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LECTURE 1

Galois cohomology

We begin with a very quick and selective introduction to the facts from group
cohomology and Galois cohomology that will be needed for the following lectures.
For basic details see [AW), [Gr), [Se2], and for some of the more advanced results see
[Sell, Mi|. For another quick overview see the lectures of Tate [Ta3] from PCMI
1999. We omit most proofs, although accessible ones are often given as exercises.

1.1. G-modules.

Suppose G is a group. A G-module is an abelian group A with an action of G on
A that respects the group operation on A. That is, there is a map

GxA— A
such that, if we let ga (or sometimes a9) denote the image of (g,a) in A, then
(gh)a = g(ha),  gla+b) = ga+ gb
for g,h € G and a,b € A. Define the fixed subgroup
A% ={a € A: ga=a forevery g € G}.

Example 1.1.1. If X is an abelian group we can view X as a G-module with
trivial G action, and then X¢ = X.

Example 1.1.2. If F/K is a Galois extension of fields and G = Gal(F/K), then
F and F* are G-modules. More generally, if H is an algebraic group defined over
K, then the group of F-points H(F) is a G-module and H(F)¢ = H(K).

Example 1.1.3. If A and B are G-modules and ¢ : A — B is a group homo-
morphism, we define a new group homomorphism gy for ¢ € G by (g¢)(a) =
g(p(g~ta)). This makes Hom(A, B) into a G-module, and Hom(4, B)¢ is the
group of G-module homomorphisms from A to B.

We say that a G module A is co-induced if A = Hom(Z[G], X) for some abelian
group X.

Exercise 1.1.4. Suppose A is a G-module, and Ag is the G-module whose un-
derlying abelian group is A, but whose G action is trivial. Show that the map
a — g, where ¢,(g9) = g la, is an injection from A to the co-induced module
Hom(Z[G], Ay).

1.2. Characterization of the cohomology groups.

For this section suppose that the group G is finite. For every G-module A, there are
abelian (cohomology) groups H*(G, A) for i > 0. For an explicit definition using
cocycles and coboundaries, see [AW], [Se2]. We will omit the definition, and just
make use of the following properties.
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Theorem 1.2.1. There is a unique collection of functors H (G, - ) from G-modules
to abelian groups, for i > 0, satisfying the following properties:
(1) H°(G, A) = A® for every G-module A.
(2) If0 = A — B — C — 0 is a short exact sequence of G-modules, then
there is a (functorial) long exact sequence

0— H°G,A) - H(G,B) — H°(G,C) - H(G,A) — H'(G,B) — ---
- — HY(G,A) — H(G,B) — H(G,C) — H*(G,A) — -
(3) If A is co-induced, then H'(G,A) =0 for all i > 1.

Exercise 1.2.2. Show that the three properties above determine the cohomology
groups H'(G, A) uniquely (assuming they exist). Hint: use induction and the
fact (Exercise that for every G-module A there is a short exact sequence
0— A— B— C — 0 with B co-induced.

In these lectures we will only make use of H*(G, A) for i < 2 (and mostly i < 1).
When i = 0 the groups are described explicitly by condition (1) of Theorem [1.2.1}
when ¢ = 1 we have the following explicit description.

Define C1(G, A) (the 1-cochains) to be the group of (set) maps from G to A.
Define subgroups of cocycles and coboundaries BY(G, A) C Z*(G,A) c CY(G, A)
by

ZHG, A) ={f € CH(G, A) : f(gh) = f(9) + g(f(h))}
BY(G,A) = {f € CY(G, A) : for some a € A, f(g) = ga — a for every g € G}.

Proposition 1.2.3. H'(G, A) = ZY(G,A)/BY(G, A).

There is a similar definition of H*(G, A) for every 4, where the cochains C*(G, A)
(are) set maps from G* to A, and BY(G,A) C Z'(G,A) C C(G, A) are defined
appropriately.

Example 1.2.4. Suppose that G acts trivially on A. Then Z*(G, A) = Hom(G, A)
and B!(G, A) = 0, so in this case we conclude from Proposition that

HY(G, A) = Hom(G, A).

Exercise 1.2.5. Suppose that G is a finite cyclic group. For every G-module A,
let Ay :={a€A:3> .;ga =0} (here “N” stands for “norm”; Ay is the kernel
of the norm map a — - . ga).

Show that if g is a generator of G, then the map f — f(g) is an injective
homomorphism from Z!(G, A) to A with image Ax. Deduce that in this case

HY (G, A) = Ax/(g — 1)A.
(Warning: note that this isomorphism depends on the choice of generator g.)

Exercise 1.2.6. Suppose 0 — A — B — C — 0 is an exact sequence of G-modules,
and suppose ¢ € CC. Fix an element b € B that maps to c.

Show that the map g — gb— b defines a 1-cocycle f. € Z'(G, A) (that depends
on the choice of b). Show that ¢ — f. induces a well-defined homomorphism
HY%(G,C) — HY(G, A) and check that with this homomorphism, the beginning of
the long exact sequence of Theorem 2) is in fact exact.
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1.3. Continuous cohomology.

Now suppose that G is a profinite group (see for example [Gr]), i.e., there is an
isomorphism

(1.1) G =lim G/U

where U runs over open subgroups of G of finite index. This isomorphism gives G
natural topology, where we view each finite quotient G/U as a discrete topological
space, so the product [[(G/U) is a compact group with the product topology, and
then identifies G with a closed (and hence compact) subset of [[(G/U).

Note that a finite group G is profinite, with the discrete topology.

If A is a G-module, we will view A as a topological group with the discrete
topology, and we call A a continuous G-module if the action of G on A (i.e., the
map G x A — A) is continuous.

Exercise 1.3.1. Suppose A is a G-module. Show that the following are equivalent:

(1) A is a continuous G-module,
(2) for every a € A, the stabilizer of a in G is open,
(3) A= UAY union over open subgroups U C G.

Example 1.3.2. If F//K is an infinite Galois extension of fields, and we put G :=
Gal(F/K), then there is a natural isomorphism

G =1lim Gal(L/K)

inverse limit over finite Galois extensions L of K in F. Thus G is a profinite group.
If H is an algebraic group over K as in Example then

H(F) = UH(L) = UH(F)SE/K),

union over finite extensions L of K in F. Therefore G acts continuously on H(F)
by Exercise [I.3.1]

It follows (for example) that when F' = K®°P is a separable closure of K, the
following G-modules are continuous: K, (K°P)*, p o (the p-power roots of
unity in K®°P), E(KP) for an elliptic curve F, and E[p*°] (the p-power torsion in
E(K®P)).

If A is a continuous G-module, we can define continuous cohomology groups
Hi(G, A), defined similarly to the case of finite groups G but with continuous
cochains (that is, C*(G, A) consists of continuous maps from G* to A). Theorem
[1.2.1(1) and (2) also hold for continuous cohomology groups.

If G is finite, then all relevant maps are continuous and the continuous coho-
mology groups agree with the cohomology groups described in

In the next section we will see (Proposition how to describe the contin-
uous cohomology groups in terms of the cohomology of finite groups.

Until further notice we will always assume that the group G is profinite,
and G-module will mean continuous G-module, a discrete abelian group
with a continuous action of G.

1.4. Change of group.

Suppose H is a closed subgroup of a profinite group G, and A is a G-module. Then
Ais an H-module, and A9 C Af. For every i there is a restriction map on cochains
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Res : CY(G, A) — C*(H, A), and these maps induce restriction maps
Res: H'(G,A) — H'(H, A).
If [G : H] is finite, then there is also a norm map A — A% defined by

a— Y. g 9a, summing over a set of left coset representatives of G/H. This map
extends in a less obvious way to a corestriction map

Cor : H'(H, A) — H'(G, A)
for every 1.
Proposition 1.4.1. If [G : H] is finite, then Cor o Res : H(G, A) — H'(G, A) is
multiplication by [G : H].
Corollary 1.4.2. If G is finite, then for every G-module A and every i > 1, we

have 4
|G| - H' (G, A) = 0.

Proor. Take H = {1} in Proposition [L.4.1] O
Exercise 1.4.3. Suppose m € Z. Show that if mA = 0, then mH*(G, A) = 0 for
every i. Show that if m : A — A is an isomorphism, then mH*(G, A) = H (G, A)
for every i. Deduce that if |G|: A — A is an isomorphism, then H!(G, A) = 0.
Exercise 1.4.4. Suppose G is finite. Using Exercise [[.1.4] show that for ¢ > 1,
H!(G, A) can be expressed in terms of H*~1(G, C) for some G-module C. Use this

fact, the norm map on H°, and induction to define the corestriction map on H?.
Using this definition, prove Proposition [1.4.1

Now suppose that H is a closed normal subgroup of G. Then A is a G/H-
module, and for every i there is an inflation map on cochains Inf : C*(G/H, A®) —
C*(G, A). These maps induce inflation maps

Inf : H(G/H, A™) — H'(G, A).
Theorem 1.4.5. If H is a normal subgroup of G and A is a G-module, then there
is an natural exact sequence

DL g6, A) B HY(H,A)CH

— H*(G/H,A") — H*(G, A).

0— HY(G/H,A™)

Corollary 1.4.6. Suppose H acts trivially on A, and
HY(G/H,A) = H*(G/H,A) = 0.
Then H' (G, A) = Hom(H, A)¢/H
Proposition 1.4.7. If A is a G-module, then
H'(G, A) = lim H'(G/U, A7)
direct limit over open subgroups U C G, with respect to the inflation maps.

Exercise 1.4.8. Prove Proposition when ¢ = 1, using the description (Propo-
sition [1.2.3)) of H(G, A) in terms of cocycles.

Exercise 1.4.9. Use Proposition to show that if A is a G-module, then
H'(G, A) is a torsion group for i > 1.
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Proposition 1.4.10. Suppose G = Z := lim Z/nZ, and A is a torsion G-module.

