity in Ksep.

Exercise 1.7.1. Suppose K is a field. Show that for every m > 0 prime to the char-
acteristic of K, there is a natural isomorphism H2(K,µm) ∼= H2(K, (Ksep)×)[m].
Deduce that if K has characteristic zero, then H2(K,µ∞) ∼= H2(K, (Ksep)×).

Theorem 1.7.2. If K is a nonarchimedean local field of characteristic zero (i.e.,
a finite extension of some Qp), then there is a canonical isomorphism

invK : H2(K,µ∞) ∼−→ Q/Z.

If K = R, there is a canonical isomorphism

invR : H2(R,µ∞) ∼−→ 1
2Z/Z ⊂ Q/Z.

Proof. See [Se2, §XIII.3]. �

Theorem 1.7.3. Suppose K is a number field. For every m ≤ ∞ there is an exact
sequence

0 −→ H2(K,µm) ⊕Resv−−−−→
⊕
v
H2(Kv,µm)

P
invKv−−−−−→ Q/Z −→ 0

where Kv is the completion of K at v, and Resv is the restriction map with respect
to the subgroup GKv ⊂ GK .

Proof. See [AT, Chapter 7, Theorem 8]. �

1.8. Local fields and duality.

Suppose A and B are G-modules. There is a cup product homomorphism

Hi(G,A)⊗Hj(G,B) −→ Hi+j(G,A⊗B).

We view this as a bilinear pairing on Hi(G,A)×Hj(G,B), written (a, b) 7→ a ∪ b.
The cup product pairing has numerous properties [AW, Se2]; here we mention only
that it commutes with restriction maps: if H ⊂ G, then Res(a)∪Res(b) = Res(a∪b).

Suppose now that K is a field, A is a finite GK module, and µ∞ is the GK-
module of roots of unity in Ksep. Define the Cartier dual A∗ = Hom(A,µ∞). Then
A∗ is also a (continuous) GK-module, and there is a natural pairing

A⊗A∗ −→ µ∞.

We can compose the cup product with this pairing to get a pairing

(1.4) Hi(K,A)⊗Hj(K,A∗) −→ Hi+j(K,µ∞).
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If K is a local field of characteristic zero, and i+ j = 2, we can compose the pairing
(1.4) with the isomorphism of Proposition 1.7.2 to get a new pairing

(1.5) Hi(K,A)×Hj(K,A∗) ∪−−→ H2(K,µ∞) invK−−−→ Q/Z.

Theorem 1.8.1 (Tate local duality). Suppose K is a local field of characteristic
zero, A is a finite GK-module, and 0 ≤ i ≤ 2. Then (1.5) is a perfect pairing of
finite groups.

Proof. See [Mi, Corollary I.2.3]. �

In the following examples and exercise, K is a local field of characteristic zero
and OK is its ring of integers.

Example 1.8.2. Fix m ≥ 0, and let A = µm. Then A∗ = Z/mZ (with trivial
GK-action), and we have

H1(K,µm) ∼= K×/(K×)m, H1(K,Z/mZ) = Hom(GK ,Z/mZ).

By Theorem 1.8.1, the pairing (1.5) gives an isomorphism (for every m)

K×/(K×)m ∼−→ H1(K,µm) ∼−→ Hom(H1(K,Z/mZ),Q/Z)
∼−→ Hom(Hom(GK ,Z/mZ),Q/Z) ∼−→ Gab

K /(G
ab
K )m.

The inverse limit of these maps over m gives the Artin map K× → Gab
K of local

class field theory.

Exercise 1.8.3. Recall that H1
f (K,µm) ⊂ H1(K,µm) is the image of the Kummer

map O×K/(O
×
K)m ↪→ H1(K,µm). Define

H1
f (K,Z/mZ) := H1

u(K,Z/mZ) = Hom(GK/IK ,Z/mZ) ⊂ H1(K,Z/mZ),

where IK ⊂ GK is the inertia group. Show, using the local class field theory de-
scription of the isomorphism in Example 1.8.2, that H1

f (K,µm) and H1
f (K,Z/mZ)

are orthogonal complements of each other under the Tate pairing

H1(K,µm)×H1(K,Z/mZ)→ Q/Z.

Example 1.8.4. Suppose E is an elliptic curve over K, m > 0, and A = E[m].
The Weil pairing E[m] × E[m] → µm gives a canonical isomorphism A∗ ∼= E[m].
By Theorem 1.8.1, the pairing (1.5) gives a perfect pairing

H1(K,E[m])×H1(K,E[m]) −→ Z/mZ.

The subgroup H1
f (K,E[m]) ⊂ H1(K,E[m]) given by Definition 1.6.13 is its own

orthogonal complement under this pairing [Ta1].

1.9. Unramified and transverse cohomology groups.

Fix for this section a nonarchimedean local field K of characteristic zero, and let OK
be its ring of integers. As in Definition 1.4.12, we let IK ⊂ GK denote the inertia
group, Kur = K̄IK the maximal unramified extension of K, and ϕ ∈ Gal(Kur/K)
the Frobenius automorphism. Then Gal(Kur/K) = GK/IK ∼= Ẑ, generated by ϕ.
Recall that a GK-module A is unramified if IK acts trivially on A.

Proposition 1.9.1. Suppose A is a finite unramified GK-module of order prime
to the residue characteristic of K. Then H1

u(K,A) and H1
u(K,A∗) are orthogonal

complements of each other under the pairing (1.5).
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Proof. See for example [Mi, Theorem I.2.6], or combine the following two
exercises. �

Exercise 1.9.2. Show using Proposition 1.4.13 that if A is a finite unramified
GK-module of order prime to the residue characteristic of K, then

|H1
u(K,A)| = [H1(K,A∗) : H1

u(K,A∗)].

You will need to use that the tame quotient of IK is isomorphic (as a GK-module)
to
∏
` 6=p µ`∞ , where p is the residue characteristic of K.

Exercise 1.9.3. Assuming that the cup product commutes with inflation, show
that H1

u(K,A) and H1
u(K,A∗) are orthogonal because the following diagram com-

mutes:
H1(K,A)×H1(K,A∗) ∪ // H2(K,µ∞)

H1
u(K,A)×H1

u(K,A∗) ∪ //

Inf

OO

H2(Kur/K,µ∞)

Inf

OO

and the lower right corner is zero by Proposition 1.4.10(2).

Let k denote the residue field of K, and q := |k|.

Definition 1.9.4. Suppose L/K is a totally tamely ramified extension of degree
q − 1; then there is a canonical isomorphism Gal(L/K) ∼= k×. (When K = Q` we
can take L = Q`(µ`).) We define the L-transverse subgroup H1

t (K,A) ⊂ H1(K,A)
by

H1
t (K,A) := ker

[
H1(K,A)→ H1(L,A)

]
= H1(L/K,AGL).

Proposition 1.9.5. Suppose A is a finite unramified GK-module and (q−1)A = 0.
Then:

(1) H1
t (K,A) ∼= Hom(Gal(L/K), Aϕ=1).

(2) H1
t (K,A)⊗Gal(L/K) ∼= Aϕ=1.

(3) There is a direct sum decomposition H1(K,A) = H1
u(K,A)⊕H1

t (K,A).
(4) H1

t (K,A) and H1
t (K,A∗) are orthogonal complements of each other under

the pairing (1.5).

Proof. See [MR1, Lemmas 1.2.1, 1.2.4 and Proposition 1.3.2]. Since A is
unramified and IK and GL generate GK , we have AGL = AGK = Aϕ=1. This proves
(1) and (2). By (1) and Proposition 1.4.13(2), |H1(K,A)| = |H1

u(K,A)|·|H1
t (K,A)|,

so to prove (3) it is enough to show that H1
u(K,A) ∩ H1

t (K,A) = 0, and then to
prove (4) it is enough to show that H1

t (K,A) and H1
t (K,A∗) are orthogonal. These

are left as an exercises, or see [MR1]. �

Definition 1.9.6. Suppose m | q − 1, and let R = Z/mZ. Suppose that A is an
unramified G-module that is free of finite rank over R, and that det(1− ϕ|A) = 0.
Consider the characteristic polynomial

P (x) := det(1− ϕx|A) ∈ R[x].

Since P (1) = det(1 − ϕ|A) = 0, we have P (x) = (x − 1)Q(x) for some Q(x) ∈
R[x]. By the Cayley-Hamilton theorem, P (ϕ−1) annihilates A, so Q(ϕ−1) ⊂ Aϕ=1.
Define the unramified-transverse comparison map φut to be the composition

H1
u(K,A) ∼−→ A/(ϕ− 1)A

Q(ϕ−1)−−−−−→ Aϕ=1 ∼−→ H1
t (K,A)⊗Gal(L/K)
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using the isomorphisms of Proposition 1.4.13(1) and 1.9.5(2).

Exercise 1.9.7 (Lemma 1.2.3 of [MR1]). Suppose m | q−1 and A is an unramified
G-module that is free of finite rank over Z/mZ. Show that Aϕ=1 is free of rank
one over Z/mZ if and only if A/(ϕ − 1)A is free of rank one over Z/mZ. If these
conditions are satisfied, show that the map φut of Definition 1.9.6 is an isomorphism
and H1

u(K,A), H1
t (K,A), H1

u(K,A∗), H1
t (K,A∗), are all free of rank 1 over Z/mZ.

1.10. Comparing Selmer groups.

Suppose K is a number field and A is a finite GK-module.

Definition 1.10.1. If F is a Selmer structure for A, define a Selmer structure F∗
for the Cartier dual A∗ := Hom(A,µ∞) by

H1
F∗(Kv, A

∗) := H1
F (Kv, A)⊥ ⊂ H1(Kv, A

∗)

for every v, where H1
F (Kv, A)⊥ is the orthogonal complement of H1

F (Kv, A) in
H1(Kv, A

∗) under the local Tate pairing (1.5). By Proposition 1.9.1, F∗ is a Selmer
structure.

If F ,G are Selmer structures for A, we will say G ⊂ F if H1
G(Kv, A) ⊂

H1
F (Kv, A) for every v. Note that if G ⊂ F , then

• H1
G(K,A) ⊂ H1

F (K,A),
• F∗ ⊂ G∗.

Theorem 1.10.2 (Global duality). Suppose G1,G2 are Selmer structures for A,
and G1 ⊂ G2. There are exact sequences

0 // H1
G1

(K,A) // H1
G2

(K,A)
⊕Resv // ⊕

v
H1
G2

(Kv, A)/H1
G1

(Kv, A),

0 // H1
G∗2

(K,A∗) // H1
G∗1

(K,A∗) ⊕Resv // ⊕
v
H1
G∗1

(Kv, A
∗)/H1

G∗2
(Kv, A

∗),

summing over v such that H1
G1

(Kv, A) 6= H1
G2

(Kv, A). The images of the two right-
hand maps are orthogonal complements of each other under the sum of the local
Tate pairings (1.5).

Proof. See [R2, Theorem 1.7.3] to derive this statement from the usual state-
ment of Poitou-Tate duality ([Ta2, Theorem 3.1] or [Mi, Theorem I.4.10]). �

Exercise 1.10.3. Show that the two sequences of Theorem 1.10.2 are exact. Show
that the images of the two right-hand maps are orthogonal, using Theorem 1.7.3.

The following corollary of Theorem 1.10.2 will be used to bound the size
of H1

F (K,A). Note that given F , there will exist G ⊂ F “small enough” that
H1
G(K,A) = 0.

Corollary 1.10.4. Suppose G ⊂ F are Selmer structures for A, and H1
G(K,A) = 0.

Then

|H1
F (K,A)| ≤

∣∣coker
[
H1
G∗(K,A

∗) ⊕Resv−−−−→
⊕
v
H1
G∗(Kv, A

∗)/H1
F∗(Kv, A

∗)
]∣∣.

Exercise 1.10.5. Prove Corollary 1.10.4.





LECTURE 2

Kolyvagin systems

From now on, to simplify things we will only consider K = Q. Much of what
we do can be extended easily to arbitrary number fields.

Fix a prime p and a positive integer m, and let R = Z/pmZ. Fix a GQ-module
A that is free of finite rank over R, and a Selmer structure F for A.

The letter ` will always denote a rational prime.

2.1. Varying the Selmer structure.

As in Exercise 1.5.2, let Σ be a finite set of places of Q containing ∞, p, all primes
where A is ramified, and all ` such that H1

F (Q`, A) 6= H1
u(Q`, A).

Definition 2.1.1. Suppose a, b, c are pairwise relatively prime positive integers,
and c is not divisible by any primes in Σ. Define a new Selmer structure Fba(c) for
A by

H1
Fba(c)(Qv, A) =


H1
F (Qv, A) if v - abc

0 if v | a,
H1(Qv, A) if v | b,
H1

t (Qv, A) if v | c.
In other words, Fba(c) is constructed by modifying F at the primes dividing abc,
with the “strict” condition at ` if ` | a, the “relaxed” condition at ` if ` | b, and
the transverse condition at ` if ` | c. (Here the transverse subgroup H1

t (Q`, A) is
defined with respect to the extension Q`(µ`)/Q` in Definition 1.9.4.)

If any of a, b, or c are equal to 1, we will suppress them from the notation.

Exercise 2.1.2. Show that the dual Selmer structure (Fba(c))∗ (in the sense of
Definition 1.10.1) is (F∗)ab (c).

Definition 2.1.3. Let

P = {` /∈ Σ : ` ≡ 1 (mod pm) and A/(Fr` − 1)A is free of rank 1 over R}.
Let N = N (P) ⊂ Z+ denote the set of squarefree products of primes in P (with
the convention that 1 ∈ N ). If n ∈ N let

Gn =
⊗̀
|n

F×` =
⊗̀
|n

Gal(Q(µ`)/Q).

Since each Gal(Q(µ`)/Q) is cyclic of order divisible by pm, we see that Gn ⊗R is
free of rank one over R. By convention, we set G1 = R.

If ` | n ∈ N , then `− 1 = det(1−Fr`|A) = 0 in R, so we can apply Proposition
1.9.5, Definition 1.9.6, and Exercise 1.9.7 to H1(Q`, A). In particular we will write

φut
` : H1

u(Q`, A) ∼−→ H1
t (Q`, A)⊗G`

17
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for the unramified-transverse isomorphism of Definition 1.9.6.
If n` ∈ N , we can compare H1

F (n)(Q, A) ⊗ Gn and H1
F (n`)(Q, A) ⊗ Gn` by

localizing at ` and using the φut
` :

(2.1)

H1
F (n)(Q, A)⊗Gn

Res`⊗1

��
H1

u(Q`, A)⊗Gn

φut
` ⊗1

��
H1
F (n`)(Q, A)⊗Gn`

Res`⊗1 // H1
t (Q`, A)⊗Gn`.

Exercise 2.1.4 (Corollary 2.3.6 of [MR1]). If n ∈ N , show that

length(H1
F (Q, A))− length(H1

F∗(Q, A
∗))

= length(H1
F (n)(Q, A))− length(H1

F (n)∗(Q, A
∗)).

where length means length as an R-module, so |M | = plength(M) for every finite
R-module M . Hint: apply Theorem 1.10.2 with (G1,G2) = (F ,Fn) and with
(G1,G2) = (F (n),Fn), and use Exercise 1.9.7.

2.2. Kolyvagin systems.

Keep the notation of the previous section.

Definition 2.2.1. A Kolyvagin system for (A,F) is a collection

{κn ∈ H1
F (n)(Q, A)⊗Gn : n ∈ N}

such that if n` ∈ N , then the images of κn and κn` in H1
t (Q`, A) ⊗ Gn` in (2.1)

are equal. We let KS(A,F) (or simply KS(A), if F is understood) denote the
R-module of Kolyvagin systems.

We next reformulate this definition.

Definition 2.2.2. Suppose X is a graph, with vertex set V and edge set E. By a
sheaf S of R-modules on X, we mean a rule assigning

• to each vertex v an R-module S(v),
• to each edge e an R-module S(e),
• to each pair (v, e) such that the vertex v is an endpoint of the edge e, an
R-module homomorphism ψev : S(v)→ S(e).

We call S(v) the stalk of S at v.
A global section of S is a collection {κv ∈ S(v) : v ∈ V } such that for every

edge e, if v, v′ are the endpoints of e, then ψev(κv) = ψev′(κv′). We let Γ(S) denote
the R-module of global sections of S.

Definition 2.2.3. Define a graph X associated to (A,F) by taking the set of
vertices to be N , and whenever n, n` ∈ N we join n and n` by an edge. Define the
Selmer sheaf H = H(A,F) on X by

• H(n) = H1
F (n)(Q, A)⊗Gn for n ∈ N ,

and if e is the edge joining n and n`,
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• H(e) = H1
t (Q`, A)⊗Gn`,

• ψen is the composition of the vertical maps of (2.1),
• ψen` is the horizontal map of (2.1).

Definition 2.2.1′. A Kolyvagin system for (A,F) is a global section of the Selmer
sheaf H(A,F), and so KS(A,F) = Γ(H(A,F)).

Exercise 2.2.4. Suppose H1
F (Q, A) = 0. Show that every Kolyvagin system is

identically zero.

Exercise 2.2.5. Suppose κ ∈ KS(A,F) and ` ∈ P. Fix a surjection ξ : G` → R.
Show that the collection

{(1⊗ ξ)(κn`) : n ∈ N , ` - n}
is a Kolyvagin system for (A,F(`)).

We postpone until later any discussion of how one can find Kolyvagin systems,
and instead we discuss consequences of the existence of Kolyvagin systems.

2.3. Sheaves and monodromy.

Suppose for this section that S is a sheaf on a graph X, as in Definition 2.2.2.

Definition 2.3.1. If v and w are vertices of X, a path in X from v to w is a
sequence of vertices and edges (v = v0, e1, v1, e2, . . . , en, vn = w) in X such that for
each i, ei is an edge joining vi−1 and vi. A loop in X (at v) is a path from v to v.

We say that S is locally cyclic if all the R-modules S(v), S(e) are cyclic and all
the maps ψev are surjective.

If S is locally cyclic then a surjective path (relative to S) from v to w is a path
(v = v0, e1, v1, e2, . . . , en, vn = w) in X such that for each i, the map ψeivi is an
isomorphism. We say that the vertex v is a hub of S if for every vertex w there is
an S-surjective path from v to w.

Suppose now that the sheaf S is locally cyclic. If P is a surjective path in X:

S(v0) // // S(e1) S(v1)
∼oo // // S(e2) S(v2)

∼oo // // · · · S(vn−1)
∼oo // // S(en) S(vn)

∼oo

v0 e1
v1 e2

v2 · · · vn−1
en

vn

we can define a surjective map ψP : S(v0)→ S(vn) by

(2.2) ψP = (ψekvk )−1 ◦ ψekvk−1
◦ (ψek−1

vk−1
)−1 ◦ · · · ◦ (ψe1v1

)−1 ◦ ψe1v0

since all the inverted maps are isomorphisms. We will say that S has trivial
monodromy if whenever v, w,w′ are vertices, P, P ′ are surjective paths (v, . . . , w)
and (v, . . . , w′), and w,w′ are joined by an edge e, then ψew ◦ ψP = ψew′ ◦ ψP ′ ∈
Hom(S(v),S(e)). In particular for every pair v, w of vertices and and every pair
P, P ′ of surjective paths from v to w, we require that ψP = ψP ′ ∈ Hom(S(v),S(w)).

Recall that Γ(S) is the set of global sections of S.

Proposition 2.3.2. Suppose S is locally cyclic and v is a hub of S.
(1) The map fv : Γ(S)→ S(v) defined by κ 7→ κv is injective, and is surjective

if and only if S has trivial monodromy.
(2) If κ ∈ Γ(S), and if u is a vertex such that κu 6= 0 and κu generates pkS(u)

for some k ∈ Z+, then κw generates pkS(w) for every vertex w.
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Exercise 2.3.3. Prove Proposition 2.3.2

Definition 2.3.4. A global section κ ∈ Γ(S) will be called primitive if for every
vertex v, κ(v) ∈ S(v) is a generator of the R-module S(v).

It follows from Proposition 2.3.2 that a locally cyclic sheaf S with a hub has a
primitive global section if and only if S has trivial monodromy.

The Selmer sheaf will not in general be locally cyclic. However, we will see
later that under suitable hypotheses, there is a natural subsheaf H′ of the Selmer
sheaf H such that H′ is locally cyclic with trivial monodromy, H′ has hub vertices,
and every global section of H is a global section of H′, i.e.,

KS(A,F) = Γ(H) = Γ(H′).

2.4. Hypotheses on A and F .

From now on we will assume that all of the following hypotheses hold. Let Ā =
A ⊗R Fp. We will assume that in addition to being free of finite rank over R, A
satisfies:

(H.1) Ā is an absolutely simple Fp[GQ]-module, not isomorphic (as a GQ-
module) to Fp or to µp.

(H.2) There is a τ ∈ GQ such that τ = 1 on µp∞ and A/(τ − 1)A is free of rank
one over R.

(H.3) H1(Q(A)/Q, Ā) = H1(Q(A∗)/Q, Ā∗) = 0, where Q(A) is the fixed field
of the kernel of the map GQ → Aut(A), and similarly for Q(A∗).

(H.4) Either Ā 6∼= Ā∗, or p ≥ 5.
We will also assume that for every k, 0 ≤ k ≤ m, the quotient Selmer structure

induced by F on A/pkA (via the map A � A/pkA) is the same as the subgroup
Selmer structure induced by F on A/pkA (via the map pm−k : A/pkA ↪→ A),
where the induced Selmer structures are defined in Exercise 1.5.4. In other words,
for every v,

(H.5) (image of H1
F (Qv, A) under H1(Qv, A)→ H1(Qv, A/p

kA))
= (inverse image of H1

F (Qv, A) under H1(Qv, A/p
kA)→ H1(Qv, A)).

Remark 2.4.1. Hypotheses (H.1), (H.2), and (H.3) are generally requiring that
the image of GQ in Aut(A) is sufficiently large. For a discussion of the condition
on F , and some sufficient conditions for it to be satisfied, see [MR1, §3.7]. (Note
that the condition on F is vacuous if m = 1, R = Fp.)

If (A,F) satisfy the conditions above, then so do (A/pkA,F) for 0 ≤ k ≤ m.

Exercise 2.4.2. Show that under the assumptions above, P has positive density.
Hint: check that if ` /∈ Σ and the Frobenius of ` in Gal(Q(A,µpm) is in the
conjugacy class of the element τ of (H.2), then ` ∈ P.

Exercise 2.4.3. Show that (H.5) is automatically satisfied for v /∈ Σ.

Exercise 2.4.4 (Lemma 3.7.4 of [MR1]). Show that if A and F satisfy the as-
sumptions above, and n ∈ N , then so do (A,F(n)).

Proposition 2.4.5. Under the assumptions above, if n ∈ N and 0 ≤ k ≤ m, there
are isomorphisms

(1) H1
F (n)(Q, A/p

kA) ∼−→ H1
F (n)(Q, A[pk]) ∼−→ H1

F (n)(Q, A)[pk] induced by

A/pkA
∼−→ A[pk] ↪→ A,
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(2) H1
F (n)(Q, A)[pk] = ker

[
H1
F (n)(Q, A)→ H1

F (n)(Q, A/p
m−kA)

]
,

(3) H1
F (n)∗(Q, A

∗[pk]) ∼−→ H1
F (n)∗(Q, A

∗)[pk] induced by A∗[pk] ↪→ A∗.

Exercise 2.4.6 (Lemma 3.5.3, 3.5.4 of [MR1]). Prove Lemma 2.4.5. (By Exercise
2.4.4, it is enough to do this for n = 1.)

Exercise 2.4.7. Show that the composition A/pkA
∼−→ A[pk] ↪→ A induces an

inclusion KS(A/pkA) ↪→ KS(A)[pk]. Why is not obvious that this inclusion is an
isomorphism?

2.5. The core Selmer group.

Recall that Ā = A⊗ Fp.

Definition 2.5.1. If n ∈ N , define

λ(n,A) = length(H1
F (n)(Q, A)) = length(H(n)),

λ(n,A∗) = length(H1
F (n)∗(Q, A

∗)),

and similarly with A replaced by A/pkA. Note that by Proposition 2.4.5,

λ(n,A) = 0⇐⇒ λ(n, Ā) = 0, λ(n,A∗) = 0⇐⇒ λ(n, Ā∗) = 0.

Theorem 2.5.2. There are integers r, s ≥ 0, with one of them equal to zero, such
that for every n ∈ N there is a noncanonical isomorphism

H1
F (n)(Q, A)⊕Rr ∼= H1

F (n)∗(Q, A
∗)⊕Rs.

Proof. To prove the existence of such an isomorphism, it is enough to show
that for 1 ≤ k ≤ m, the kernels of pk on the left-hand side and on the right-hand
side have the same order. In other words, we need to show that there is a t ∈ Z
such that for every n,

length(H1
F (n)(Q, A)[pk])− length(H1

F (n)∗(Q, A
∗)[pk]) = kt.

By Proposition 2.4.5, this is equivalent to

λ(n,A/pkA)− λ(n,A∗[pk]) = kt.

By Exercise 2.1.4, the left-hand side is independent of n, so we only need to consider
n = 1. In this case what we need follows from [Wi, Proposition 1.6] (see also [MR1,
Proposition 2.3.5]) and [MR1, Proposition 1.1.5]. �

Definition 2.5.3. Define the core rank χ(A) of A (suppressing F from the nota-
tion) to be the nonnegative integer s of Theorem 2.5.2. We call n ∈ N a core vertex
if either λ(n,A) = 0 or λ(n,A∗) = 0.

Exercise 2.5.4. Show the following:

(1) If χ(A) > 0, then H1
F (n)(Q, A) ∼= H1

F (n)∗(Q, A
∗)⊕Rχ(A) for every n ∈ N .

(2) If n is a core vertex, then H1
F (n)(Q, A) is free over R of rank χ(A),

(3) If n is a core vertex and χ(A) > 0 then H1
F (n)∗(Q, A

∗) = 0.
(4) If n is a core vertex and χ(A) = 0 then H1

F (n)(Q, A) = 0.
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2.6. Stepping along the Selmer graph.

The next lemma is an application of the global duality (Theorem 1.10.2), and is
crucial in many of the calculations that follow.

Proposition 2.6.1. Suppose n` ∈ N . We have the following diagrams of inclu-
sions, in which the labels on the arrows are the lengths of the corresponding cyclic
cokernels.

H1
F`(n)(Q, A)

H1
F (n)(Q, A)

. �

a

==||||||||
H1
F (n`)(Q, A)

0 P

b

aaBBBBBBBB

H1
F`(n)(Q, A)

. �
d

==||||||||0 P
c

aaBBBBBBBB

H1
F`(n)∗(Q, A

∗)

H1
F (n)∗(Q, A

∗)
. �

c∗
<<zzzzzzzz

H1
F (n`)∗(Q, A

∗)
0 P

d∗
bbDDDDDDDD

H1
F`(n)∗(Q, A

∗)
. � b∗

<<zzzzzzzz0 Pa∗

bbDDDDDDDD

These lengths satisfy
(1) 0 ≤ a, b, c, d, a∗, b∗, c∗, d∗ ≤ m,
(2) a+ c = b+ d, a∗ + c∗ = b∗ + d∗,
(3) a+ a∗ = b+ b∗ = c+ c∗ = d+ d∗ = m,
(4) a ≥ d, b ≥ c, c∗ ≥ b∗, d∗ ≥ a∗.