(1) If~ is a topological generator of G, then evaluation of cocycles at v induces
an isomorphism H'(G,A) =2 A/(y — 1)A.
(2) H(G,A) =0 fori>2.

PROOF. See [Se2| §XIII.1]. Assertion (1) is the following exercise. O

Exercise 1.4.11. Prove Proposition [1.4.10(1) using Exercise and Proposition
C47

From now on, if F/K is a Galois extension and A is a Gal(F/K)-module, we
will write H'(F/K, A) in place of H*(Gal(F/K), A), and when F is a separable
closure K*°P of K we write simply G := Gal(K*?/K) and H'(K, A) in place of
Hi(K*? /K, A) = H(G, A).

Definition 1.4.12. Suppose K is a nonarchimedean local field K of characteristic
zero, i.e., a finite extension of some Q,. Let Ix C Gk denote the inertia group,
K" = K'x the maximal unramified extension of K, and ¢ € Gal(K"/K) the
Frobenius automorphism. Then Gal(K"/K) = G /Ix = Z, generated by ¢.
If Ais a Gg-module, define the unramified cohomology group HY(K,A) C
H'(K,A) by
Res

H)(K,A) =ker[H'(K,A) == H' (K™, A4)].
The inflation-restriction exact sequence (Theorem shows that
(1.2) HYK,A) = H (K" /K, A'x).
If A is a Gg-module, we will say that A is unramified if I acts trivially on A.

Proposition 1.4.13. If A is a finite unramified G -module, then:
(1) Hy(K,A) = H'(K"/K,A) = A/(p — 1)A,
(2) HY(K,A)/H} (K, A) =~ Hom(I, A)®x.
PRrROOF. This follows from Theorem [1.4.5) and Proposition [1.4.10) [

1.5. Selmer groups.

Suppose for this section that K is a number field, and A is a Gx-module. For every
place v of K, we can view the decomposition group G, as a subgroup of Gk, so
we have restriction maps

Res, : H'(K,A) — H'(K,, A).

Definition 1.5.1. A Selmer structure F for A is a collection of distinguished
subgroups
Hx(K,,A) c HY(K,,A)
for every place v of K, such that Hx(K,, A) = H}(K,, A) for all but finitely many
V.
If F is a Selmer structure for A, we define the Selmer group H:(K, A) by
HY(K, A) = ker[H' (K, A) S22 @(H(K,, A)/HE (K, A))].

In other words, H:(K, A) is the subgroup of all classes in H'(K, A) whose
localization lies in H%(K,, A) for every v.
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Exercise 1.5.2. Suppose F is a Selmer structure, and suppose X is a finite set of
places of K containing all archimedean places, all places where A is ramified, and
all v such that HL(K,, A) # H}(K,, A). Let Kx be the maximal extension of K
unramified outside of ¥. Show that
HE(K, A) = ker[H' (Ky /K, A) 2220 @ (HY(K,, A)/HE(K,, A))]
vEX

Proposition 1.5.3. If A is finite and F is a Selmer structure for A, then H:=(K, A)
is finite.

PRrOOF. With notation as in Exercise|1.5.2] a standard result (for example [Mil,
Corollary 1.4.15]) shows that H'(Kyx /K, A) is finite. Thus Hx(K, A) is finite by
Exercise [1.5.2) (]

In what follows, Selmer groups will be arithmetically interesting objects (ideal
class groups, Selmer groups of elliptic curves, ... ) and their orders should be related
to values of L-functions. We will see examples of Selmer groups in the next section.

Exercise 1.5.4. If B is a G g-quotient of A, show that a Selmer structure F for
A induces a Selmer structure for B (which we also denote by F), where we define
HL(K,,B) to be the image of H}(K,, A) under the canonical map H'(K,, A) —
HY(K,,B).

Similarly, show that if C' is a G g-submodule of A, show that a Selmer structure
F for A induces one for C, where H}(K,,C) is defined to be the inverse image of
H}(K,, A) under the canonical map H*(K,,C) — H'(K,, A).

1.6. Kummer theory.
Proposition 1.6.1. Suppose F/K is a Galois extension. Then

K ifi=0
0 ifi>0,

KX ifi=0

H'(F/K, F) _{ 0 ifi=1.

HY(F/K,F*) = {

Exercise 1.6.2. Use Proposition to reduce the proof of Proposition to
the case where F'/K is finite.

Theorem 1.6.3. For every m > 0 prime to the characteristic of K, there is a
natural isomorphism

KX J(K*)™ = HY (K, py,).

PROOF. The long exact cohomology sequence coming from the short exact

sequence
m

0 — p,, — (K5P) —— (K*P)* —0
begins
0 — p,(K) — K* "~ K* — HYK,p,,) — H'(K,(K*P)*).
Now the theorem follows from Proposition [1.6.1 (]

Exercise 1.6.4. Show using the description from Exercise that the isomor-
phism of Theorem is given by sending x € K* to the cocycle g — g( ¥/z)/ ¥/x
for g € Gk.

Corollary 1.6.5. If p,, C K then K> /(K*)™ = Hom(Gg, i,,,)-
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Exercise 1.6.6. Suppose p,, C K and X is a finite subgroup of K*/(K*)™.
Show that the isomorphism of Corollary identifies

X = Hom(Gal(K ( VX)/K), .,

where K (%/X) is the extension of K generated by m-th roots of all elements of
X. Show that the isomorphism of Corollary induces a bijection between finite
subgroups of K*/(K*)™ and finite abelian extensions of K of exponent dividing
m.

Definition 1.6.7. If K is a nonarchimedean local field of characteristic zero, define
H} (K, p,,) € H' (K, )
to be the image under the Kummer map of Theorem [1.6.3
O /(OR)™ — K*/(KX)™ = H'(K, p,,)
where O is the ring of integers of K. If K is R or C, let H} (K, p,,,) = HY(K, p,,,)-

Exercise 1.6.8. Show that if K is a number field, then the collection of subgroups
{H}(K,, p,,)} is a Selmer structure (i.e., show that H} (K, p,,) = HY Ky, p,,)
for all v moo).

Proposition 1.6.9. The Selmer group H{ (K, p,,) defined with the Selmer struc-
ture above satisfies

0 — Ox/(0F)™ — H{ (K, p,) — Cx[m] — 0
where Cx[m] is the m-torsion subgroup of the ideal class group of K.

Exercise 1.6.10. Prove Proposition as follows. Viewing H}(K,p,,) C
K*/(K*)™ show that if z € K* projects to an element of H{(K,pu,,), then
the fractional principal ideal xOg is a™ for some fractional ideal a. Show that
sending x to the class of a induces a surjective map H} (K, p,,) — Cx[m] with
kernel O /(Ox)™.

Theorem [I.6.3] has the following analogue for elliptic curves.

Theorem 1.6.11. Suppose E is an elliptic curve defined over K and m > 0 is
prime to the characteristic of K. There is an exact sequence

0 — B(K)/mE(K) — H(K, Elm]) — H" (K, E(K*?))[m] — 0.
Exercise 1.6.12. Prove Theorem [1.6.11] using the short exact sequence
0 — E[m] — E(KP) = E(K*P) — 0.

Show that the injection E(K)/mE(K) — H'(K, E[m]) is given by sending = €
E(K) to the cocycle g — gy — y, where y € E(KP) satisfies my = x (and the
same y is used for all g).

Definition 1.6.13. If K is a nonarchimedean local field of characteristic zero, F
is an elliptic curve over K, and m > 0, define

H{(K,E[m]) C H'(K, E[m)])
to be the image of the Kummer map of Theorem
E(K)/mE(K) — H'(K, E[m]).
If K is Ror C, let H} (K, Em]) = H' (K, E[m]).
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Suppose now that K is a number field and F is an elliptic curve over K. If
v 1 moo and E has good reduction at v, then H} (K,, E[m]) = HY(K,, E[m]) by
[Cal, so the collection of subgroups { H} (K,,, E[m])} is a Selmer structure. The cor-
responding Selmer group is the classical m-Selmer group of E/K, H} (K, E[m]) =
Sel,, (E/K) sitting in an exact sequence

(1.3) 0 — E(K)/mE(K) — Sel,,(E/K) — II(E/K)[m] — 0
where III(E/K) is the Shafarevich-Tate group of E/K.

1.7. The Brauer group.
If K is a field, p, will denote the roots of unity in K°°P.

Exercise 1.7.1. Suppose K is a field. Show that for every m > 0 prime to the char-
acteristic of K, there is a natural isomorphism H?(K, p,,) = H?(K, (K%°°)*)[m].
Deduce that if K has characteristic zero, then H?(K, p.) = H?(K, (K5°)*).

Theorem 1.7.2. If K is a nonarchimedean local field of characteristic zero (i.e.,
a finite extension of some Qy), then there is a canonical isomorphism

invg : HA(K, py) = Q/Z.
If K =R, there is a canonical isomorphism
invg : H*(R, o) — 3Z/Z C Q/Z.
PROOF. See [Se2| §XIII.3]. O

Theorem 1.7.3. Suppose K is a number field. For every m < oo there is an exact
sequence

0 — H (K, ) 2 @H(Kyp,) S QJZ— 0
where K, is the completion of K at v, and Res, is the restriction map with respect
to the subgroup G, C Gk.
PrOOF. See [AT], Chapter 7, Theorem 8]. O

1.8. Local fields and duality.
Suppose A and B are G-modules. There is a cup product homomorphism
HY(G,A)® H)(G,B) — H'"(G,A® B).

We view this as a bilinear pairing on H*(G, A) x H?(G, B), written (a,b) — a Ub.
The cup product pairing has numerous properties [AW), [Se2|; here we mention only
that it commutes with restriction maps: if H C G, then Res(a)URes(b) = Res(aUb).