Proof. By definition

H1
F (n)(Q, A) = ker[H1

F`(n)(Q, A)→ H1(Q`, A)/H1
u(Q`, A)],

H1
F`(n)(Q, A) = ker[H1

F (n)(Q, A)→ H1
u(Q`, A)],

and similarly for A∗. The two diagrams come from the definitions in this way. Since
H1

u(Q`, A), H1
t (Q`, A), H1

u(Q`, A
∗), and H1

t (Q`, A
∗) are all free of rank one over R

by Exercise 1.9.7, the inequalities (1) hold. The equalities (2) are immediate from
the diagrams.

The equality a + a∗ = m follows from global duality (apply Theorem 1.10.2
with G1 = F (n) and G2 = F`(n)), and similarly for the other three equalities of
(3). Finally, we have

H1
F (n)(Q, A) ∩H1

F (n`)(Q, A) = H1
F`(n)(Q, A).

The first two inequalities of (4) follow from this, and the other two similarly with
(A,F) replaced by (A∗,F∗). �

Corollary 2.6.2. Suppose n` ∈ N .
(1) |λ(n`,A)− λ(n,A)| ≤ m and |λ(n`,A∗)− λ(n,A∗)| ≤ m.
(2) If the localization map H1

F (n)(Q, A)→ H1
u(Q`, A) is surjective, then

H1
F (n`)∗(Q, A

∗) = H1
F`(n)∗(Q, A

∗) ⊂ H1
F (n)∗(Q, A

∗).

(3) The image of the composition

pλ(n,A∗)H1
F (n)(Q, A) loc`−−→ H1

u(Q`, A)
φut
`−−→ H1

t (Q`, A)⊗G`

is equal to the image of pλ(n`,A∗)H1
F (n`)(Q, A)⊗G`

loc`−−→ H1
t (Q`, A)⊗G`.
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(4) If both localization maps

H1
F (n)(Q, A)[p]→ H1

u(Q`, A), H1
F (n)∗(Q, A

∗)[p]→ H1
u(Q`, A

∗)

are nonzero, then λ(n`, Ā) = λ(n, Ā)− 1 and λ(n`, Ā∗) = λ(n, Ā∗)− 1.

Proof. Consider the diagrams of Proposition 2.6.1. Assertion (1) is im-
mediate. Recall (Exercise 1.9.7) that H1

u(Q`, A), H1
t (Q`, A), H1

u(Q`, A
∗), and

H1
t (Q`, A

∗) are free of rank one over R, and φut
` is an isomorphism.

If the localization map in (2) is surjective, then c = m in the left-hand diagram
of Proposition 2.6.1. Therefore by (3) and (4) of that lemma, b∗ = 0, which proves
(2).

To prove (3) it is enough to show that length(Cn) = length(Cn`) where Cn and
Cn` are the images of pλ(n,A∗)H1

F (n)(Q, A) and pλ(n`,A∗)H1
F (n`)(Q, A), respectively,

under localization at `. The left-hand diagram of Proposition 2.6.1 shows that

length(Cn) = max{0, c− λ(n,A∗)}, length(Cn`) = max{0, d− λ(n`,A∗)}.
The right-hand diagram shows that

λ(n,A∗)− λ(n`,A∗) = d∗ − c∗ = c− d,
so length(Cn) = length(Cn`).

For (4), if the localization maps in question are nonzero, then using Proposition
2.4.5 (with k = 1) we see that the localization maps

H1
F (n)(Q, Ā)→ H1

u(Q`, Ā), H1
F (n)∗(Q, Ā

∗)→ H1
u(Q`, Ā

∗)

are surjective. Applying Proposition 2.6.1 with A replaced by Ā (and m = 1) we
have c = a∗ = 1, so b∗ ≤ c∗ = 0 and d ≤ a = 0, so λ(n`, Ā∗) = λ(n, Ā∗) − 1 and
λ(n`, Ā) = λ(n, Ā)− 1. �

2.7. Choosing useful primes.

Proposition 2.7.1. Suppose c ∈ H1
F (n)(Q, A) and d ∈ H1

F (n)∗(Q, A
∗) are both

nonzero. Then {` ∈ P : Res`(c) 6= 0 and Res`(d) 6= 0} has positive density.

Sketch of proof. (For details, see [MR1, Proposition 3.6.1].) First, find
γ ∈ GQ such that

(1) γ = τ on Q(A,µpk), where τ is as in (H.2) of §2.4,
(2) c(γ) /∈ (τ − 1)A,
(3) d(γ) /∈ (τ − 1)A∗.

where c(γ) means the image of γ under any cocycle representing c, which is well-
defined modulo (γ − 1)A = (τ − 1)A, and similarly for d(γ). (One needs to check
that these three conditions can be satisfied simultaneously; this uses our hypotheses
on A).

If ` /∈ Σ, ` - n, is a prime whose Frobenius (in a suitably large extension of Q)
is γ, then it follows from the first condition implies that ` ∈ P (Exercise 2.4.2),
from the second condition that Res`(c) ∈ H1

u(Q`, A) ∼= A/(τ − 1)A is nonzero, and
from the third condition that Res`(d) ∈ H1

u(Q`, A
∗) ∼= A∗/(τ − 1)A∗ is nonzero.

Thus ` belongs to the set in question. �

Corollary 2.7.2. Suppose n ∈ N is not a core vertex. Then there is an ` ∈ P
such that λ(n`, Ā) = λ(n, Ā)− 1 and λ(n`, Ā∗) = λ(n, Ā∗)− 1.

If in addition κ ∈ KS(A) and κn 6= 0, then ` can be chosen so κn` 6= 0.
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Proof. Since n is not a core vertex, H1
F (n)(Q, A) and H1

F (n)∗(Q, A
∗) are both

nonzero. Apply Proposition 2.7.1 with a nonzero c ∈ H1
F (n)(Q, A)[p] and a nonzero

d ∈ H1
F (n)∗(Q, A

∗)[p], and let ` ∈ P be such that Res`(c) 6= 0 and Res`(d) 6= 0.
For this `, Corollary 2.6.2(4) shows that λ(n`, Ā) = λ(n, Ā) − 1 and λ(n`, Ā∗) =
λ(n, Ā∗)− 1.

If we take c to be a multiple of κn, then Res`(κn) 6= 0, so Res`(κn`) 6= 0 (by
definition of a Kolyvagin system), so κn` 6= 0. �

Corollary 2.7.3. Suppose n ∈ N . Then there is a core vertex n′ and a path of
length min{λ(n, Ā), λ(n, Ā∗)} from n to n′.

If in addition κ ∈ KS(A) and κn 6= 0, then n′ can be chosen so κn′ 6= 0.

If n ∈ N , let ω(n) denote the number of prime factors of n.

Corollary 2.7.4. Let r = min{dimFp H
1
F (Q, Ā),dimFp H

1
F∗(Q, Ā

∗)}. If n is a
core vertex, then ω(n) ≥ r. There are core vertices n with ω(n) = r.

Exercise 2.7.5. Prove Corollaries 2.7.3 and 2.7.4.

Theorem 2.7.6. If χ(A) = 0, then KS(A) = 0.

Proof. Suppose κ ∈ KS(A) and n ∈ N . If κn 6= 0, then by Corollary
2.7.3 there is a core vertex n′ such that κn′ ∈ H1

F(n′)(Q, A) is nonzero. But since
χ(A) = 0, we have H1

F(n′)(Q, A) = 0 by Exercise 2.5.4(4), so this is impossible. �

Remark 2.7.7. Theorem 2.7.6 gives another proof of Exercise 2.2.4, because if
H1
F (Q, A) = 0 then Theorem 2.5.2 shows that χ(A) = 0.

2.8. The stub subsheaf.

We define a subsheaf of the Selmer sheaf H = H(A,F) of Definition 2.2.3 as follows.

Definition 2.8.1. The sheaf of stub Selmer modules H′ = H′(A,F) is the subsheaf
of H defined by

• H′(n) = pλ(n,A∗)H(n) = pλ(n,A∗)H1
F (n)(Q, A)⊗Gn ⊂ H(n) if n ∈ N ,

• H′(e) = ψen(H′(n)) ⊂ H(e) if e is an edge joining n and n`,
and the vertex-to-edge maps ψen, ψ

e
n` are the restrictions of those of H.

By Corollary 2.6.2, ψen`(H′(n`)) = ψen(H′(n)), so H′ is a well-defined sheaf and
all vertex-to-edge maps are surjective.

Exercise 2.8.2. Show that for every n, H′(n) is free of rank χ(A) over Z/pkZ,
where k = max{m− λ(n,A∗), 0}. Deduce that if χ(A) = 1, then H′ is locally
cyclic.

Exercise 2.8.3. Show that if χ(A) = 1, then Corollary 2.7.3 can be strengthened
to say that for every vertex n, there is a surjective path (see Definition 2.3.1) from
some core vertex to n. (Hint: in the proof of Corollary 2.7.2, take c to be a nonzero
element of pm−1H1

F (n)(Q, A). Show that

Res` : H1
F (n)(Q, A)→ H1

u(Q`, A)

is surjective, and so

Res` : pλ(n,A∗)H1
F (n)(Q, A)→ pλ(n,A∗)H1

u(Q`, A)

is an isomorphism.)
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Theorem 2.8.4. Suppose χ(A) = 1. Then the natural inclusion Γ(H′) ↪→ Γ(H) is
an isomorphism, i.e., if κ ∈ KS(A) then κn ∈ H′(n) for every n ∈ N .

Sketch of proof. We give the proof in the special case where m = 1, so
R = Fp. See [MR1, Theorem 4.3.4] for the complete proof. (In this special case,
it is not necessary to assume that χ(A) = 1.)

Suppose R = Fp and κ ∈ KS(A). If n is a core vertex, then H′(n) = H(n) and
there is nothing to prove. If n is not a core vertex, then H′(n) = 0 and we need to
show κn = 0.

Suppose n is not a core vertex, and κn 6= 0. Using Proposition 2.7.1, we can
find an ` ∈ P such that Res`(κn) 6= 0 and Res`(H1

F∗(Q, A
∗)) 6= 0. In the notation

of Proposition 2.6.1, we have a∗ = 1, so a = 0, so d = 0. But then Res`(κn`) = 0,
so Res`(κn) = 0 by definition of a Kolyvagin system. This is a contradiction. �

Theorem 2.8.5. Suppose χ(A) = 1. Then the stub sheaf H′ is locally cyclic, and
every core vertex is a hub.

A key part of the proof of Theorem 2.8.5 is the following.

Definition 2.8.6. Suppose χ(A) = 1. Let X 0 be the subgraph of X whose vertices
are the core vertices in N , with an edge joining n and n` whenever both maps ψen
and ψen` are isomorphisms.

Let H0 be the restriction of the Selmer sheaf H to X 0, i.e., H0(n) = H(n) for
core vertices n, and H0(e) = H(e). Note that H0 is also the restriction of H′ to
X 0, since H′ and H agree precisely at the vertices and edges of X 0.

Theorem 2.8.7. The graph X 0 is connected.

Proof. The proof is “more of the same”. See [MR1, Theorem 4.3.12] �

Proof of Theorem 2.8.5. We have already seen (Exercise 2.8.2) that H′ is
locally cyclic. Suppose n ∈ N and v is a core vertex; we need to show that there
is a surjective path from v to n. By Exercise 2.8.3, there is a core vertex w and a
surjective path from w to n. By Theorem 2.8.7, there is a path in X 0 from v to w.
But every path in X 0 is a surjective path, so the concatenated path from v to w to
n is a surjective path from v to n. �

Theorem 2.8.8 (Howard, Appendix B of [MR1]). For every n ∈ N , the map
Γ(H′)→ H′(n) is surjective.

Corollary 2.8.9. (1) If χ(A) = 0, then KS(A) = 0.
(2) If χ(A) = 1, then KS(A) is free of rank one over R.
(3) If χ(A) > 1, then KS(A) is infinite.

Proof. The first assertion is Theorem 2.7.6. If χ(A) = 1 and n is a core
vertex (core vertices exist by Corollary 2.7.3), then Theorem 2.8.5 and Proposition
2.3.2 show that the map KS(A) → H(n) is injective, Theorem 2.8.8 shows that it
is surjective, and Exercise 2.5.4(2) shows that H(n) is free of rank one over R.

For (3), see the following exercise. �

Exercise 2.8.10 (Proof of Corollary 2.8.9(3)). If χ(A,F) > 0, and ` ∈ P, use
Proposition 2.6.1 to show that χ(Ā,F`) = χ(Ā,F)−1. (Note: the Selmer structure
F` for A may not satisfy condition (H.5) of §2.4, but for Ā, (H.5) is vacuous.)
Deduce that there are many different n such that χ(Ā,Fn) = 1, and for each
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of these we have KS(Ā,Fn) ⊂ KS(Ā,F) = KS(A,F)[p]. Now apply Corollary
2.8.9(2) to each of the KS(Ā,Fn).

We end this section with one example of how to use the results above to bound
the size of a Selmer group.

Corollary 2.8.11. Suppose χ(A) = 1 and κ ∈ KS(A). If κ1 ∈ H1
F (Q, A) has

order pk, then
length(H1

F∗(Q, A
∗)) ≤ m− k.

Proof. By Theorem 2.8.4(1), κ1 ∈ plength(H1
F∗ (Q,A∗))H1

F (Q, A), so κ1 is killed
by pm−length(H1

F∗ (Q,A∗)). �

2.9. Recovering the group structure of the dual Selmer group.

For this section we suppose that A is a GQ-module, free of finite rank over R =
Z/pmZ, and F is a Selmer structure for A, satisfying all the hypotheses of §2.4.
We assume in addition that χ(A) = 1.

Proposition 2.9.1. Suppose χ(A) = 1 and 0 ≤ k ≤ m. The natural quotient map
A � A/pkA induces a map KS(A) � KS(A/pkA).

Exercise 2.9.2. Prove Proposition 2.9.1 Hint: this is not as easy as it might seem,
because the index set N in the definition of a Kolyvagin system is larger for A/pkA
than for A. Use Exercise 2.4.7, and show that the map KS(A/pkA) ↪→ KS(A)[pk]
of Exercise 2.4.7 is an isomorphism if χ(A) = 1.

Proposition 2.9.3. Suppose χ(A) = 1 and κ ∈ KS(A). Then the following are
equivalent.

(1) κn generates H′(n) for every n ∈ N ,
(2) κn generates H′(n) for some n ∈ N with H′(n) 6= 0,
(3) κ /∈ pKS(A),
(4) pm−1κ 6= 0,
(5) κ generates KS(A),
(6) the image of κ in KS(Ā) (under the map of Proposition 2.9.1) is nonzero,

Exercise 2.9.4. Prove Proposition 2.9.3, using Theorems 2.8.4 and 2.8.5, and
Proposition 2.3.2.

Definition 2.9.5. We say that κ ∈ KS(A) is primitive if it satisfies the equivalent
conditions of Proposition 2.9.3

If κ is primitive, we have the following sharpening of Corollary 2.8.11.

Corollary 2.9.6. Suppose χ(A) = 1 and κ ∈ KS(A) is primitive. If κ1 6= 0 then

length(H1
F∗(Q, A

∗)) = m− length(Rκ1) = max{i : κ1 ∈ piH1
F (Q, A)}.

If κ1 = 0 then length(H1
F∗(Q, A

∗)) ≥ k.

Proof. Let λ = length(H1
F∗(Q, T

∗)). Since κ is primitive, we have

Rκ1 = H′(1) = pλH1
F (Q, A),

and length(pλH1
F (Q, A)) = max{m− λ, 0} by Exercise 2.8.2. �

We can formulate a more precise version of Corollary 2.9.6, which in some cases
determines the group structure of H1

F∗(Q, T
∗).
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Definition 2.9.7. If κ ∈ KS(T ) and r ≥ 0, define

∂r(κ) = max{k : k ≤ m and κn ∈ pkH1
F (n)(Q, A)⊗Gn

for every n ∈ N with ω(n) = r}.

The elementary divisors of κ are defined by

ei(κ) = ∂i−1(κ)− ∂i(κ), i ≥ 1.

Proposition 2.9.8. Suppose χ(A) = 1, κ ∈ KS(A), and let j be such that κ
generates pjKS(A). Write H1

F∗(Q, A
∗) ∼= ⊕iZ/pdiZ with nonnegative integers

d1 ≥ d2 ≥ · · · . Then for every r ≥ 0,

∂r(κ) = min{m, j +
∑
i>r

di}.

Proof. Note that since κ generates pjKS(A), Proposition 2.3.2 shows that
κn generates pjH′(n) = pj+λ(n,A∗)H(n) for every n. Therefore

∂r(κ) = min{m, j + λ(n,A∗) : n ∈ N , ω(n) = r},

and to prove the proposition we need to show that

(2.3) min{λ(n,A∗) : n ∈ N , ω(n) = r} =
∑
i>r

di.

This is clear when r = 0, since λ(1, A∗) =
∑
i di.

Suppose n ∈ N and ω(n) = r. Consider the map

H1
F∗(Q, A

∗) −→
⊕̀
|n
H1

f (Q`, A
∗).

The right-hand side is free of rank r over R, so the image is a quotient of H1
F∗(Q, A

∗)
generated by (at most) r elements. Hence the image has length at most

∑
i≤r di.

Therefore the kernel has length at least
∑
i>r di. But by definition this kernel is

contained in H1
F (n)∗(Q, A

∗), so we conclude that λ(n,A∗) ≥
∑
i>r di, which is one

inequality in (2.3).
We will prove the opposite inequality by induction on r. The case r = 0 was

proved above.
Since χ(A) > 0, Theorem 2.5.2 shows that pm−1H1

F (Q, A) 6= 0. Fix a nonzero
element c ∈ pm−1H1

F (Q, A) ⊂ H1
F (Q, A)[p]. If d1 > 0, then choose a nonzero

element c∗ ∈ pd1−1H1
F∗(Q, A

∗) ⊂ H1
F∗(Q, A

∗)[p]. Using Proposition 2.7.1, choose
a prime ` ∈ P such that the localization Res`(c) is nonzero and, if d1 > 0, such
that Res`(c∗) is nonzero as well.

It follows that
• the localization map H1

F (Q, A)→ H1
u(Q`, A) is surjective, and

• H1
(F`)∗(Q, A

∗) ∼= ⊕i≥1Z/pdi+1Z.

By Theorem 2.6.2(2) we have H1
F (`)∗(Q, A

∗) = H1
(F`)∗(Q, A

∗). Thus

min{λ(n,A∗) : n ∈ N , ω(n) = r} ≤ min{λ(n`,A∗) : n ∈ N , ` - n, ω(n) = r − 1}
= min{lengthR(H1

F(`)(n)∗(Q, A
∗)) : n ∈ N , ` - n, ω(n) = r − 1}

=
∑
i>r−1

di+1
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where the last equality comes from our induction hypothesis applied to (A,F(`)).
This completes the proof of (2.3). �

Theorem 2.9.9. Suppose χ(A) = 1, κ ∈ KS(A), and κ1 6= 0. Then

∂0(κ) ≥ ∂1(κ) ≥ ∂2(κ) ≥ · · · ≥ 0,

e1(κ) ≥ e2(κ) ≥ e3(κ) ≥ · · · ≥ 0,

∂r(κ) stabilizes at a value ∂∞(κ) for large r, er(κ) = 0 for large r, and

H1
F∗(Q, A

∗) ∼=
⊕
i≥1

Z/pei(κ)Z.

In particular length(H1
F∗(Q, A

∗)) = ∂0(κ)− ∂∞(κ).

Proof. If κ1 6= 0 then ∂0(κ) < k, so in Proposition 2.9.8 we have ∂r(κ) =
j +

∑
i>r di for every r. The theorem follows immediately. �

Remark 2.9.10. Theorem 2.9.9 shows that the elementary divisors of κ are inde-
pendent of κ as long as κ1 6= 0. Note that κ is primitive if and only if ∂∞(κ) = 0.



LECTURE 3

Kolyvagin systems for p-adic representations.

Suppose for this lecture that A is a free Zp-module of finite rank, with a
continuous action of GQ. We assume further that A is ramified at only finitely
many primes. Let A∗ = Hom(A,µp∞). For every positive integer m we have the
finite GQ-modules Am := A/pmA and A∗m = A∗[pm]. We will study Selmer groups
attached to A∗ by applying the results of the previous section to Am and A∗m.

Typical examples for A will be

Zp(1) := lim
←−

µpm , Zp(1)∗ = Qp/Zp,

Tp(E) := lim
←−

E[pm], Tp(E)∗ = E[p∞],

for an elliptic curve E defined over Q.

3.1. Cohomology groups for p-adic representations.

Exercise 3.1.1. Show that A∗ is a discrete, torsion GQ-module, and A∗ = lim
−→

A∗m.

Since A is not a discrete GQ-module, our definitions in Lecture 1 do not apply.
We will simply define, for any closed subgroup G of GQ,

H0(G,A) = AG, H1(G,A) := lim
←−

H1(G,Am).

This is the same group one would get by defining H1(G,A) using continuous cocy-
cles, but that would not be true in general for Hi(G,A) with i > 1. Since A∗ is a
discrete GQ-module, no modifications are necessary to define Hi(G,A∗).

The definitions of H1
u(Q`,A), Selmer structures for A, and the corresponding

Selmer groups, are exactly the same as Definitions 1.4.12 and 1.5.1. If F is a
Selmer structure for A, then F induces a Selmer structure (that we also denote by
F) for every Am, by taking H1

F (Qv, Am) to be the image of H1
F (Qv,A) under the

canonical map H1(Qv,A)→ H1(Qv, Am). This in turn defines a Selmer structure
F∗ on every A∗m, and we also denote by F∗ the Selmer structure on A∗ defined by
H1
F∗(Q`,A∗) = lim

−→
H1
F∗(Q`, A

∗
m).

Exercise 3.1.2. Show that the construction described above defines a Selmer struc-
ture on Am for every m (i.e., show that if A is unramified at ` and H1

F (Q`,A) =
H1

u(Q`,A), then H1
F (Q`, Am) = H1

u(Q`, Am)). Show that

H1
F (Q,A) = lim

←−
H1
F (Q, Am), H1

F∗(Q,A∗) = lim
−→

H1
F∗(Q, A

∗
m).

We will make the following assumptions on (A,F), in order to ensure that the
(Am,F) satisfy the hypotheses of §2.4. Let Ā := A/pA = A1, so Ā∗ = A∗[p].

(H.1) Ā is an absolutely simple Fp[GQ]-module, not isomorphic (as a GQ-
module) to Fp or to µp.

29
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(H.2) There is a τ ∈ GQ such that τ = 1 on µp∞ and A/(τ −1)A is free of rank
one over Zp.

(H.3) H1(Q(A)/Q, Ā) = H1(Q(A∗)/Q, Ā∗) = 0, where Q(A) is the fixed field
of the kernel of the map GQ → Aut(A), and similarly for Q(A∗).

(H.4) Either Ā 6∼= Ā∗, or p ≥ 5.
Let Σ be a finite set of places containing ∞, p, all ` such that A is ramified at `,
and all ` such that H1

F (Q`,A) 6= H1
u(Q`,A). We will also assume that:

(H.5) For every v ∈ Σ, H1(Qv,A)/H1
F (Qv,A) is a torsion-free Zp-module.

Lemma 3.1.3. If A and F satisfy the properties above, then:
(1) Am and F satisfy the hypotheses of §2.4,
(2) the core rank χ(Am) is independent of m.

Proof. It is immediate that property (H.i) for A implies the corresponding
property (H.i) for every Am, 1 ≤ i ≤ 4. That (H.5) for (A,F) implies (H.5) for
(Am,F) is [MR1, Lemma 3.7.1(i)], and we omit the proof.

The second assertion follows from Proposition 2.4.5 and Theorem 2.5.2; the
details are left as an exercise. �

Definition 3.1.4. We define the core rank χ(A) to be the common value χ(Am).

Example 3.1.5. We define a canonical Selmer structure Fcan on A by:
• if v ∈ {∞, p} then H1

Fcan
(Qv,A) = H1(Qv,A),

• if v /∈ {∞, p} then H1
Fcan

(Qv,A) = ker
[
H1(Q`,A)→ H1(Qur

` ,A)⊗Qp

]
.

Note that if A is unramified at `, then H1(Qur
` ,A) = Hom(IQ`

,A) where IQ`
is

the inertia group, and Hom(IQ`
,A) is torsion-free, so H1

Fcan
(Q`,A) = H1

u(Q`,A)
in this case.

Exercise 3.1.6. (1) Check that Fcan as defined above is a Selmer structure,
and that it satisfies (H.5).

(2) Show that if ` 6= p, A is unramified at `, andm > 0, thenH1
Fcan

(Q`, Am) =
H1

u(Q`, Am).

Proposition 3.1.7. For every v, the limit of the Tate pairings of Theorem 1.8.1
induces a nondegenerate pairing

H1(Qv,A)×H1(Qv,A∗) −→ Qp/Zp

under which H1
Fcan

(Qv,A) and H1
F∗can

(Qv,A∗) are orthogonal complements. In par-
ticular:

(1) if v ∈ {∞, p} then H1
F∗can

(Qv,A∗) = 0,
(2) if v /∈ {∞, p} then H1

F∗can
(Qv,A∗) = H1

u(Qv,A∗)div, the maximal divisible
subgroup of H1

u(Qv,A∗).
(3) If m > 0 then H1

F∗can
(Qv, A

∗
m) is the inverse image of H1

F∗can
(Qv,A∗) under

the map H1(Qv, A
∗
m)→ H1(Qv,A∗).

Proof. See [R2, §1.3], or work out the details as an exercise. �

Exercise 3.1.8. Suppose that either v = p or H1
u(Qv,A∗) is finite. Use Proposition

3.1.7 to show that there are natural isomorphisms

H0(Qv,A∗)/pmH0(Qv,A∗)
∼−→ H1

F∗can
(Qv, A

∗
m).
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Show that if in addition H1(Qv,A∗) is divisible then

H1
F∗can

(Qv, A
∗
m) = 0, H1

Fcan
(Qv, Am) = H1(Qv, Am).

If M is a Zp-module, we let

rankZp(M) = dimQp
M ⊗Qp, corankZp(M) := rankZpHom(M,Qp/Zp).

Proposition 3.1.9.

χ(A,Fcan) = rankZpA− + corankZpH
0(Qp,A∗).

where A− denotes the minus part of A for some complex conjugation.