Suppose now that K is a field, A is a finite Gx module, and p, is the G-
module of roots of unity in K*°P. Define the Cartier dual A* = Hom(A, p.). Then
A* is also a (continuous) G x-module, and there is a natural pairing

AQA" — p.
We can compose the cup product with this pairing to get a pairing

(1.4) HY (K,A)® H (K, A*) — H" (K, ).
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If K is a local field of characteristic zero, and i+ j = 2, we can compose the pairing
(1.4) with the isomorphism of Proposition to get a new pairing

(1.5) H{(K,A) x HI(K,A*) L H*(K,p,) 25 Q/Z.
Theorem 1.8.1 (Tate local duality). Suppose K is a local field of characteristic

zero, A is a finite G -module, and 0 < i < 2. Then (1.5)) is a perfect pairing of
finite groups.

PRrROOF. See [Mi, Corollary 1.2.3]. O

In the following examples and exercise, K is a local field of characteristic zero
and O is its ring of integers.

Example 1.8.2. Fix m > 0, and let A = p,,. Then A* = Z/mZ (with trivial
G k-action), and we have

HYK,p,,) = K*/(K*)™, HYK,Z/mZ)=Hom(G,Z/mZ).
By Theorem the pairing (L.5)) gives an isomorphism (for every m)

~

KX )(K*)™ = HY(K, p,) = Hom(H' (K, Z/mZ),Q/Z)
= Hom(Hom(Gg, Z/mZ), Q/Z) = G52 /(G32)™.

The inverse limit of these maps over m gives the Artin map K> — G3% of local
class field theory.

Exercise 1.8.3. Recall that H} (K, u,,) C HY(K, p,,) is the image of the Kummer
map O3 /(0Ox)™ — H' (K, p,,). Define

H} (K,Z/mZ) := H:(K,Z/mZ) = Hom(G /Ix,Z/mZ) C H'(K,Z/mZ),
where Iy C Gk is the inertia group. Show, using the local class field theory de-

scription of the isomorphism in Example that H} (K, p,,,) and H} (K,Z/mZ)
are orthogonal complements of each other under the Tate pairing

H'(K, 1,,) x H'(K, Z/mZ) — Q/Z.
Example 1.8.4. Suppose E is an elliptic curve over K, m > 0, and A = E[m)].
The Weil pairing E[m] x E[m] — u,, gives a canonical isomorphism A* 2 E[m)].
By Theorem the pairing (L.5)) gives a perfect pairing
HY(K,E[m]) x H'(K, E[m]) — Z/mZ.
The subgroup H} (K, E[m]) C H'(K, E[m]) given by Definition [1.6.13] is its own
orthogonal complement under this pairing [Tall.

1.9. Unramified and transverse cohomology groups.

Fix for this section a nonarchimedean local field K of characteristic zero, and let Og
be its ring of integers. As in Definition we let I C G denote the inertia
group, K" = K’ the maximal unramified extension of K, and ¢ € Gal(K"/K)
the Frobenius automorphism. Then Gal(K™ /K) = G /Ix = 7, generated by .
Recall that a Gg-module A is unramified if I acts trivially on A.

Proposition 1.9.1. Suppose A is a finite unramified G g-module of order prime
to the residue characteristic of K. Then HL(K,A) and H} (K, A*) are orthogonal
complements of each other under the pairing (|1.5]).
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PROOF. See for example [Mi, Theorem 1.2.6], or combine the following two
exercises. (]

Exercise 1.9.2. Show using Proposition that if A is a finite unramified
G k-module of order prime to the residue characteristic of K, then

[Hy (K, A)| = [H' (K, A") « Hy (K, A")].

You will need to use that the tame quotient of I is isomorphic (as a G g-module)
to [, 2p Moo where p is the residue characteristic of K.

Exercise 1.9.3. Assuming that the cup product commutes with inflation, show
that H(K, A) and H}(K, A*) are orthogonal because the following diagram com-
mutes:

Hl(K7A) X Hl(K7A*) —U>H2(K7/*Loo)

InfT InfT

HY(K, A) x HY(K,A") —= H*(K"" /K, p.,)
and the lower right corner is zero by Proposition [1.4.10)(2).
Let k denote the residue field of K, and ¢ := |k|.

Definition 1.9.4. Suppose L/K is a totally tamely ramified extension of degree
g — 1; then there is a canonical isomorphism Gal(L/K) = k*. (When K = Q; we
can take L = Qu(p,).) We define the L-transverse subgroup H{ (K, A) C H'(K, A)
by

HY(K,A) :=ker[H'(K,A) — H'(L,A)] = H'(L/K, A°").

Proposition 1.9.5. Suppose A is a finite unramified G ik -module and (g—1)A = 0.
Then:
(1) HY(K,A) =2 Hom(Gal(L/K), A®=1).
(2) HY(K,A)® Gal(L/K) = A®=1.
(3) There is a direct sum decomposition H' (K, A) = HL(K,A) ® H} (K, A).
(4) HY(K,A) and HL (K, A*) are orthogonal complements of each other under
the pairing .

PRrROOF. See [MR1], Lemmas 1.2.1, 1.2.4 and Proposition 1.3.2]. Since A is
unramified and I and G, generate G g, we have AGL = AGx = A¥=1_ This proves
(1) and (2). By (1) and Proposition|1.4.13(2), |H! (K, A)| = |[HL(K, A)|-|H (K, A)|,
so to prove (3) it is enough to show that H!(K, A) N H} (K, A) = 0, and then to
prove (4) it is enough to show that H} (K, A) and H} (K, A*) are orthogonal. These
are left as an exercises, or see [MRI]. O

Definition 1.9.6. Suppose m | ¢ — 1, and let R = Z/mZ. Suppose that A is an
unramified G-module that is free of finite rank over R, and that det(1 — ¢|A) = 0.
Consider the characteristic polynomial

P(z) := det(1 — pz|A) € R|x].
Since P(1) = det(1 — ¢|A) = 0, we have P(z) = (z — 1)Q(z) for some Q(z) €
R[z]. By the Cayley-Hamilton theorem, P(¢~!) annihilates A, so Q(p~1) C A¥=L.
Define the unramified-transverse comparison map ¢t to be the composition

Qe !
BEALANELEY

HL(K, A) = AJ(p—1)A ), 49=1' 2 HY(K, A) ® Gal(L/K)
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using the isomorphisms of Proposition [1.4.13(1) and [1.9.5(2).

Exercise 1.9.7 (Lemma 1.2.3 of [MR1]). Suppose m | ¢—1 and A is an unramified
G-module that is free of finite rank over Z/mZ. Show that A?=! is free of rank
one over Z/mZ if and only if A/(¢ — 1)A is free of rank one over Z/mZ. If these
conditions are satisfied, show that the map ¢"* of Deﬁnition is an isomorphism
and H} (K, A), H (K, A), HL(K, A*), H} (K, A*), are all free of rank 1 over Z/mZ.

1.10. Comparing Selmer groups.

Suppose K is a number field and A is a finite G g-module.

Definition 1.10.1. If F is a Selmer structure for A, define a Selmer structure F*
for the Cartier dual A* := Hom(A4, p,) by
Hy.(K,,A*) = Hp(K,, A)* ¢ H'(K,, A*)

for every v, where H:(K,, A)* is the orthogonal complement of HL(K,,A) in
H'(K,, A*) under the local Tate pairing (1.5)). By Proposition F* is a Selmer
structure.

If 7,G are Selmer structures for A, we will say G C F if Hé(KU,A) C
HL(K,,A) for every v. Note that if G C F, then
° Hé(K7A) C Hx(K, A),
o F* CG*.
Theorem 1.10.2 (Global duality). Suppose G1,Ga are Selmer structures for A,
and G1 C Gy. There are exact sequences

DRes,
—_—

0 Hgltl (K’ A) 4>HC1/2(K’ A) @Héz(KWA)/HCl,l (KMA):

* * Res, * *
0 —— HE. (K, A") —— H{. (K, A%) LEPH&(KU,A )/ HE (K, A7),

summing over v such that Hg (K,, A) # H, (K, A). The images of the two right-
hand maps are orthogonal complements of each other under the sum of the local
Tate pairings (|1.5)).

PrROOF. See [R2| Theorem 1.7.3] to derive this statement from the usual state-
ment of Poitou-Tate duality ([Ta2, Theorem 3.1] or [Mil, Theorem I1.4.10]). O

Exercise 1.10.3. Show that the two sequences of Theorem [1.10.2] are exact. Show
that the images of the two right-hand maps are orthogonal, using Theorem [1.7.3

The following corollary of Theorem [1.10.2] will be used to bound the size
of Hr(K,A). Note that given F, there will exist G C F “small enough” that
Hj(K,A)=0.

Corollary 1.10.4. Suppose G C F are Selmer structures for A, and Hé(K, A)=0.
Then
DRes,

|H} (K, A)| < |coker[H. (K, A*) —= @H. (K, A%)/Hx. (K,, A*)]|.

Exercise 1.10.5. Prove Corollary [1.10.4






LECTURE 2

Kolyvagin systems

From now on, to simplify things we will only consider K = Q. Much of what
we do can be extended easily to arbitrary number fields.

Fix a prime p and a positive integer m, and let R = Z/p™Z. Fix a Gq-module
A that is free of finite rank over R, and a Selmer structure F for A.

The letter ¢ will always denote a rational prime.

2.1. Varying the Selmer structure.

As in Exercise let X be a finite set of places of Q containing oo, p, all primes
where A is ramified, and all £ such that Hx(Qg, A) # H}(Qq, A).

Definition 2.1.1. Suppose a,b, c are pairwise relatively prime positive integers,
and c is not divisible by any primes in . Define a new Selmer structure F2(c) for
A by

HE(Qu, A) if vfabe

0 if v | a,

HY(Q,,A) ifv|b,

HYQ,,A4) ifv]ec

In other words, F?(c) is constructed by modifying F at the primes dividing abc,
with the “strict” condition at ¢ if ¢ | a, the “relaxed” condition at ¢ if ¢ | b, and
the transverse condition at ¢ if £ | c. (Here the transverse subgroup H{(Qq, A) is
defined with respect to the extension Qg(p,)/Qe in Definition [1.9.4])

If any of a, b, or ¢ are equal to 1, we will suppress them from the notation.

Hzy () (Qu, 4) =

Exercise 2.1.2. Show that the dual Selmer structure (F2(c))* (in the sense of
Definition [1.10.1)) is (F*)g(c).
Definition 2.1.3. Let

P={¢X:{=1 (modp™)and A/(Fr, —1)A is free of rank 1 over R}.

Let N = N(P) C Z" denote the set of squarefree products of primes in P (with
the convention that 1 € N). If n € N let

Gn = QF; = ®Gal(Q(u)/Q)-

Ln ln

Since each Gal(Q(u,)/Q) is cyclic of order divisible by p™, we see that G, ® R is
free of rank one over R. By convention, we set G; = R.

If ¢ | n €N, then £ —1 = det(1 — Fry|A) = 0 in R, so we can apply Proposition
Definition and Exercise [1.9.7to H'(Q¢, A). In particular we will write
zt : H&(QZ, A) = Htl(Qfa A) ® GE

17
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for the unramified-transverse isomorphism of Definition [1.9.6]
If n{ € N, we can compare H}c(n)(Q,A) ® G, and H;-(M)(Q,A) ® Gne by
localizing at ¢ and using the ¢}*:

Hr ) (Q,A) ®G,
Resg@li

(2.1) Hy(Qe, A) ® G

¢>‘g‘®1i

HE(,)(Q, A) @ G Ll H{ (Qe, A) @ Gy
Exercise 2.1.4 (Corollary 2.3.6 of [MR1]). If n € N, show that
length(H7%(Q, A)) — length(H . (Q, A*))
= length(H}(n)(Q, A)) — length(H;_-(n)* (Q,A")).

where length means length as an R-module, so |M| = plength (M) for every finite
R-module M. Hint: apply Theorem [1.10.2] with (G1,G2) = (F,F") and with
(G1,G2) = (F(n),F™), and use Exercise

2.2. Kolyvagin systems.
Keep the notation of the previous section.

Definition 2.2.1. A Kolyvagin system for (A, F) is a collection

such that if n¢ € N, then the images of k, and ke in H(Qq, A) ® G in (2.1
are equal. We let KS(A, F) (or simply KS(A), if F is understood) denote the
R-module of Kolyvagin systems.

We next reformulate this definition.

Definition 2.2.2. Suppose X is a graph, with vertex set V and edge set E. By a
sheaf S of R-modules on X, we mean a rule assigning
e to each vertex v an R-module S(v),
e to each edge e an R-module S(e),
e to each pair (v,e) such that the vertex v is an endpoint of the edge e, an
R-module homomorphism #¢ : S(v) — S(e).
We call §(v) the stalk of S at v.
A global section of S is a collection {k, € S(v) : v € V} such that for every
edge e, if v,v’ are the endpoints of e, then ¥ (k,) = ¥ (ky ). We let I'(S) denote
the R-module of global sections of S.

Definition 2.2.3. Define a graph X associated to (A,F) by taking the set of
vertices to be N, and whenever n,nf € N we join n and nf by an edge. Define the
Selmer sheaf H = Ha,7) on X by

o H(n) = H}(n)(Q,A) ® Gy, forn e N,

and if e is the edge joining n and n/,
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o H(e) = H{ (Qe, A) @ G,
e ¢ is the composition of the vertical maps of (2.1)),
e )¢, is the horizontal map of (2.1).

Definition . A Kolyvagin system for (A, F) is a global section of the Selmer
sheaf H(4,7), and so KS(A, F) =T (Ha, 7))

Exercise 2.2.4. Suppose Hj(Q,A) = 0. Show that every Kolyvagin system is
identically zero.

Exercise 2.2.5. Suppose k € KS(A,F) and ¢ € P. Fix a surjection £ : Gy — R.
Show that the collection

{1®@&)(kne) :n €N, Ln}
is a Kolyvagin system for (A4, F(¢)).

We postpone until later any discussion of how one can find Kolyvagin systems,
and instead we discuss consequences of the existence of Kolyvagin systems.

2.3. Sheaves and monodromy.
Suppose for this section that S is a sheaf on a graph X, as in Definition [2.2.2

Definition 2.3.1. If v and w are vertices of X, a path in X from v to w is a
sequence of vertices and edges (v = vy, e1,v1, €2, ..,€pn, v, = w) in X such that for
each i, e; is an edge joining v;_1 and v;. A loop in X (at v) is a path from v to v.

We say that S is locally cyclic if all the R-modules S(v), S(e) are cyclic and all
the maps 1% are surjective.

If S is locally cyclic then a surjective path (relative to S) from v to w is a path
(v = vo,e1,v1,€2,...,€n,0, = w) in X such that for each ¢, the map Pyl is an
isomorphism. We say that the vertex v is a hub of S if for every vertex w there is
an S-surjective path from v to w.

Suppose now that the sheaf S is locally cyclic. If P is a surjective path in X:

S(vg) == S(e1) <— S(v1) == S(ez) <— S(va) = -+ <— S(vn_1) == S(en) <— S(vn)

(4 v Vg —— -t Vyp| — 0
0 o1 1 ea 2 n—1 on n

we can define a surjective map ¥ p : S(vg) — S(vy) by

(22) Yp = (U5r) T ol o (Pprmt) oo (i) T oy

since all the inverted maps are isomorphisms. We will say that S has trivial
monodromy if whenever v, w,w’ are vertices, P, P’ are surjective paths (v,...,w)
and (v,...,w'), and w,w’ are joined by an edge e, then ¥¢, o ¢¥p = ¢S, o Yp, €
Hom(S(v),S(e)). In particular for every pair v,w of vertices and and every pair
P, P’ of surjective paths from v to w, we require that ¢'p = 15, € Hom(S(v), S(w)).

Recall that I'(S) is the set of global sections of S.

Proposition 2.3.2. Suppose S is locally cyclic and v is a hub of S.
(1) The map f, : T'(S) — S(v) defined by k +— K, is injective, and is surjective
if and only if S has trivial monodromy.
(2) Ifk € T(S), and if u is a vertex such that k., # 0 and K, generates p*S(u)
for some k € Z+, then k., generates p*S(w) for every verter w.
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Exercise 2.3.3. Prove Proposition [2:3.2]

Definition 2.3.4. A global section « € T'(S) will be called primitive if for every
vertex v, k(v) € S(v) is a generator of the R-module S(v).

It follows from Proposition that a locally cyclic sheaf S with a hub has a
primitive global section if and only if S has trivial monodromy.

The Selmer sheaf will not in general be locally cyclic. However, we will see
later that under suitable hypotheses, there is a natural subsheaf H’' of the Selmer
sheaf H such that H’ is locally cyclic with trivial monodromy, H’ has hub vertices,
and every global section of H is a global section of H’, i.e.,

KS(A,F)=T(H)=T(H").
2.4. Hypotheses on A and F.

From now on we will assume that all of the following hypotheses hold. Let A =
A ®r Fp. We will assume that in addition to being free of finite rank over R, A
satisfies:
(H.1) A is an absolutely simple F,[Gg]-module, not isomorphic (as a Ggq-
module) to F;, or to p,,.
(H.2) There is a 7 € Gq such that 7 =1 on g, and A/(7 —1)A is free of rank
one over R.
(H.3) HY(Q(A4)/Q,A) = H'(Q(A*)/Q, A*) = 0, where Q(A) is the fixed field
of the kernel of the map Gq — Aut(A), and similarly for Q(A™*).
(H.4) Either A 2 A* or p > 5.

We will also assume that for every k, 0 < k < m, the quotient Selmer structure
induced by F on A/p¥A (via the map A — A/p*A) is the same as the subgroup
Selmer structure induced by F on A/pFA (via the map p™=F : A/pFA — A),
where the induced Selmer structures are defined in Exercise In other words,
for every v,

(H.5) (image of H:(Q,, A) under H'(Q,, A) — H*(Q,, A/p"A))
= (inverse image of H:(Q,, A) under H'(Q,, A/p*A) — H'(Q,, A)).
Remark 2.4.1. Hypotheses (H.1), (H.2), and (H.3) are generally requiring that
the image of Gq in Aut(A) is sufficiently large. For a discussion of the condition
on F, and some sufficient conditions for it to be satisfied, see [MR1] §3.7]. (Note

that the condition on F is vacuous if m =1, R =F,.)
If (A, F) satisfy the conditions above, then so do (A/p*A, F) for 0 < k < m.

Exercise 2.4.2. Show that under the assumptions above, P has positive density.
Hint: check that if £ ¢ ¥ and the Frobenius of ¢ in Gal(Q(A, p,n) is in the
conjugacy class of the element 7 of (H.2), then ¢ € P.

Exercise 2.4.3. Show that (H.5) is automatically satisfied for v ¢ X.

Exercise 2.4.4 (Lemma 3.7.4 of [MR1]). Show that if A and F satisfy the as-
sumptions above, and n € NV, then so do (A, F(n)).

Proposition 2.4.5. Under the assumptions above, if n € N and 0 < k < m, there
are isomorphisms

(1) Hz(,\(Q,A/p*A) = Hp\(Q,AP*]) = H(, (Q, A)[p"] induced by
A/pPA = Ap*] — A,
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(3) Hb gy (Q A°[p")) ™ HE(,..(QA)p"] induced by A*[pH] — A*.

Exercise 2.4.6 (Lemma 3.5.3, 3.5.4 of [MR1]). Prove Lemmam (By Exercise
2.4.4] it is enough to do this for n = 1.)