Idea of proof. For the details of the proof, see [MR1, Theorem 5.2.15]. The
outline is as follows. By Proposition 2.4.5 and Theorem 2.5.2, there is an integer k
such that

(3.1) length(H1
Fcan

(Q, Am))− length(H1
F∗can

(Q, A∗m)) = km

for every m, and χ(A) = max{k, 0}. To prove the proposition we need to compute
the left-hand side of (3.1) (in fact, computing it up to an error bounded indepen-
dently of m will suffice). This can be done using [Wi, Proposition 1.6]. �

3.2. Kolyvagin systems for A.

Fix a Zp[GQ]-module A as above and a Selmer structure F for A, satisfying hy-
potheses (H.1) through (H.5).

If ` /∈ Σ, let

ν(`) = max{m : ` ≡ 1 (mod pm)

and Am/(Fr` − 1)Am is free of rank 1 over Z/pmZ}.

Let NA be the set of squarefree product of primes ` /∈ Σ, and if n ∈ NA define
ν(n) = min{ν(`) : ` | n} (by convention we let ν(1) =∞).

Definition 3.2.1. A Kolyvagin system for A is a collection

{κn ∈ H1
F (n)(Q, Aν(n))⊗Gn : n ∈ NA}

such that if n` ∈ N , then Res`(κn`) = φut
` ◦ Res`(κn) in H1

t (Q`, Aν(n`)) ⊗ Gn`.
(We understand A∞ = A, so κ1 ∈ H1

F (Q,A).) Let KS(A) be the Zp-module of
Kolyvagin systems for A.

Exercise 3.2.2. Show that restricting from NA to {n ∈ NA : ν(n) ≥ m} induces
a map KS(A)→ KS(Am). Show that if χ(A) = 1, then

KS(A) = lim
←−

KS(Am),

inverse limit with respect to the maps of Proposition 2.9.1.

We say that κ ∈ KS(A) is primitive if its image in KS(A1) is nonzero.

Theorem 3.2.3. Suppose χ(A) = 1. Then KS(A) is free of rank one over Zp,
and every generator is primitive.

Exercise 3.2.4. Prove Theorem 3.2.3.
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Definition 3.2.5. Suppose κ ∈ KS(A), κ 6= 0. We define the order of vanishing
of κ by

ord(κ) := min{ω(n) : κn 6= 0}.
If r ≥ 0 we define

∂r(κ) := max{j : κn ∈ pjH1
F (n)(Q, Aν(n))⊗Gn for all n ∈ NA with ω(n) = r}.

In particular ∂0(κ) = max{j : κ1 ∈ pjH1
F (Q,A)}, and ∂r(κ) = ∞ if r < ord(κ).

For i > ord(κ) define the sequence of elementary divisors

ei(κ) = ∂i−1(κ)− ∂i(κ).

Theorem 3.2.6. Suppose χ(A) = 1 and κ ∈ KS(A) is nonzero. Let r = ord(κ).
Then corankZp(H1

F∗(Q,A∗)) = r, ∂i(κ) 6=∞ if i ≥ r, the sequence ei(κ) is nonin-
creasing, nonnegative, equal to zero for large i, and

H1
F∗(Q,A∗) ∼= (Qp/Zp)r ×

⊕
i>r

Z/pei(κ)Z.

Exercise 3.2.7. Deduce Theorem 3.2.6 from Propositions 2.9.8 and 2.4.5 and
Exercise 3.2.2.

Corollary 3.2.8. The value of ord(κ) and the sequence of ei(κ) are independent
of (the nonzero) κ.

Corollary 3.2.9. Suppose χ(A) = 1. Then:
(1) length(H1

F∗(Q,A∗)) ≤ ∂0(κ), with equality if and only if κ is primitive.
(2) If κ1 6= 0, then H1

F∗(Q,A∗) is finite.
(3) If κ 6= 0 but κ1 = 0, then H1

F∗(Q,A∗) is infinite.

3.3. Example: units and ideal class groups.

Fix a character ρ : GQ → Z×p of finite order. Assume that p > 2, so that the order
of ρ is prime to p. Let L be the cyclic extension of Q which is the fixed field of ρ,
and ∆ = Gal(L/Q). We will also view ρ as a (primitive) Dirichlet character in the
usual way, so for every prime `,

ρ(`) = 0⇐⇒ ρ is ramified at `⇐⇒ L/Q is ramified at `,

ρ(`) = 1⇐⇒ ρ(GQ`
) = 1⇐⇒ ` splits completely in L/Q.

If B is a Zp[∆]-module, we define

Bρ = {b ∈ B : δb = ρ(δ)b for every δ ∈ ∆}.
Let

A := Zp(1)⊗ ρ−1 = lim
−→

µpm ⊗ ρ−1,

a free, rank-one Zp-module with GQ acting via the product of ρ−1 and the cyclo-
tomic character. (We write “⊗ρ−1” as an abbreviation for tensoring with a free,
rank-one module on which GQ acts as ρ−1.) The dual representation

A∗ = Hom(A,µp∞) ∼= Qp/Zp ⊗ ρ,
i.e., A∗ is isomorphic as a group to Qp/Zp, with GQ acting via ρ.

For everym ≥ 1, let Am = A/pmA = µpm⊗ρ−1, so A∗m = A∗[pm] = Z/pmZ⊗ρ.

Exercise 3.3.1. Describe H0(Q`,A∗) for every prime `, and show in particular
that it is a divisible Zp-module.
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Exercise 3.3.2. Suppose ` 6= p and ρ is ramified at `. Show that H1(Q`,A) = 0,
H1(Q`,A∗) = 0, and for every m, H1(Q`, Am) = 0 and H1(Q`,A∗) = 0. (Hint:
show that H1

u(Q`, Am) = 0 and H1
u(Q`, A

∗
m) = 0, and use Proposition 1.9.1.)

We have an inflation-restriction exact sequence

0→ H1(L/Q, (Am)GL)→ H1(Q, Am)→ H1(L,Am)∆ → H2(L/Q, (Am)GL)

and similarly with Am replaced by A∗m. Since [L : Q] is prime to p, Exercise 1.4.3
shows that Hi(L/Q, Am) = Hi(L/Q, A∗m) = 0 for i = 1, 2, so

H1(Q, Am) ∼= H1(L,Am)∆ ∼= (H1(L,µpm)⊗ ρ−1)∆,

H1(Q, A∗m) ∼= H1(L,A∗m)∆ ∼= (H1(L,Z/pmZ)⊗ ρ)∆

Since (using Theorem 1.6.3)

H1(L,µpm) = L×/(L×)p
m

, H1(L,Z/pmZ) = Hom(GL,Z/pmZ)

we conclude that

(3.2) H1(Q, Am) ∼= (L×/(L×)p
k

)ρ, H1(Q, A∗m) ∼= Hom(GL,Z/pmZ)ρ
−1

the isomorphisms depending on a choice of generators of the free rank-one Zp-
modules ρ and ρ−1.

Exercise 3.3.3. Show that (3.2) has the following generalization. If F is a number
field and L ∩ F = Q, then

H1(F,Am) ∼= (FL×/(FL×)p
k

)ρ, H1(F,A∗m) ∼= Hom(GFL,Z/pmZ)ρ
−1

For every prime `, let L` = L⊗Q Q`, the sum of the completions of L at primes
above `, let OL,` = OL ⊗Z Z`, and if λ is a prime of L above `, let ILλ ⊂ GLλ be
the inertia group.

Exercise 3.3.4. Show that for every prime `,
(1) H1(Q`, Am) ∼= (

⊕
λ|`

(L×λ /(L
×
λ ))p

m

)ρ = (L×` /(L
×
` )p

m

)ρ,

(2) H1(Q`, A
∗
m) ∼= (

⊕
λ|`

Hom(GLλ ,Z/p
mZ))ρ

−1
.

Exercise 3.3.5. Show that since p 6= 2, H1(R, Am) = H1(R, A∗m) = 0 for every
m, so we can safely ignore the infinite place in our definition of Selmer group and
Selmer structure.

Let F be the canonical Selmer structure Fcan defined in Example 3.1.5. Let
1 denote the trivial character of GQ, and εcycl : GQ → Aut(µp) ∼= F×p ↪→ Z×p the
mod-p cyclotomic character.

Exercise 3.3.6. Show that if ρ 6= 1 and ρ 6= εcycl, thenA and F satisfy assumptions
(H.1) through (H.5) of §3.1.

Exercise 3.3.7. Use Proposition 3.1.9 to show that with the canonical Selmer
structure (and with ρ 6= 1, εcycl), χ(A) is given by the following table:

χ(A) =


ρ even ρ odd

ρ(p) 6= 1 1 0
ρ(p) = 1 2 1

(recall that ρ is even if and only if ρ(−1) = 1).
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Proposition 3.3.8. For every m ≥ 1, with the identifications of Exercise 3.3.4 we
have

(1) H1
F (Qp, Am) = (L×p /(L

×
p )p

m

)ρ and H1
F∗(Qp, A

∗
m) = 0,

(2) If ` 6= p, then

H1
F (Q`, Am) = (O×L,`/(O

×
L,`)

pm)ρ,

H1
F∗(Q`, A

∗
m) = (

⊕
λ|`

Hom(GLλ/ILλ ,Z/p
mZ))ρ

−1

Proof. By Exercises 3.1.8 and 3.3.1, H1
F (Qp, Am) = H1(Qp, Am), so the first

part of (1) follows from Exercise 3.3.4(1).
For (2) we consider three cases.

Case 1: ` 6= p and ρ(`) = 1. In this case ` splits completely in L/K, and Am ∼= µpm
as a GQ`

-module, so (using Exercise 1.6.8)

H1
u(Q`, Am) = H1

u(Q`,µpm) = Z×` /(Z
×
` )p

m

= (O×L,`/(O
×
L,`)

pm)ρ.

Since ρ is unramified at `, Exercise 3.1.6(2) shows that H1
F (Q`, Am) = H1

u(Q`, Am).
This proves the first part of (2) in this case.

Case 2: ` 6= p, A is unramified at `, and ρ(`) 6= 1. In this case Exercise 3.1.6(2)
shows thatH1

F (Q`, Am) = H1
u(Q`, Am). On the other hand, the inflation-restriction

exact sequence gives

(3.3) 0 −→ H1
u(Q`, Am) −→ H1(Q`, Am) −→ H1(Qur

` , Am)GQ` .

We have

H1(Qur
` , Am) = H1(Qur

` ,µpm ⊗ ρ−1)

= H1(Qur
` ,µpm)⊗ ρ−1 = ((Qur

` )× ⊗ Z/pmZ)⊗ ρ−1

and, writing Zur
` for the ring of integers of Qur

` ,

0 −→ (Zur
` )× −→ (Qur

` )× ord`−−−→ Z −→ 0.

The unit group (Zur
` )× is p-divisible, so (Qur

` )×⊗Z/pmZ ∼= Z/pmZ as GQ`
-modules,

and so
H1(Qur

` , Am)GQ` = (Z/pmZ⊗ ρ)GQ` = (Z/pmZ)ρ
−1

= 0.
Thus (3.3) and Exercise 3.3.4 yield

H1
F (Q`, Am) = H1

u(Q`, Am) = H1(Q`, Am) = (L×` /(L
×
` )p

m

)ρ.

In the exact sequence

0 −→ O×L,` −→ L×`
⊕ordλ−−−−→

⊕
λ|`

Zλ −→ 0,

the decomposition group ∆` of ` in ∆ acts trivially on ⊕λZλ, but ρ(∆`) 6= 1,
so (⊕λ(Z/pmZ)λ)ρ = 0. Therefore (L×` /(L

×
` )p

m

)ρ = (O×L,`/(O
×
L,`)

pm)ρ, and this
proves (2) for Am in this case.

Case 3: ` 6= p and A is ramified at `. Exercise 3.3.2 shows that H1
F (Q`, Am) = 0.

On the other hand, the kernel of the reduction map

O×L,` �
⊕
λ|`

(OL/λ)×
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is a pro-`-group, so tensoring with Z/pmZ gives an isomorphism

O×L,`/(O
×
L,`)

pm ∼−→
⊕
λ|`

(OL/λ)×/((OL/λ)×)p
m

.

Since the inertia group I` acts trivially on the right-hand side, but ρ(I`) 6= 1, we
conclude that (O×L,`/(O

×
L,`)

pm)ρ = 0, which proves assertion (2) for Am.

The proof of the proposition for A∗m is left as the following exercise. �

Exercise 3.3.9. Prove the assertions in Proposition 3.3.8 about A∗m.

Let CL denote the p-part of the ideal class group of L, and

C′L = Pic(OL[1/p])[p∞],

the quotient of CL by the classes of primes above p.

Exercise 3.3.10. Suppose ρ(p) 6= 1. Show that H1
F (Qp, Am) = (O×L,p/(O

×
L,p)

pm)ρ,
(OL[1/p]×/(OL[1/p]×)p

m

)ρ = (O×L /(O
×
L )p

m

)ρ, and (C′L)ρ = CρL.

Proposition 3.3.11. For every m there is a natural exact sequence

0 −→ (OL[1/p]×/(OL[1/p]×)p
m

))ρ −→ H1
F (Q, Am) −→ C′L[pm]ρ −→ 0

and an isomorphism

H1
F∗(Q,A∗m) ∼= Hom((C′L)ρ,Z/pmZ).

If ρ(p) 6= 1 we can replace OL[1/p]×/(OL[1/p]×)p
m

by O×L /(O
×
L )p

m

and C′L by CL.

Proof. Under the identification (3.2), using Proposition 3.3.8 we have

H1
F (Q, Am) = {x ∈ (L×/(L×)p

m

)ρ : ordλ(x) ≡ 0 (mod pm) for every λ - p}.

If x ∈ L× represents a class in c ∈ H1
F (Q, Am), then the ideal xOL[1/p] =

ap
m

for some fractional ideal a of OL[1/p]. The map that sends c to the class
of a is a well-defined surjection from H1

F (Q, Am) to C′L[pm], and its kernel is
OL[1/p]×/(OL[1/p]×)p

m

. This gives the desired exact sequence.
Under the identification (3.2), Proposition 3.3.8 shows that H1

F∗(Q, A
∗
m) con-

sists of everywhere unramified homomorphisms in Hom(GL,Z/pmZ)ρ
−1

that are
trivial on the decomposition group at p, i.e.,

H1
F∗(Q, A

∗
m) = Hom(C′L,Z/pmZ)ρ

−1
.

The isomorphism of the proposition follows from this. �

Exercise 3.3.12. Use Proposition 3.3.11 to give a direct proof (i.e., without using
Proposition 3.1.9 as in Exercise 3.3.7) that if ρ 6= 1, εcycl, then χ(A) is given by the
table in Exercise 3.3.7.

Corollary 3.3.13. Suppose ρ is even, ρ(p) 6= 1, and κ ∈ KS(A) is nonzero. Then
κ1 6= 0 and

|CρL| ≤ [(O×L ⊗ Zp)ρ : Zpκ1],

with equality if and only if κ is primitive.
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Proof. By Proposition 3.3.11 we have H1(Q,A) = (O×L ⊗Zp)ρ. The proof of
the Dirichlet Unit Theorem shows that this is a free Zp-module of rank one, so

∂0(κ) = [(O×L ⊗ Zp)ρ : Zpκ1].

Now the corollary follows directly from Corollary 3.2.9(1) and Proposition 3.3.11.
�

Proposition 3.3.14. Suppose ` /∈ Σ and 1 ≤ m ≤ ν(`). Then

(1) ρ(`) = 1 and ` splits completely in Q(µp)/Q,
(2) the isomorphism H1(Q`, Am) ∼= H1(Q`,µpm) ∼= Q×` /(Q

×
` )p

m

identifies
H1

u(Q`, Am) with Z×` /(Z
×
` )p

m

and H1
t (Q`, Am) with the subgroup gener-

ated by `,
(3) there is a commutative diagram (recall that G` := Gal(Q(µ`)/Q))

H1
u(Q`, Am)

φut
` //

∼=
��

H1
t (Q`, Am)⊗G`

∼=
��

Z×` /(Z
×
` )p

m `⊗[ · ,Q`(µ`)/Q`] // 〈`〉 ⊗G`

where the vertical isomorphisms are from (2) and [ · ,Q`(µ`)/Q`] is the
local Artin map.

Proof. Since m ≤ ν(`), we have ` ≡ 1 (mod pm) and (Fr` − 1)Am = 0, so
`ρ−1(`) ≡ 1 (mod pm). Hence ρ(`) ≡ 1 (mod pm), and so ρ(`) = εcycl(`) = 1. This
proves (1).

Since ρ(`) = 1 and ` ≡ 1 (mod pm),

H1(Q`, Am) = H1(Q`,µpm) = Q×` /(Q
×
` )p

m

,

and the description of H1
u(Q`, Am) in (2) is similar to Proposition 3.3.8. By defi-

nition,

H1
t (Q`, Am) = ker

[
H1(Q`, Am)→ H1(Q`(µ`), Am)

]
= ker

[
Q×` /(Q

×
` )p

m

→ Q`(µ`)
×/(Q`(µ`)

×)p
m]

Let ζ` denote a primitive `-th root of unity in Q`(µ`). We have

` = NQ`(µ`)/Q`
(1− ζ`) =

`−1∏
i=1

(1− ζi`) = (1− ζ`)`−1
`−1∏
i=1

1− ζi`
1− ζ`

Since
∏`−1
i=1

1−ζi`
1−ζ` ≡

∏`−1
i=1 i ≡ −1 (mod ζ` − 1), we also see that

∏`−1
i=1

1−ζi`
1−ζ` ∈

(Q`(µ`)×)p
m

. Hence ` ∈ (Q`(µ`)×)p
m

, so ` ∈ H1
t (Q`, Am). On the other hand,

since GQ`
acts trivially on Am,

H1
t (Q`, Am) = H1(Q`(µ`)/Q`, Am) = Hom(Gal(Q`(µ`)/Q`), Am)

is cyclic of order pm, and (2) follows.
The proof of (3) is left as an exercise. �



KARL RUBIN, EULER SYSTEMS AND KOLYVAGIN SYSTEMS 37

3.4. Example: Tate modules of elliptic curves.

Now suppose that E is an elliptic curve defined over Q, and

A = Tp(E) := lim
←−

E[pm]

is the p-adic Tate module of E. Then the Weil pairing shows that A∗ = E[p∞],
and for every m, Am = A∗m = E[pm]. We will also assume that

(3.4)
• p ≥ 5,
• the p-adic representation GQ → Aut(E[p∞]) ∼= GL2(Zp) is surjective

and we let F be the Selmer structure Fcan on Tp(E).

Exercise 3.4.1. Show that under the assumptions of (3.4), Tp(E) and F satisfy
hypotheses (H.1) through (H.5) of §3.1.

Exercise 3.4.2. Show using Proposition 3.1.9 that χ(Tp(E)) = 1.

Proposition 3.4.3. (1) If ` 6= p, then H1(Q`, Tp(E)) and H1(Q`, E[p∞])
are finite.

(2) For every `, H1
F (Q`, Tp(E)) = H1(Q`, Tp(E)) and H1

F∗(Q`, E[p∞]) = 0.

Proof. Suppose first that ` 6= p, and m > 0. Writing I` for the inertia group
in GQ`

, we have (see (1.2) and Proposition 1.4.13(1))

H1
u(Q`, E[pm]) = H1(Qur

` /Q`, E[pm]I`) ∼= E[pm]I`/(Fr` − 1)(E[pm]I`).

It follows from the exact sequence

0→ E(Q`)[pm]→ E[pm]I` Fr`−1−−−−→ E[pm]I` → E[pm]I`/(Fr` − 1)(E[pm]I`)→ 0

that E[pm]I`/(Fr` − 1)(E[pm]I`) and E(Q`)[pm] have the same order, so

|H1
u(Q`, E[pm])| = |E(Q`)[pm]|.

Since E[pm]∗ = E[pm], Proposition 1.9.1 shows that H1
u(Q`, E[pm]) is its own or-

thogonal complement in H1(Q`, E[pm], so |H1(Q`, E[pm])| = |E(Q`)[pm]|2. Since
|E(Q`)[pm]| is bounded independently of m, we conclude that both H1(Q`, Tp(E))
and H1(Q`, E[p∞]) are finite. This proves (1), and (2) follows from the definition
of Fcan (for H1

F (Q`, Tp(E))) and Proposition 3.1.7(2) (for H1
F∗(Q`, E[p∞])).

If ` = p, then (2) is the definition of Fcan (for H1
F (Q`, Tp(E))) and Proposition

3.1.7(1) (for H1
F∗(Q`, E[p∞])). �

Exercise 3.4.4. Show that if E(Q`)[p] = 0, then H1
F (Q`, E[pm]) = H1(Q`, E[pm])

and H1
F∗(Q`, E[pm]) = 0. (Hint: use Theorem 1.8.1 with i = 2.)

Recall (Definition 1.6.13) that for every ` and m, H1
f (Q`, E[pm]) is the image

of the Kummer map E(Q`)/pmE(Q`) ↪→ H1(Q`, E[pm]), and Selpm(E/Q) is the
corresponding Selmer group.

Proposition 3.4.5. Suppose ` 6= p and m > 0. Then

H1
F (Q`, E[pm]) = H1

F∗(Q`, E[pm]) = H1
f (Q`, E[pm]).

Proof. By Exercise 3.1.8 and Proposition 3.4.3, there is a natural isomorphism

(3.5) E(Q`)[p∞]/pmE(Q`)[p∞] ∼−→ H1
F∗(Q`, E[pm]).
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By [Si, Theorem IV.6.4 and Proposition VII.2.2], there is a (noncanonical) decom-
position

E(Q`) ∼= Z` × E(Q`)tors

so there is a canonical isomorphism

E(Q`)/pmE(Q`)
∼−→ E(Q`)tors/p

mE(Q`)tors = E(Q`)[p∞]/pmE(Q`)[p∞].

Combined with (3.5) (and checking that the obvious diagram commutes) this proves
that H1

F∗(Q`, E[pm]) = H1
f (Q`, E[pm]). By Example 1.8.4, H1

f (Q`, E[pm]) is its
own orthogonal complement in H1(Q`, E[pm]) under the Tate pairing, so we have
H1
F (Q`, E[pm]) = H1

f (Q`, E[pm]) as well. �

Corollary 3.4.6. There are exact sequences

0 // Selpm(E/Q) // H1
F (Q, E[pm]) // H1

F (Qp, E[pm])/H1
f (Qp, E[pm])

0 // H1
F∗(Q, E[pm]) // Selpm(E/Q) // H1

f (Qp, E[pm])/H1
F∗(Qp, E[pm]).

Exercise 3.4.7. Show directly from the definition that χ(Tp(E)) = 1. Hint:
use Corollary 3.4.6, Theorem 1.10.2, Exercise 3.1.8, and the fact that E(Qp) ∼=
E(Qp)tors ⊕ Zp.



LECTURE 4

Euler systems

The preceding lectures have shown that Kolyvagin systems are useful for de-
scribing the structure of Selmer groups, and even that Kolyvagin systems exist for
certain p-adic representations. It still remains to construct Kolyvagin systems and
to relate them to special values of L-functions (something that has been done only
in very special cases). In this lecture we describe general machinery for constructing
Kolyvagin systems.

4.1. Definition of an Euler system.

Fix a rational prime p and a p-adic representation A (a free Zp-module of finite
rank with a continuous action of GQ) as in the previous lecture. Fix a finite set Σ
of places containing ∞, p, and all primes ` where A is ramified.

If ` /∈ Σ, define
P`(x) = det(1− Fr`x|A) ∈ Zp[x].

Let
N = {npk : n is a squarefree product of primes ` /∈ Σ, k ≥ 0},

An Euler system for A is a collection

ξ = {ξn ∈ H1(Q(µn),A) : n ∈ N}
such that for n` ∈ N ,

(4.1) CorQ(µn`)/Q(µn)ξn` =

{
P`(Fr−1

` )ξn if ` 6= p,

ξn if ` = p.

Let ES(A) denote the Zp[GQ]-module of Euler systems for A.

4.2. Example: the cyclotomic unit Euler system

Fix a nontrivial character ρ : GQ � Gal(Q(µp)/Q)→ Z×p , and let A = Zp(1)⊗ρ−1

as in §3.3. Then for every ` 6= p, Fr` acts on A as `ρ−1(`), so

P`(x) = 1− `ρ−1(`)x.

Let Σ = {∞, p}.
If p | n then ρ(GQ(µn)) = 1, so there are isomorphisms

(4.2) H1(Q(µn),A) ∼= H1(Q(µn),Zp(1))⊗ ρ−1 ∼= (Q(µn)× ⊗ Zp)⊗ ρ−1

and commutative diagrams for every `

(4.3)

(Q(µn`)× ⊗ Zp)⊗ ρ−1 ∼ //

NQ(µn`)/Q(µn)⊗1

��

H1(Q(µn`),A)

CorQ(µn`)/Q(µn)

��
(Q(µn)× ⊗ Zp)⊗ ρ−1 ∼ // H1(Q(µn),A).

39
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If p - n, then Exercise 3.3.3 gives a commutative diagram

(4.4)

(Q(µnp)× ⊗ Zp)⊗ ρ−1 ∼ //

P
δ∈∆ ρ−1(δ)δ⊗1=

��

H1(Q(µnp),A)

CorQ(µnp)/Q(µn)

��
((Q(µnp)× ⊗ Zp)⊗ ρ−1)∆ ∼ // H1(Q(µn),A).

For every n ≥ 1 fix a primitive n-th root of unity ζn such that for every m,
ζmmn = ζn. If n ∈ N and p | n, we identify ∆ := Gal(Q(µp)/Q) with a subgroup of
Gal(Q(µn)/Q) as follows. Write n = pkn′ with k ≥ 1 and p - n′, and identify ∆ with
the (unique) subgroup of order p− 1 in Gal(Q(µn)/Q(µn′)) ∼= Gal(Q(µpk)/Q) ∼=
(Z/pkZ)×.

If n ∈ N , define

αn =

{∏
δ∈∆ (ζδn − 1)ρ

−1(δ)/(p−1) ∈ (Q(µn)× ⊗ Zp)ρ if p | n,∏
δ∈∆ (ζδnp − 1)ρ

−1(δ) ∈ (Q(µnp)× ⊗ Zp)ρ if p - n,

βn =
∏

d|n,p-d

α
Q
`|d(−Fr−1

` )

n/d .

Note that αδn = α
ρ(δ)
n and βδn = β

ρ(δ)
n for every δ ∈ ∆.

Lemma 4.2.1. Suppose n` ∈ N . Then

NQ(µn`)/Q(µn)βn` =

{
β

1−`Fr−1
`

n if ` 6= p,

βn if ` = p and p | n.

If p - n, then
∏
δ∈∆ β

ρ−1(δ)δ
np = βn.