Exercise 2.4.7. Show that the composition A/p*A = A[p*] — A induces an
inclusion KS(A/p*A) — KS(A)[p*]. Why is not obvious that this inclusion is an
isomorphism?

2.5. The core Selmer group.

Recall that A = A®F,,.
Definition 2.5.1. If n € N/, define
A(n, A) = length(H}(n)(Q,A)) = length(H(n)),
Aln, A*) = length(H}(n)* (Q, A)),
and similarly with A replaced by A/p*A. Note that by Proposition m
An,A) =0 A(n,A) =0, A(n,A*)=0<= \(n,A*) =0

Theorem 2.5.2. There are integers r,s > 0, with one of them equal to zero, such
that for every n € N there is a noncanonical isomorphism

HY ) (Qu4) 0 B = Y, QA7) @ R

PRrROOF. To prove the existence of such an isomorphism, it is enough to show
that for 1 < k < m, the kernels of p* on the left-hand side and on the right-hand
side have the same order. In other words, we need to show that there is a t € Z
such that for every n,

length(Hz () (Q, A)[p"]) — length(Hz (). (Q, A")[p"]) = kt.
By Proposition [2:4.5] this is equivalent to

By Exercise[2.1.4] the left-hand side is independent of n, so we only need to consider
n = 1. In this case what we need follows from [W1il, Proposition 1.6] (see also [MR1],
Proposition 2.3.5]) and [MRI1], Proposition 1.1.5]. O

Definition 2.5.3. Define the core rank x(A) of A (suppressing F from the nota-
tion) to be the nonnegative integer s of Theorem We call n € N a core vertex
if either A(n, A) =0 or A(n, A*) =0

Exercise 2.5.4. Show the following:

(1) If x(A) > 0, then H}(,(Q, A) = Hy (Q, A*) @ RX for every n € .

n)*
n 1s a core vertex, then , 18 free over R of rank x ,
2) Ifni h H}(n)QA'f R of k x(A
(3) If n is a core vertex and x(A) > 0 then H}(n)*(Q, A*) =0.
(4)

4) If n is a core vertex and x(A) = 0 then Hz,\(Q, A) = 0.
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2.6. Stepping along the Selmer graph.

The next lemma is an application of the global duality (Theorem [1.10.2)), and is
crucial in many of the calculations that follow.

Proposition 2.6.1. Suppose nl € N. We have the following diagrams of inclu-
sions, in which the labels on the arrows are the lengths of the corresponding cyclic
cokernels.

Hie()(Q. 4) Hz, (- (Q A7)
/ \ / Y}
Hy ) (Q,4) Hioy- (Q, AY)

These lengths satisfy

(1) 0 < a,b,e,d,a*, b c*,d* <m,

(2) a+c=b+d, a*+c* =b"+d*,

3) a+a*=b+b"=c+c"=d+d" =m,

4) a>d, b>c, c* >b*, d* > a*.

PRrROOF. By definition

H;-—(TL)(Q7A) = ker[H_;'e(n) (Q7A) - Hl(Q€7A)/H&(QZ7A)]7
H;e(n)(QvA) = ker[H;lr(n)(QA) — H3(Qu, A)l,

and similarly for A*. The two diagrams come from the definitions in this way. Since
HYQu, A), H (Qu, A), HY(Qy, A*), and H}(Qy, A*) are all free of rank one over R
by Exercise the inequalities (1) hold. The equalities (2) are immediate from
the diagrams.

The equality a + a* = m follows from global duality (apply Theorem
with G; = F(n) and Go = F*(n)), and similarly for the other three equalities of
(3). Finally, we have

Hy () (Q A) N HE () (Q, A) = Hz () (Q, A).

The first two inequalities of (4) follow from this, and the other two similarly with
(A, F) replaced by (A*, F*). O

Corollary 2.6.2. Suppose nf € N.
(1) [A(nf, A) — A(n, A)| < m and |A\(nl, A*) — X(n, A*)| < m.
(2) If the localization map H1 n)(Q,A) — HY(Qy, A) is surjective, then

f(ne) (Q,A4%) = ]—‘Z(n) (Q, A7) CH_F(n) (Q, A%).
(3) The image of the composition
n.A* oc by*
POATHL L (QA) 5 HY Qe A) T HY Qe A) ® Gy

is equal to the image of p»("6A" )H}(M)(Q,A)QQGg loce, HY(Qu, A)®G,.
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(4) If both localization maps
H () (Q, A)p] = Hy(Qu, A), Hy (- (Q, A%)[p] — H,(Qp, AY)
are nonzero, then \(nf, A) = A(n, A) — 1 and \(nf, A*) = \(n, A*) —

PROOF. Consider the diagrams of Proposition 2.6.1} ~Assertion (1) is im-
mediate. Recall (Exercise _ that HI(QZ, A), HX(Qq, A), HY(Q, A*), and
H}(Qq, A*) are free of rank one over R, and ¢}* is an isomorphism.

If the 1ocalization map in (2) is surjective, then ¢ = m in the left-hand diagram
of Proposition Therefore by (3) and (4) of that lemma, b* = 0, which proves
(2).

To prove (3) it is enough to show that length(C,,) = length(C ¢) where C), and
C)e are the images of p*(mA” ]:(n (Q, A) and prn6:A7) }-( 0 (Q7 A), respectively,
under localization at £. The left-hand diagram of Proposition [2.6.1| shows that

length(Cy,) = max{0,c — A(n, A¥)}, length(Che) = max{(), d—Ant, A*)}.
The right-hand diagram shows that
A(n, A") = A(nl, A*) =d* — " =c—d,
so length(C),) = length(Cyy).

For (4), if the localization maps in question are nonzero, then using Proposition
2.4.5 (with k£ = 1) we see that the localization maps

are surjective. Applying Proposition with A replaced by A (and m = 1) we
have c = a* = 1,50 b* < ¢* =0 and d < a = 0, so A\(nl, A*) = A\(n, A*) — 1 and
A(nt, A) = A(n, A) — 1. O

2.7. Choosing useful primes.

Proposition 2.7.1. Suppose ¢ € H}_-(n)(Q,A) and d € H}:(n)*(Q,A*) are both
nonzero. Then {¢ € P : Resy(c) # 0 and Rese(d) # 0} has positive density.

SKETCH OF PROOF. (For details, see [MRI1l, Proposition 3.6.1].) First, find
v € Gq such that
(1) v =7 on Q(A, p,r), where 7 is as in (H.2) of
(2) c(7) ¢ (T =1)A4,
(3) d() & (1 —1)A".
where ¢(y) means the image of v under any cocycle representing ¢, which is well-
defined modulo (y — 1)A = (7 — 1) A, and similarly for d(vy). (One needs to check
that these three conditions can be satisfied simultaneously; this uses our hypotheses
on A).
If £ ¢ 3, £ {n,is a prime whose Frobenius (in a suitably large extension of Q)
is 7, then it follows from the first condition implies that ¢ € P (Exercise [2 ,
from the second condition that Resy(c) € HL(Qq, A) & A/(7 — 1) A is nonzero, and
from the third condition that Res,(d) € H}(Qu, A*) & A*/(1 — 1)A* is nonzero.
Thus ¢ belongs to the set in question. (]

Corollary 2.7.2. Suppose n € N is not a core vertex. Then there is an £ € P
such that A(nl, A) = A(n, A) — 1 and \(nl, A*) = A(n, A*) —
If in addition k € KS(A) and k,, # 0, then ¢ can be chosen so kne # 0.
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PROOF. Since n is not a core vertex, H}(n) (Q, A) and H}(n)* (Q, A*) are both
nonzero. Apply Proposition [2.7.1{ with a nonzero ¢ € H;_-(n) (Q, A)[p] and a nonzero
d e H}(n)*(Q,A*)[p], and let £ € P be such that Resy(c) # 0 and Res;(d) # 0.
For this ¢, Corollary [2.6.2(4) shows that A\(nf, A) = A(n, A) — 1 and A(nf, A*) =
A(n, A*) — 1.

If we take ¢ to be a multiple of x,,, then Res(k,) # 0, so Res¢(kne) # 0 (by
definition of a Kolyvagin system), so kn¢ # 0. (]
Corollary 2.7.3. Suppose n € N. Then there is a core vertex n' and a path of
length min{A(n, A), A(n, A*)} from n ton’.

If in addition k € KS(A) and ky, # 0, then n’ can be chosen o knr # 0.

If n € NV, let w(n) denote the number of prime factors of n.
Corollary 2.7.4. Let r = min{dimg, H3(Q, A),dimg, H3.(Q, A*)}. If n is a
core vertez, then w(n) > r. There are core vertices n with w(n) = r.
Exercise 2.7.5. Prove Corollaries 2.7.3] and 2.7.41
Theorem 2.7.6. If x(A) =0, then KS(A) = 0.

PROOF. Suppose & € KS(A) and n € N. If k, # 0, then by Corollary
there is a core vertex n’ such that k, € Hx, ,(Q, A) is nonzero. But since
X(A4) = 0, we have H}(n/)(Q7 A) =0 by Exercisem

Remark 2.7.7. Theorem gives another proof of Exercise because if
HL(Q,A) = 0 then Theorem shows that x(A4) = 0.

4), so this is impossible. O

2.8. The stub subsheaf.

We define a subsheaf of the Selmer sheaf H = H (4 #) of Definition as follows.
Definition 2.8.1. The sheaf of stub Selmer modules H' = HEA,}') is the subsheaf
of H defined by

o H'(n) = p ™A H(n) = pk(”vA*)H}_(n)(Q,A) ® G, CH(n)ifneN,

o H'(e) =v¢<(H'(n)) C H(e) if e is an edge joining n and nf,
and the vertex-to-edge maps 15,15, are the restrictions of those of H.