Sketch of proof. First suppose ` 6= p, and note that η0 := ζ
Fr−1
`

n /ζn` ∈ µ`
(see this by raising both sides to the `-th power). Then

NQ(µn`)/Q(µn)(ζn` − 1) =
∏

η∈µ`,η 6=η0

(ηζn` − 1) =
ζn − 1

ζ
Fr−1
`

n − 1
= (ζn − 1)1−Fr−1

`

=⇒ NQ(µn`)/Q(µn)αn` = α
1−Fr−1

`
n

=⇒ NQ(µn`)/Q(µn)βn` = β
1−`Fr−1

`
n .

If ` = p and p | n, a similar argument shows that NQ(µnp)/Q(µn)(ζnp− 1) = ζn− 1.
If ` = p and p - n, the desired equality follows easily from the definition of αn. �

Definition 4.2.2. Fix a generator uρ of the free, rank-one Zp-module “ρ−1”. For
every n ∈ N ′ define ξcycl

n ∈ H1(Q(µn),A) to be the image of βn ⊗ uρ under the
isomorphism (4.2). Let

ξcycl = {ξcycl
n : n ∈ N}.

Proposition 4.2.3. The collection ξcycl is an Euler system for A.

Proof. This follows from Lemma 4.2.1 and the commutative diagram (4.3).
�
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Exercise 4.2.4. If ξcycl is the cyclotomic unit Euler system defined above, show
that

ξcycl
1 = β1 = α1 =

∏
δ∈∆

(ζδp − 1)ρ
−1(δ) ∈ (Q(µp)

× ⊗ Zp)ρ.

What can you say about ξcycl
1 when ρ is trivial? When ρ is odd? When ρ is even?

Exercise 4.2.5. Define an Euler system ξcycl for Zp(1) ⊗ ρ−1 for more general
characters ρ than the ones in §4.2.

4.3. Euler systems and Kolyvagin systems.

Theorem 4.3.1. Suppose
(1) for every ` /∈ Σ, P`(x) has no roots in µp∞ ,
(2) H0(Qp,A∗) is a divisible Zp-module.

Then there is a canonical map ES(A)→ KS(A,Fcan) such that if ξ maps to κ, then
κ1 = ξ1 ∈ H1

Fcan
(Q,A), where Fcan is the canonical Selmer structure of Example

3.1.5.

For the proof of Theorem 4.3.1, see [MR1, Theorem 3.2.4] and [R2, Chapter
4]. Here we will describe the construction of the map of Theorem 4.3.1, and give
some details for the cyclotomic unit Euler system of §4.2 where the construction is
particularly explicit.

Let N ′ = {n ∈ N : p - n}. For every n ∈ N , let Γn = Gal(Q(µn)/Q). If
n = n1n2, then there is a canonical isomorphism Γn ∼= Γn1 × Γn2 , so we can view
Γn1 as either a subgroup or a quotient of Γn. With this identification we have

Γn =
∏
`|n

Γ`.

For every ` /∈ Σ, fix a generator σ` of Γ`. Define Kolyvagin’s derivative opera-
tors

D` :=
`−2∑
i=1

iσi` ∈ Z[Γ`]

and for n ∈ N ,
Dn :=

∏
`|n

D` ∈ Z[Γn]

where we view Z[Γ`] ⊂ Z[Γn] as above. Also define the norm elements

Nn :=
∑
γ∈Γn

γ ∈ Z[Γn]

for n ∈ N .

Lemma 4.3.2. For every ` /∈ Σ, we have (σ` − 1)D` = (`− 1)−N`.

Proof. Exercise. �

As in §3.2, if ` /∈ Σ, let

ν(`) := max{m : ` ≡ 1 (mod pm)

and Am/(Fr` − 1)Am is free of rank 1 over Z/pmZ}.
and if n ∈ NA define ν(n) := min{ν(`) : ` | n}. By convention we let ν(1) = ∞,
and A∞ := A.
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Exercise 4.3.3. Show that pν(`) divides P`(1) for every ` /∈ Σ. Deduce that the
reduction of P`(x) modulo pν(`) lies in (x− 1)(Z/pν(`)Z)[x].

Let N ′ = {n ∈ N : p - n}.

Proposition 4.3.4. If ξ ∈ ES(A) and n ∈ N ′, then the image of Dnξn under the
map H1(Q(µn),A)→ H1(Q(µn), Aν(n)) lies in H1(Q(µn), Aν(n))Γn .

Proof. We need to show that (γ− 1)Dnξn maps to zero in H1(Q(µn), Aν(n))
for every γ ∈ Γn. Since Γn is generated by {σ` : ` | n}, it is enough to check this
for γ = σ`. We will show, by induction on the number of primes dividing n, that
(σ` − 1)Dnξn ∈ pν(n)H1(Q(µn),A). This will prove the lemma.

Using Lemma 4.3.2 we have

(σ` − 1)Dnξn = ((`− 1)−N`)Dn/`ξn = (`− 1)Dn/`ξn −Dn/`N`ξn.

The composition

H1(Q(µn),A)
CorQ(µn)/Q(µn/`)−−−−−−−−−−−−→ H1(Q(µn/`),A) Res−−→ H1(Q(µn),A)

is multiplication by N`, so by definition of an Euler system we conclude

(σ` − 1)Dnξn = (`− 1)Dnξn − Res(DnP`(Fr−1
` )ξn/`).

We have pν(`) | `− 1, so pν(n) | `− 1. By Exercise 4.3.3, we have

P`(x) = (x− 1)g(x) + pν(`)h(x)

with h(x), g(x) ∈ Z[x], so we conclude by induction that

P`(Fr−1
` )ξn/` ∈ (pν(n/`), pν(`))H1(Q(µn/`),A) = pν(n)H1(Q(µn/`),A).

This completes the proof. �

Proposition 4.3.5. Suppose ξ ∈ ES(A) and n ∈ N ′. The image of Dnξn in
H1(Q(µn), Aν(n)) has a canonical inverse image in H1(Q, Aν(n)) under the re-
striction map

H1(Q, Aν(n)) −→ H1(Q(µn), Aν(n))Γn .

Sketch of proof. The inflation-restriction exact sequence of Theorem 1.4.5
shows that the kernel and cokernel of the restriction map of the proposition are
H1(Q(µn)/Q, A

GQ(µn)

ν(n) ) and H2(Q(µn)/Q, A
GQ(µn)

ν(n) ), respectively. If A
GQ(µn)

ν(n) = 0,
then it follows that the the restriction map is an isomorphism, and the proposition
follows directly from Proposition 4.3.4.

For the proof in the general case, see [R2, §4.4] �

Exercise 4.3.6. Show that if A = Zp(1)⊗ ρ−1 as in §4.2, and ρ is not the mod-p
cyclotomic character, then A

GQ(µn)
m = 0 for every n ∈ N ′ and every m.

Example 4.3.7. Let ξcycl be the cyclotomic unit Euler system of §4.2. We will
describe the construction of Proposition 4.3.5 explicitly in this case.

Keep the notation of §4.2; in particular for every n ∈ N ′ we identify

ξcycl
n = βn ∈ (Q(µnp)

× ⊗ Zp)ρ.

Fix n ∈ N ′ and let m = ν(n). The proof of Proposition 4.3.4 shows that for every
σ ∈ Γn,

β(σ−1)Dn
n ∈ (Q(µnp)

× ⊗ Zp)p
m
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but even more, that argument gives a canonical pm-th root

cn(σ) ∈ (Q(µnp)
× ⊗ Zp)ρ

of β(σ−1)Dn
n . The map σ 7→ cn(σ) is a 1-cocycle in Z1(Γn, (Q(µnp)×⊗Zp)ρ). Since

H1(Γn, (Q(µnp)× ⊗ Zp)ρ) = 0 (see Proposition 1.6.1) it follows that there is a
γn ∈ (Q(µnp)× ⊗ Zp)ρ and xn ∈ (Q(µp)× ⊗ Zp)ρ such that

βDnn = γp
m

n xn.

Then γn is well-defined modulo (Q(µp)× ⊗ Zp)ρ, so xn is well-defined element of
(Q(µp)×/(Q(µp)×)p

m

)ρ = H1(Q, Am) that restricts to Dnξ
cycl
n ∈ H1(Q(µn), Am).

Recall (Definition 2.1.3) that if n ∈ N ′, then Gn = ⊗`|nΓ`.
Fix an Euler system ξ ∈ ES(A). For every n ∈ N ′, let xn ∈ H1(Q, Aν(n))

be the canonical inverse image of Dnξn ∈ H1(Q(µn), Aν(n)) given by Proposition
4.3.5, and define

ξ′n := xn ⊗ (⊗`|nσ`) ∈ H1(Q(µn), Aν(n))⊗Gn.

Exercise 4.3.8. Show that, although Dnξn depends on the choice of the generators
σ` of Γ`, ξ′n does not.

Definition 4.3.9. Suppose n ∈ N ′ and ` | n. By Proposition 1.9.5(3) we have a
decomposition

H1(Q`, Aν(n)) ∼= H1
u(Q`, Aν(n))⊕H1

t (Q`, Aν(n))

and if x ∈ H1(Q, Aν(n)) we let x`,u and x`,t denote the projections of Res`(x) ∈
H1(Q`, Aν(n)) into H1

u(Q`, Aν(n))⊗Gn and H1
t (Q`, Aν(n))⊗Gn, respectively.

Ideally, we would like to show that the collection

ξ′ = {ξ′n : n ∈ N ′}
is a Kolyvagin system for A as defined in §3.2. (In fact it isn’t in general, but a
slight modification of it will be.) To do this we would need to verify that for every
n ∈ N ′:

• Res`(ξ′n) ∈ H1
Fcan

(Q`, Aν(n))⊗Gn if ` - n,
• Res`(ξ′n) ∈ H1

t (Q`, Aν(n))⊗Gn if ` | n,
• φut

` ◦ Res`(ξ′n/`) = (ξ′n)`,t ∈ H1
t (Q`, Aν(n))⊗Gn if ` | n.

The following theorem deals with the first and third of these conditions, and
Theorem 4.3.12 below investigates the second.

Theorem 4.3.10. Suppose ξ ∈ ES(A) and H0(Qp,A∗) is a divisible Zp-module,
and n ∈ N ′.

(1) If ` - n, then Res`(ξ′n) ∈ H1
Fcan

(Q`, Aν(n))⊗Gn.
(2) If ` | n, then φut

` ◦ Res`(ξ′n/`) = (ξ′n)`,t in H1
t (Q`, Aν(n))⊗Gn.

Proof. For the proof of Proposition 4.3.10, see [R2, Theorem 4.5.1] for (1)
when ` 6= p, and [R2, Theorem 4.5.4] for (2). Note that since H0(Qp,A∗) is
divisible, Exercise 3.1.8 shows that H1

Fcan
(Qp, Aν(n)) = H1(Qp, Aν(n)), so (1) is

trivially satisfied when ` = p.
See also [R1, Proposition 2.4] for the proof in the case of the cyclotomic unit

Euler system. �
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Note that if ` | n and x ∈ H1(Q, Aν(n)), then

Res`(x) ∈ H1
t (Q`, Aν(n))⇐⇒ x`,u = 0.

The (ξ′n)`,u are not zero in general, but they are described by Theorem 4.3.12 below.

Definition 4.3.11. If ` /∈ Σ, let I` be the augmentation ideal of (Z/pν(`)Z)[G`].
Then there is a canonical isomorphism

ρ` : I`/I2
` −→ G` ⊗ (Z/pν(`)Z)

that sends g − 1 to g for every g ∈ G`.
If n ∈ N ′ let S(n) denote the set of permutations of the primes dividing n,

and if ` | n let S1
`(n) ⊂ S(n) be the subset

{π ∈ S(n) : the ` not fixed by π form a single π-orbit, and π(`) 6= `}.
If π ∈ S(n) let dπ =

∏
π(q)=q q.

Recall that ω(d) is the number of prime factors of a positive integer d.

Theorem 4.3.12. Suppose ξ ∈ ES(A) and for every ` /∈ Σ, P`(x) has no roots in
µp∞ . If n ∈ N ′ and ` | n then

(ξ′n)`,u =
∑

π∈S1
`(n)

(−1)ω(n/dπ)Res`(ξ′dπ )
⊗

q|(n/dπ)

ρq(Pq(Fr−1
π(q)|Q(µq)

)).

Proof. For the proof, see [MR1, Theorem A.4]. For a proof in the special
case of the cyclotomic unit Euler system, see [MR2, Appendix A]. �

Corollary 4.3.13. Suppose ξ ∈ KS(A) and
(1) for every ` /∈ Σ, P`(x) has no roots in µp∞ ,
(2) H0(Qp,A∗) is a divisible Zp-module.

For n ∈ N ′ define

κn =
∑

π∈S(n)

sign(π)ξ′dπ
⊗

`|(n/dπ)

ρ`(P`(Fr−1
π(`)|Q(µ`)

)) ∈ H1(Q, Aν(n))⊗Gn.

Then the collection κ := {κn : n ∈ N ′} is a Kolyvagin system for (A,Fcan), and
κ1 = ξ1.

Proof. By Theorem 4.3.10, it is enough to prove that (κn)`,u = 0 whenever
n ∈ N ′ and ` | n. This follows from Theorem 4.3.12; for the details see the proof
of Theorem 3.2.4 on pages 80–81 of [MR1]. �

The map ES(A) → KS(A,Fcan) of Theorem 4.3.1 is given by ξ 7→ κ as de-
scribed above.



LECTURE 5

Applications

5.1. Cyclotomic units and ideal class groups.

Fix a rational prime p > 2, and let F = Q(µp)+, the real subfield of Q(µp). Let
CF denote the p-part of the ideal class group of F . Let EF ⊂ O×F denote the group
of cyclotomic units of F , the intersection of O×F with the group generated by

{ζ, ζ − 1 : ζ ∈ µp, ζ 6= 1}.