By Corollary P, (H' (nl)) = ¥g (H'(n)), so H' is a well-defined sheaf and
all vertex-to-edge maps are surjective.

Exercise 2.8.2. Show that for every n, H'(n) is free of rank y(A) over Z/p*Z,
where k = max{m — A(n, A*),0}. Deduce that if x(A) = 1, then H’ is locally
cyclic.

Exercise 2.8.3. Show that if x(A4) = 1, then Corollary can be strengthened
to say that for every vertex n, there is a surjective path (see Definition from
some core vertex to n. (Hint: in the proof of Corollary take ¢ to be a nonzero
element of pm_lH}(n)(Q, A). Show that

Res¢ : Hz(,)(Q, A) — Hy(Qu, A)
is surjective, and so
Res : p ™A HE (0 (Q, A) — M4V HY(Qp, A)

is an isomorphism.)
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Theorem 2.8.4. Suppose x(A) = 1. Then the natural inclusion T'(H') — T'(H) is
an isomorphism, i.e., if k € KS(A) then k, € H'(n) for everyn € N.

SKETCH OF PROOF. We give the proof in the special case where m = 1, so
R =F,. See [IMR1], Theorem 4.3.4] for the complete proof. (In this special case,
it is not necessary to assume that x(A) = 1.)

Suppose R = F, and k € KS(A). If n is a core vertex, then H'(n) = H(n) and
there is nothing to prove. If n is not a core vertex, then H’(n) = 0 and we need to
show x,, = 0.

Suppose n is not a core vertex, and k, # 0. Using Proposition [2.7.1] we can
find an ¢ € P such that Resy(k,) # 0 and Res¢(HF.(Q, A*)) # 0. In the notation
of Proposition we have a* = 1, s0 a = 0, so d = 0. But then Resy(kn¢) = 0,
so Res¢(ky) = 0 by definition of a Kolyvagin system. This is a contradiction. O

Theorem 2.8.5. Suppose x(A) = 1. Then the stub sheaf H' is locally cyclic, and
every core vertex is a hub.

A key part of the proof of Theorem [2.8.5|is the following.

Definition 2.8.6. Suppose x(A4) = 1. Let X° be the subgraph of X whose vertices
are the core vertices in N, with an edge joining n and nf whenever both maps ¥¢
and ¢, are isomorphisms.

Let ‘H° be the restriction of the Selmer sheaf H to X°, i.e., H(n) = H(n) for
core vertices n, and H%(e) = H(e). Note that H° is also the restriction of H’ to
X0, since H' and H agree precisely at the vertices and edges of X°.

Theorem 2.8.7. The graph X° is connected.
PRrROOF. The proof is “more of the same”. See [MRI), Theorem 4.3.12] O

ProOF OF THEOREM [2.8.51 We have already seen (Exercise that H' is
locally cyclic. Suppose n € N and v is a core vertex; we need to show that there
is a surjective path from v to n. By Exercise there is a core vertex w and a
surjective path from w to n. By Theorem re is a path in X° from v to w.
But every path in XY is a surjective path, so the concatenated path from v to w to
n is a surjective path from v to n. ([

Theorem 2.8.8 (Howard, Appendix B of [MR1]). For every n € N, the map
T'(H') — H'(n) is surjective.

Corollary 2.8.9. (1) If x(A) =0, then KS(A) = 0.
(2) If x(A) =1, then KS(A) is free of rank one over R.
(3) If x(A) > 1, then KS(A) is infinite.

ProoF. The first assertion is Theorem If x(A) = 1 and n is a core
vertex (core vertices exist by Corollary 7 then Theorem and Proposition
show that the map KS(A) — H(n) is injective, Theorem shows that it
is surjective, and Exercise 2) shows that H(n) is free of rank one over R.

For (3), see the following exercise. O

Exercise 2.8.10 (Proof of Corollary [2.8.9(3)). If x(4,F) > 0, and ¢ € P, use
Propositionto show that x(A, F;) = x(A, F) —1. (Note: the Selmer structure
Fi for A may not satisfy condition (H.5) of but for A, (H.5) is vacuous.)
Deduce that there are many different n such that x(4,F,) = 1, and for each
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of these we have KS(A,F,) C KS(A,F) = KS(A, F)[p]. Now apply Corollary
2) to each of the KS(4, F,).

We end this section with one example of how to use the results above to bound
the size of a Selmer group.

Corollary 2.8.11. Suppose x(A) = 1 and k € KS(A). If k1 € Hx(Q, A) has
order p*, then
length(Hy.(Q, A*)) <m — k.

PRrROOF. By Theorem 1), Ky € plensth(Hz- QAN FL(Q, A), so #y is killed
by pmflength(H}_-* (Q,A7) 0

2.9. Recovering the group structure of the dual Selmer group.

For this section we suppose that A is a Gg-module, free of finite rank over R =
Z/p™Z, and F is a Selmer structure for A, satisfying all the hypotheses of
We assume in addition that x(A) = 1.

Proposition 2.9.1. Suppose x(A) =1 and 0 < k < m. The natural quotient map
A — A/pFA induces a map KS(A) - KS(A/pFA).

Exercise 2.9.2. Prove Proposition [2.9.1] Hint: this is not as easy as it might seem,
because the index set A in the definition of a Kolyvagin system is larger for A/p* A
than for A. Use Exercise [2.4.7, and show that the map KS(A4/p*A) — KS(A)[p"]
of Exercise is an isomorphism if x(4) = 1.

Proposition 2.9.3. Suppose x(A) =1 and k € KS(A). Then the following are
equivalent.

(1) Ky, generates H'(n) for everyn € N,

2) kyp generates H'(n) for some n € N with H'(n) # 0,

3) 1 ¢ pKS(A),

4) p" TR #0,

5) Kk generates KS(A),

(6) the image of k in KS(A) (under the map of Proposition is nonzero,

Exercise 2.9.4. Prove Proposition 2.9.3] using Theorems [2.8.4] and 2:8.5] and
Proposition 2.3.2]

Definition 2.9.5. We say that k € KS(A) is primitive if it satisfies the equivalent
conditions of Proposition 2.9.3]

If K is primitive, we have the following sharpening of Corollary
Corollary 2.9.6. Suppose x(A) =1 and k € KS(A) is primitive. If k1 # 0 then
length(H 7. (Q, A*)) = m — length(Rk;) = max{i : k; € p'Hr(Q, A)}.

If K1 = 0 then length(HF. (Q, A*)) > k.
PROOF. Let A = length(H%.(Q,T*)). Since & is primitive, we have
Ry =H' (1) = p*HEX(Q, A),
and length(p* H:=(Q, A)) = max{m — \,0} by Exercise [2.8.2 |

We can formulate a more precise version of Corollary [2.9.6] which in some cases
determines the group structure of H:. (Q,T*).



KARL RUBIN, EULER SYSTEMS AND KOLYVAGIN SYSTEMS 27

Definition 2.9.7. If k € KS(T') and r > 0, define

0" (k) =max{k: k <m and k,, € pkH}(n)(Q,A) ® G,
for every n € N with w(n) = r}.
The elementary divisors of k are defined by
ei(k) = 0" YK) - 0'(k), i>1.

Proposition 2.9.8. Suppose x(A) = 1, k € KS(A), and let j be such that k
generates P’ KS(A). Write Hx.(Q, A*) = &,Z/pYZ with nonnegative integers
dy >dy > ---. Then for everyr >0,
0" (k) = min{m,j + > d;}.
i>r
PROOF. Note that since x generates p KS(A), Proposition shows that
#in generates p' H' (n) = p?PA(A) K (n) for every n. Therefore

9" (k) = min{m,j + A(n, A*) : n € N,w(n) =r},
and to prove the proposition we need to show that
(2.3) min{A(n, A*) :n € N,w(n) =r} = Zdi‘
i>r
This is clear when r = 0, since A(1, A*) =", d;.
Suppose n € N and w(n) = r. Consider the map
Hy.(Q,A%) — DH{ (Qr, A7)

Ln
The right-hand side is free of rank 7 over R, so the image is a quotient of Hx. (Q, A*)
generated by (at most) r elements. Hence the image has length at most )., d;.
Therefore the kernel has length at least ) .. d;. But by definition this kernel is
contained in Hjl_-(n)* (Q, A*), so we conclude that A(n, A*) > . d;, which is one
inequality in .

We will prove the opposite inequality by induction on r. The case r = 0 was
proved above.

Since x(A) > 0, Theorem shows that p™ ' H}(Q, A) # 0. Fix a nonzero
element ¢ € p"'HL(Q,A) C Hx(Q,A)[p]. If d > 0, then choose a nonzero
element ¢* € ph~'HL.(Q,A*) C HL.(Q, A*)[p]. Using Proposition choose
a prime ¢ € P such that the localization Res(c) is nonzero and, if d; > 0, such
that Resg(c*) is nonzero as well.

It follows that

e the localization map HE(Q, A) — H}(Qy, A) is surjective, and
o Hlipp (Q.A") = 000 Z/p" 0 Z.

By Theorem 2) we have H}:(Z)*(Q,A*) = H(lﬂ)*(Q,A*). Thus
min{\(n, A*):n € N,w(n) =r} <min{\(nl, A*):ne N, Ltn,whn)=r—1}
= min{lengthR(H}(Z)(n)* (Q,A*)):neN,lfnwln)=r—1}

=Y dip

i>r—1
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where the last equality comes from our induction hypothesis applied to (A, F(£)).
This completes the proof of . ([
Theorem 2.9.9. Suppose x(A) =1, k € KS(A), and k1 # 0. Then
(k) > 0Y(k) > * (k)
e1(k) = ez(k) = e3(k)

Z Zoa
Z Zoa

0" (k) stabilizes at a value 0° (k) for large r, e,(k) = 0 for large r, and

Hj.(Q.A%) = @Z/p""Z.

i>1
In particular length(HL. (Q, A*)) = 8°(k) — 0 (k).
PROOF. If k1 # 0 then 8°(k) < k, so in Proposition we have 0" (k) =
J+ > i, di for every r. The theorem follows immediately. O

Remark 2.9.10. Theorem [2.9.9]shows that the elementary divisors of k are inde-
pendent of k as long as k1 # 0. Note that & is primitive if and only if 9°°(k) = 0.