The following theorem was first proved (by a different method) by Mazur and
Wiles [MW].

Theorem 5.1.1. Let ρ : Gal(F/Q)→ Z×p be a nontrivial (even) character. Then

|CρF | = |((O
×
F /EF )⊗ Zp)ρ|.

Proof. As in §4.2, let ξcycl ∈ ES(Zp(1)⊗ρ−1) be the Euler system constructed
there. Let κcycl ∈ KS(Zp(1)⊗ρ−1) be the Kolyvagin system constructed from ξcycl

in Theorem 4.3.1. Then we have

κcycl
1 = ξcycl

1 =
∏

δ∈Gal(Q(F )/Q)

(ζδp − 1)ρ
−1(δ) ∈ (EF ⊗ Zp)ρ

⊂ (O×F ⊗ Zp)ρ = H1(Q,Zp(1)⊗ ρ−1).

In fact, κcycl
1 is a Zp-generator of (EF ⊗ Zp)ρ, so by Corollary 3.3.13,

(5.1) |CρF | ≤ [(O×F ⊗ Zp)ρ : Zpκ1] = |((O×F /EF )⊗ Zp)ρ|.

Note that (5.1) also holds when ρ = 1, since in that case both sides are equal to 1.
Taking the product over all ρ, we have

|CQ(F | =
∏
ρ

|CρF | ≤
∏
ρ

|((O×F /EF )⊗ Zp)ρ| = |(O×F /EF )⊗ Zp|.

The analytic class number formula (see for example [L, Theorem 5.1 of Chapter
3]) says that |CQ(F | = |(O×F /EF )⊗ Zp|, so we must have equality in (5.1) for every
ρ. �

Remark 5.1.2. Note that using Corollary 3.3.13, the proof of Theorem 5.1.1 also
shows that the cyclotomic unit Kolyvagin system κcycl is primitive.

5.2. Elliptic curves.

Return now to the example of §3.4. Namely, E is an elliptic curve defined over
Q, p ≥ 5 is a rational prime, and the p-adic representation GQ → Aut(E[p∞]) ∼=
GL2(Zp) is surjective.

45
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In this setting, an Euler system for Tp(E) was constructed by Kato in [K].
We will not touch on his construction here, but we will discuss briefly the essential
properties of Kato’s Euler system, and some of its consequences. For more details,
see [K], [R2, §3.5], and [Sc].

For simplicity, we also assume from now on that

(5.2) E has good reduction at p and p - |E(Fp)|.

Recall that for every m > 0, H1
f (Qp, E[pm]) is the image of E(Qp)/pmE(Qp)

in H1(Qp, E[pm]) under the (injective) Kummer map as in Definition 1.6.13. We
define

H1
f (Qp, Tp(E)) = lim

←−
H1

f (Qp, E[pm]) ⊂ H1(Qp, Tp(E))

so H1
f (Qp, Tp(E)) ∼= E(Qp)⊗Zp. It follows from (5.2) that E(Qp) has no p-torsion,

so H1
f (Qp, Tp(E)) is a free, rank-one Zp-module.
Fix a minimal Weierstrass model of E. Let ωE and ΩE be the corresponding

holomorphic differential on E, and real period. Corresponding to ωE there is a dual
exponential map expωE and an exact sequence

(5.3) 0 −→ H1
f (Qp, Tp(E)) −→ H1(Qp, Tp(E))

expωE−−−−→ p−1Zp −→ 0.

Let L(E, s) denote the Hasse-Weil L-function of E, and

Lp(E, s) = (1− app−s + p1−2s)L(E, s),

the L-function with the Euler factor at p removed (here ap := p+ 1− |E(Fp)|).
We make no attempt here to prove the following theorem of Kato.

Theorem 5.2.1 (Kato [K]). There is a nonzero Euler system ξKato ∈ ES(Tp(E))
such that

expωE (Resp(ξKato
1 )) =

Lp(E, 1)
ΩE

.

Theorem 5.2.2 (Kato [K]). With assumptions as above, we have:
(1) If L(E, 1) 6= 0 then E(Q) is finite and |X(E/Q)[p∞]| divides L(E, 1)/ΩE.
(2) If L(E, 1) = 0 and ξKato

1 6= 0, then either E(Q) or X(E/Q)[p∞] is infi-
nite.

Proof. Let F denote the canonical Selmer structure on Tp(E), and let κKato ∈
KS(Tp(E),F) be the Kolyvagin system attached to ξKato by Theorem 4.3.1. (Note
that the hypotheses of Theorem 4.3.1 hold, thanks to (5.2).)

Suppose first that L(E, 1) 6= 0. Define integers −1 ≤ b ≤ c by

pbZp = expωE (Resp(H1
F (Q, Tp(E))))

∪ ∪
pcZp = expωE (ZpResp(ξKato

1 ))

so c = ordp(Lp(E, 1)/ΩE). Then (see Definition 3.2.5) ∂0(κKato) ≤ c − b, so by
Corollary 3.2.9(1)

(5.4) |H1
F∗(Q, E[p∞])| divides pc−b.

We need to compare H1
F∗(Q, E[p∞]) with the classical Selmer group

Selp∞(E/Q) := H1
f (Q, E[p∞])
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defined using the Selmer structure of local cohomology groups H1
f (Q`, E[p∞]) (see

Definition 1.6.13). By Proposition 3.4.5, H1
F ((Q`, E[p∞]) = H1

f (Q`, E[p∞]) for
every ` 6= p. Passing to the limit in Corollary 3.4.6 gives

0 // H1
f (Q, Tp(E)) // H1

F (Q, Tp(E)) // H1(Qp, Tp(E))/H1
f (Qp, Tp(E))

0 // H1
F∗(Q, E[p∞]) // Selp∞(E/Q) // H1

f (Qp, E[p∞]).

By global duality (Theorem 1.10.2), together with the fact that H1
f (Q`, E[pm]) is

its own orthogonal complement under the Tate pairing for every ` (Example 1.8.4),
the images of the two right-hand maps are orthogonal complements under the limit
of the local Tate pairings. By definition of b and (5.3), the cokernel of the upper
right-hand map has order pb+1. Hence we conclude from the bottom sequence that

[Selp∞(E/Q) : H1
F∗(Q, E[p∞])] = pb+1,

and combining this with (5.4) we see that

|Selp∞(E/Q)| divides pc−b · pb+1 = pc+1.

Further

c+ 1 = ordp(pLp(E, 1)/ΩE) = ordp((p+ ap − 1)L(E, 1)/ΩE)

= ordp(|E(Fp)|L(E, 1)/ΩE) = ordp(L(E, 1)/ΩE)

since we assumed that p - |E(Fp)|. Now (1) follows from the exact sequence

0 −→ E(Q)⊗Qp/Zp −→ Selp∞(E/Q) −→X(E/Q)[p∞] −→ 0,

the direct limit of the exact sequences (1.3).
Suppose now that L(E, 1) = 0 and ξKato

1 6= 0. By (5.3) we have Resp(ξKato
1 ) ∈

H1
f (Qp, Tp(E)), so

ξKato
1 ∈ H1

f (Q, Tp(E))

and in particular H1
f (Q, Tp(E)) 6= 0. But the inverse limit of the exact sequences

(1.3) give

0 −→ E(Q)⊗ Zp −→ H1
f (Q, Tp(E)) −→ lim

←−
X(E/Q)[pm] −→ 0.

The inverse limit on the right is with respect to the maps “multiplication by p”,
so this inverse limit is either zero or infinite. Similarly, since we assumed that the
p-adic representation GQ → Aut(E[p∞]) is surjective, E(Q) has no p-torsion so
E(Q) ⊗ Zp is either zero or infinite. Hence if ξKato

1 6= 0 then one of those two
groups is infinite, and this completes the proof of (2). �

Exercise 5.2.3. Using Corollary 3.2.9(1) and the proof of Theorem 5.2.2, show
that if L(E, 1) 6= 0 then

length(X(E/Q)[p∞]) = ordp(L(E, 1)/ΩE)⇐⇒ κKato is primitive.

Note that according to the Birch and Swinnerton-Dyer conjecture, it is not
always the case that length(X(E/Q)[p∞]) = ordp(L(E, 1)/ΩE), and therefore it is
not always the case that κKato is primitive.
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5.3. General speculation.

In this section we sketch a general framework for the example of the previous
section.

Suppose A is a p-adic representation of GQ as in Lecture 3: a free Zp-module of
finite rank with a continuous action of GQ, ramified at only finitely many primes.
Let F denote the canonical Selmer structure on A, and suppose G is another Selmer
structure on A, with the property that H1

G(Q`,A) = H1
F (Q`,A) for all ` different

from p. Then H1
G(Q,A) ⊂ H1

F (Q,A), and we have a diagram

0 // H1
G(Q,A) // H1

F (Q,A)
Resp // H1(Qp,A)/H1

G(Qp,A)

0 // H1
F∗(Q,A∗) // H1

G∗(Q,A∗)
Resp // H1

G∗(Qp,A∗).

Passing to the limit in Theorem 1.10.2, we see that

[H1
G∗(Q,A∗) : H1

F∗(Q,A∗)] = [H1(Qp,A) : H1
G(Qp,A) + Resp(H1

F (Q,A))].

Suppose in addition there is an isomorphism

L : H1(Qp,A)/H1
G(Qp,A) ∼−→ Zp.

Then we conclude that

(5.5) [H1
G∗(Q,A∗) : H1

F∗(Q,A∗)] = [Zp : L(Resp(H1
F (Q,A)))].

Theorem 5.3.1. Suppose that A, G, and L are as above, that A satisfies hypotheses
(H.1-4) of §3.1 and the hypotheses of Theorem 4.3.1, and that the core rank χ(A) =
1. If ξ ∈ ES(A) is an Euler system for A, then

lengthZp(H1
G∗(Q,A∗)) ≤ ordp(L(Resp(ξ1))).

Proof. Let κ ∈ KS(A,F) be the Kolyvagin system corresponding to ξ under
Theorem 4.3.1. By Corollary 3.2.9, using that κ1 = ξ1,

|H1
F∗(Q,A∗)| ≤ p∂

0(κ) ≤ [L(Resp(H1
F (Q,A))) : L(Resp(ξ1))Zp].

Combining this with (5.5), we see that

|H1
G∗(Q,A∗)| ≤ [Zp : L(Resp(ξ1))Zp],

which proves the theorem. �

Example 5.3.2. Suppose E is an elliptic curve as in §5.2. Let A = Tp(E), let
H1
G(Q`, Tp(E)) = H1

f (Q`, Tp(E) for every `, let L = p expωE , and let ξ = ξKato.
Then H1

G(Q,A∗) = Selp∞(E/Q), L(Resp(ξ1)) = |E(Fp)|L(E, 1)/ΩE , and Theorem
5.3.1 is part of Theorem 5.2.2(1).

Example 5.3.3. Suppose ρ is a nontrivial character of Gal(Q(µp)+/Q), A =
Zp(1) ⊗ ρ−1, and ξcycl ∈ ES(Zp(1) ⊗ ρ−1) is the cyclotomic unit Euler system of
§4.2. Let F be the canonical Selmer structure on Zp(1) ⊗ ρ−1, and let G be the
Selmer structure defined by

H1
G(Q`,Zp(1)⊗ ρ−1) =

{
H1
F (Q`,Zp(1)⊗ ρ−1) if ` 6= p,

0 if ` = p.
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Let M is the maximal abelian p-extension of Q(µp)+ unramified outside of p (with
no local restriction at p), and X := Gal(M/Q(µp)+). Then H1

G∗(Qp,Qp/Zp⊗ρ) =
H1(Qp,Qp/Zp ⊗ ρ), so as in Proposition 3.3.11 we have

H1
G∗(Q,Qp/Zp ⊗ ρ) = Hom(X ρ,Qp/Zp).

Let F := Q(µp)+. By Exercise 3.3.10, H1
F (Qp,Zp(1)⊗ρ−1) ∼= (O×F,p⊗Zp)ρ. Let

logp : O×F,p → Fp denote the p-adic logarithm map, let τ(ρ−1) :
∑p−1
a=1 ρ

−1(a)ζap ∈ Fp
be the Gauss sum, and define

L = 1
τ(ρ−1) logp : H1

F (Qp,Zp(1)⊗ ρ−1) ∼−→ (O×F,p ⊗ Zp)ρ −→ Fp.

Exercise 5.3.4. Show that L is an isomorphism from H1
F (Qp,Zp(1) ⊗ ρ−1) onto

Zp.

By Exercise 4.2.4 we have

L(Resp(ξ
cycl
1 )) = −Lp(1, ρ)

where Lp(s, ρ) is the Kubota-Leopoldt p-adic L-function attached to ρ (see for
example [L, Theorem 4.3.6]). Therefore we can apply Theorem 5.3.1 to conclude
that

(5.6) length(X ρ) ≤ ordp(Lp(1, ρ)).

Exercise 5.3.5. Use the fact that κcycl is primitive (Remark 5.1.2) to show that
equality holds in (5.6).

Remark 5.3.6. Returning to the case of a more general p-adic representation A,
it is clear what we would like to do in general: find an Euler system ξ ∈ ES(A),
and a map

L : H1(Qp,A) � Zp
such that L(Resp(ξ1)) is (related to) a special value of a (p-adic) L-function attached
to A. Then (under suitable assumptions) Theorem 5.3.1 will bound the length of
the Selmer group H1

G∗(Q,A∗) in terms of that L-value, where the Selmer structure
G is defined by H1

G(Qp,A) := ker(L).
Although very little general progress has been made in this direction, one can

formulate a more precise conjecture. See for example [PR], or [R2, Chapter 8].
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