LECTURE 3

Kolyvagin systems for p-adic representations.

Suppose for this lecture that A is a free Z,-module of finite rank, with a
continuous action of Gq. We assume further that A is ramified at only finitely
many primes. Let A* = Hom(A, p, ). For every positive integer m we have the
finite Gq-modules A,, := A/p™A and A}, = A*[p™]. We will study Selmer groups
attached to A* by applying the results of the previous section to A,, and A},.

Typical examples for A will be

Zy(1) == 1}21”]77"7 Z,(1)" = Qp/Zy,
T,(E) == @E[pm]y T,(E)" = E[p™],
for an elliptic curve F defined over Q.

3.1. Cohomology groups for p-adic representations.

Exercise 3.1.1. Show that A* is a discrete, torsion Gg-module, and A* = lim A7,.

Since A is not a discrete Gg-module, our definitions in Lecture |I| do not apply.
We will simply define, for any closed subgroup G of Gq,

HY(G,A) = A%, HYG,A) :=lmHY (G, Ap).

This is the same group one would get by defining H' (G, .A) using continuous cocy-
cles, but that would not be true in general for H(G, .A) with i > 1. Since A* is a
discrete Gq-module, no modifications are necessary to define H*(G, A*).

The definitions of Hl(Qy,.A), Selmer structures for A, and the corresponding
Selmer groups, are exactly the same as Definitions [[.4.12] and [T.5.1} If F is a
Selmer structure for A, then F induces a Selmer structure (that we also denote by
F) for every A, by taking H:(Q,, A.,) to be the image of H:(Q,,.A) under the
canonical map H(Q,,A) — H'(Q,, A,,). This in turn defines a Selmer structure
F* on every A’ , and we also denote by F* the Selmer structure on A* defined by
Y. (Qq A") = lim HE. (Qr, AL,).

Exercise 3.1.2. Show that the construction described above defines a Selmer struc-
ture on A, for every m (i.e., show that if A is unramified at ¢ and H:(Qy, A) =
H(Q, A), then Hx(Qq, Ap) = HY(Qq, Ayy)). Show that

Hy(Q,A) =limHr(Q,4,),  Hp.(Q,A*) =lim Hy. (Q, A},).
We will make the following assumptions on (A, ), in order to ensure that the
(A, F) satisfy the hypotheses of Let A:= A/pA = Ay, so A* = A*[p].

(H.1) A is an absolutely simple F,[Gq]-module, not isomorphic (as a Ggq-
module) to F;, or to p,,.

29
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(H.2) Thereis a7 € Gq such that 7 =1 on p, and A/(7 —1).A is free of rank
one over Zi,.
(H.3) HY(Q(A)/Q,A) = HY(Q(A*)/Q, A*) = 0, where Q(A) is the fixed field
of the kernel of the map Gq — Aut(A), and similarly for Q(A*).
(H.4) Either A % A*, or p > 5.
Let ¥ be a finite set of places containing oo, p, all £ such that A is ramified at ¢,
and all £ such that H}(Qg, A) # H(Qe, A). We will also assume that:

(H.5) For every v € ¥, H (Q,,A)/H3(Q,, A) is a torsion-free Z,-module.

Lemma 3.1.3. If A and F satisfy the properties above, then:

(1) A, and F satisfy the hypotheses of
(2) the core rank x(Ay,) is independent of m.

PRroOF. It is immediate that property (H.:) for A implies the corresponding
property (H.i) for every A,,, 1 < i < 4. That (H.5) for (A, F) implies (H.5) for
(A, F) is [MR1l Lemma 3.7.1(i)], and we omit the proof.

The second assertion follows from Proposition and Theorem the
details are left as an exercise. O

Definition 3.1.4. We define the core rank x(.A) to be the common value x(A,).

Example 3.1.5. We define a canonical Selmer structure F.,, on A by:
o if v € {oo,p} then Hz (Qu,A) = H'(Q,, A),
e if v ¢ {o0,p} then Hy (Q,, A) = ker[H'(Qq, A) — HY(Q}", A) ® Q).

Note that if A is unramified at ¢, then H'(Q}*,.A) = Hom(Iq,, A) where Iq, is
the inertia group, and Hom(Iq,, A) is torsion-free, so Hjl_-ca“(Qz,A) = H}(Q, A)
in this case.

Exercise 3.1.6. (1) Check that Feapn as defined above is a Selmer structure,
and that it satisfies (H.5).
(2) Show that if £ # p, Ais unramified at £, and m > 0, then Hx _ (Qy, A,,) =

H&(QE’ Am)

Proposition 3.1.7. For every v, the limit of the Tate pairings of Theorem |1.8.1
induces a nondegenerate pairing

Hl(QmA) X HI(QU; A*) - Qp/zp
under which H}m (Qu, A) and H}-C*an (Qu, A*) are orthogonal complements. In par-
ticular:
(1) if v € {o0,p} then H}-C*an (Qu, A*) =0,
(2) ifv & {oo,p} then Hy. (Qqu, A*) = H}(Qy, A*)aiv, the mazimal divisible
subgroup of HL(Q., Ac*d)n.
(3) If m > 0 then Hx. (Qu, A%,) is the inverse image of Hy. (Q,, A*) under
the map H'(Qy, Al,) — H'(Qu, A").

PROOF. See [R2] §1.3], or work out the details as an exercise. O

Exercise 3.1.8. Suppose that either v = p or H!(Q,, .A*) is finite. Use Proposition
to show that there are natural isomorphisms

HO(Qu, A")/p"H*(Qu, A") = HE. (Qu, A,).
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Show that if in addition H'(Q,,.4*) is divisible then
H}-‘* (QU,A:R)ZO, H}-‘ (Qv:Am):Hl(Qv;Am)-

If M is a Z,-module, we let
rankz (M) = dimq, M ® Q,, corankz (M) := rankz Hom(M,Q,/Z,).
Proposition 3.1.9.
X(A, Fean) = rankz, A~ + corankszo(Qp, A*).

where A~ denotes the minus part of A for some complex conjugation.

IDEA OF PROOF. For the details of the proof, see [MR1] Theorem 5.2.15]. The
outline is as follows. By Proposition and Theorem there is an integer k
such that

(3.1) length(H f

can

(Q.Ap)) — length(Hr. (Q,A4},)) = km

for every m, and x(A) = max{k,0}. To prove the proposition we need to compute
the left-hand side of (3.1)) (in fact, computing it up to an error bounded indepen-
dently of m will suffice). This can be done using [Wil Proposition 1.6]. g

3.2. Kolyvagin systems for A.

Fix a Z,[Gq]-module A as above and a Selmer structure F for A, satisfying hy-
potheses (H.1) through (H.5).
If0¢ %, let

v(£) = max{m : £ =1 (mod p™)
and A,,/(Fry — 1)A,, is free of rank 1 over Z/p™Z}.

Let N4 be the set of squarefree product of primes ¢ ¢ %, and if n € N4 define
v(n) = min{r(¢) : £ | n} (by convention we let v(1) = 00).

Definition 3.2.1. A Kolyvagin system for A is a collection

such that if n¢ € N, then Rese(kne) = ¢} o Resy(kn) in H{ (Qe; Av(ne)) ® Gre.
(We understand A, = A, so k1 € H=(Q,A).) Let KS(A) be the Z,-module of
Kolyvagin systems for A.

Exercise 3.2.2. Show that restricting from N4 to {n € N4 : v(n) > m} induces
a map KS(A) — KS(A4,,). Show that if x(A) = 1, then

KS(A) =1limKS(A4,,),
inverse limit with respect to the maps of Proposition [2.9.1
We say that k € KS(.A) is primitive if its image in KS(A;) is nonzero.

Theorem 3.2.3. Suppose x(A) = 1. Then KS(A) is free of rank one over Z,,
and every generator is primitive.

Exercise 3.2.4. Prove Theorem [3.2.3]
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Definition 3.2.5. Suppose k € KS(A), k # 0. We define the order of vanishing
of k by
ord(k) := min{w(n) : Kk, # 0}.
If r > 0 we define
0" (k) :=max{j : Kk, € ij;;(n)(Q,A,,(n)) ® G,, for all n € Ny with w(n) = r}.

In particular 8°(k) = max{j : k1 € P Hx(Q, A)}, and 9" (k) = oo if r < ord(k).
For i > ord(k) define the sequence of elementary divisors
ei(k) = 0" (k) — (k).
Theorem 3.2.6. Suppose x(A) =1 and k € KS(A) is nonzero. Let r = ord(k).
Then corankz,, (Hz.(Q, A*)) =r, 0'(k) # co if i > r, the sequence e;(K) is nonin-
creasing, nonnegative, equal to zero for large i, and
Hy(Q,A) = (Q,/Z,)" x @Z/p" L.

i>r
Exercise 3.2.7. Deduce Theorem from Propositions and and
Exercise [3.2.2)

Corollary 3.2.8. The value of ord(k) and the sequence of e;(k) are independent
of (the nonzero) K.

Corollary 3.2.9. Suppose x(A) = 1. Then:
(1) length(H}:. (Q, A%)) < 8°(k), with equality if and only if k is primitive.
(2) If k1 # 0, then HL.(Q, A*%) is finite.
(3) If K # 0 but k1 =0, then Hy.(Q, A*) is infinite.

3.3. Example: units and ideal class groups.

Fix a character p: Gq — Z, of finite order. Assume that p > 2, so that the order
of p is prime to p. Let L be the cyclic extension of Q which is the fixed field of p,
and A = Gal(L/Q). We will also view p as a (primitive) Dirichlet character in the
usual way, so for every prime /,
p(f) = 0 < p is ramified at £ <= L/Q is ramified at ¢,
p(f) =1 <= p(Gq,) =1 <= ¢ splits completely in L/Q.
If B is a Z,[A]-module, we define
B? = {be B: b= p(0)b for every § € A}.
Let
A=Zy1)@p " =limp,. ®p7,
a free, rank-one Z,-module with Gq acting via the product of p=! and the cyclo-
tomic character. (We write “®@p~!” as an abbreviation for tensoring with a free,
rank-one module on which Gq acts as p~!.) The dual representation

A" =Hom(A, pye) = Qp /2y @ p,
i.e., A* is isomorphic as a group to Q,/Z,, with Gq acting via p.
For every m > 1,let A, = A/p" A = p,m@p~', s0 AS, = A*[p™"] = Z/p" Z&p.

Exercise 3.3.1. Describe H(Qy, A*) for every prime ¢, and show in particular
that it is a divisible Z,-module.
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Exercise 3.3.2. Suppose £ # p and p is ramified at £. Show that H'(Q,.A) = 0,
H'(Qq, A*) = 0, and for every m, H'(Qq, A) = 0 and H'(Qg, A*) = 0. (Hint:
show that H(Qu, Ay) = 0 and H}(Qy, AZ,) = 0, and use Proposition [1.9.1})
We have an inflation-restriction exact sequence
0— HY(L/Q, (4)") = HY(Q, Ap) — H'(L, Apn)® — H*(L/Q, (An)")

and similarly with A replaced by A¥.. Since [L : Q] is prime to p, Exercise m
shows that H*(L/Q, A,,) = H(L/Q, A%) =0 for i = 1,2, so

HYQ, Ap) = HY(L, Ap)® = (HY (L, pyn) @ p~ )2,

HYQ, A%) = HY(L, AL)A = (HY(L, Z/p™Z) @ p)»
Since (using Theorem

HYL, pyn) = L*/(L*)", HY(L,Z/p™Z) =Hom(G1,Z/p"Z)

we conclude that
(32)  HYQ,Ap) 2 (L*/(L*)P")°, HYQ,A:) =~ Hom(Gy,Z/p"Z)"

the isomorphisms depending on a choice of generators of the free rank-one Z,-

modules p and p~ 1.

Exercise 3.3.3. Show that (3.2)) has the following generalization. If F' is a number
field and L N F = Q, then

HY(F, Ay,) = (FL* J(FL*)P" ), H'(F,A%) = Hom(Gpr,Z/p™Z)"

For every prime ¢, let L, = L ®q Qy, the sum of the completions of L at primes
above ¢, let Op ¢, = O ®z Z,, and if X is a prime of L above ¢, let I;,, C G, be
the inertia group.

Exercise 3.3.4. Show that for every prime /£,
(1) HY(Qe, Am) = @(L;/(L:))P”)P = (L (L)),
(2) H'(Qe. A;,) = (QHom(Gr,, Z/p"Z))" .
e

Exercise 3.3.5. Show that since p # 2, H'(R, A,,) = H'(R, A%,) = 0 for every
m, so we can safely ignore the infinite place in our definition of Selmer group and
Selmer structure.

Let F be the canonical Selmer structure F.., defined in Example Let
1 denote the trivial character of Gq, and €cya : Gq — Aut(p,) = F; — Z; the
mod-p cyclotomic character.

Exercise 3.3.6. Show that if p # 1 and p # ecyal, then A and F satisfy assumptions
(H.1) through (H.5) of

Exercise 3.3.7. Use Proposition B.1.9] to show that with the canonical Selmer
structure (and with p # 1, €cyal), X(A) is given by the following table:

p even | p odd
x(A)=q plp)#1] 1 0
P =1] 2 | 1

(recall that p is even if and only if p(—1) = 1).
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Proposition 3.3.8. For every m > 1, with the identifications of Exercise[3.3.4 we
have

(1) HE(Qp, An) = (LX/(LX)P™)P and HE. (Qp, A,) =0,
(2) If £ # p, then
HE(Qe, Am) = (OF ,J(OF )PP,
H:.(Qu AL) = @Hom(em/fm,zmmz»“
PNI4

PROOF. By Exercises [3.1.8)and H:(Q,. Ay) = HY(Qp, Ajy), so the first
1.

part of (1) follows from Exercise
For (2) we consider three cases.

Case 1: £ # p and p(¢) = 1. In this case £ splits completely in L/K, and A, = pt,m
as a Gq,-module, so (using Exercise [1.6.8])

Hy(Qe, Am) = Hy(Qes pym) = 25 /(2 = (OF 1/ (OF )",
Since p is unramified at ¢, Exercise|3.1.6(2) shows that Hx-(Qe, Am) = Hy(Qu, Ap).
This proves the first part of (2) in this case.

Case 2: L # p, A is unramified at ¢, and p(¢) # 1. In this case Exercise 2)
shows that H:(Qy, Ay) = HL(Qe, Am). On the other hand, the inflation-restriction
exact sequence gives

(3.3) 0 — HYNQq, Am) — HY(Qu, Ap) — HY(QY, A,y C.
We have

HYN QY Ap) = HY QY pym @ p7 1)
= H Q) ppm) @ p~ = ((QU)* @ Z/p"Z) @ p"

and, writing Z}" for the ring of integers of Q}",

0— (Z§")* — (Q)* % Z—0.
The unit group (Zy")* is p-divisible, so (Q}")* ®Z/p™Z = Z/p™Z as Gq,-modules,
and so

1 ur Gq, _ m Gq, _ mr\p Tt
HA(Qy", An)"% = (Z/p"Z ® p)” = (Z/p™Z)"  =0.
Thus (3.3) and Exercise yield
Hp(Qe, Am) = Hy(Qe, Am) = H'(Qe, Am) = (L /(LF)P")P.

In the exact sequence

0— 0F, — L} 22D pzA — 0,

’ YV

the decomposition group Ay of ¢ in A acts trivially on @,ZA, but p(A) # 1,
so (DA(Z/p™Z)N)? = 0. Therefore (L) /(LS)P" )" = (OZ’Z/(OE’Z)”M)”, and this
proves (2) for A,, in this case.

Case 3: £ # p and A is ramified at £. Exercise shows that H3(Qy, A,) = 0.
On the other hand, the kernel of the reduction map

Or¢— EB(OL/A)X
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is a pro-¢-group, so tensoring with Z/p™Z gives an isomorphism

mo o~

OF4/ (O " = (O (O N

Since the inertia group I, acts trivially on the right-hand side, but p(I;) # 1, we

conclude that (Of ,/(Of ;)P )? = 0, which proves assertion (2) for A,,.

The proof of the proposition for A¥, is left as the following exercise. O

Exercise 3.3.9. Prove the assertions in Proposition about A7,.
Let Cy, denote the p-part of the ideal class group of L, and
Cy, = Pic(OL[1/p))[p™],
the quotient of Cy, by the classes of primes above p.

Exercise 3.3.10. Suppose p(p) # 1. Show that H-(Q,, A) = ((’)Z,p/((’)z’p)pm)p,
(OL[L/p)* /(OL[L/p]* )" )7 = (OF /(OF)P")?, and (CL) = CY.

Proposition 3.3.11. For every m there is a natural exact sequence
0 — (OL[/p]* /(OL[L/p]*)""))” — Hp(Q, Am) — CLI™)* — 0
and an isomorphism
H:.(Q, A,) = Hom((C})", Z/p™ Z).
If p(p) # 1 we can replace OL[1/p]* /(OL[1/p]*)*" by OF /(OF)P" and C}, by Cy.
Proor. Under the identification , using Proposition we have
HY(Q, A) = {z € (L*/(L*)P")? :ordp(z) =0 (mod p™) for every A {p}.

If z € L™ represents a class in ¢ € H:(Q,A,,), then the ideal zOL[1/p] =
a?” for some fractional ideal a of Op[1/p]. The map that sends ¢ to the class
of a is a well-defined surjection from H:(Q, A.,) to C[p™], and its kernel is
OL[1/p)*/(OL[1/p]*)P". This gives the desired exact sequence.

Under the identification , Proposition shows that H1.(Q, Af,) con-

sists of everywhere unramified homomorphisms in Hom(G/p,, Z/me)p_1 that are
trivial on the decomposition group at p, i.e.,

HL.(Q, A%) = Hom(C,,Z/p™Z)" .

The isomorphism of the proposition follows from this. ([l

Exercise 3.3.12. Use Proposition [3.3.11]to give a direct proof (i.e., without using
Proposition as in Exercise [3.3.7)) that if p # 1, ecyal, then x(A) is given by the

table in Exercise B.3.11

Corollary 3.3.13. Suppose p is even, p(p) # 1, and k € KS(A) is nonzero. Then
k1 # 0 and
CLI < [(OF @ Zyp)" : Zpka],

with equality if and only if K is primitive.
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PROOF. By Proposition [3.3.11{ we have H*(Q, A) = (Of ® Z,)". The proof of
the Dirichlet Unit Theorem shows that this is a free Z,-module of rank one, so

(k) = (OF @ Zyp)’ : Zpk4].

Now the corollary follows directly from Corollary [3.2.9(1) and Proposition [3.3.11
O

Proposition 3.3.14. Suppose £ ¢ ¥ and 1 < m < v(¢). Then

(1) p(€) =1 and ¢ splits completely in Q(p,,)/Q,

(2) the isomorphism H'(Qq, Ap) = H'(Qe, pym) = Q) /(Q))P" identifies
HY(Qu, A with Z) /(Z)P" and HY(Qe, Am) with the subgroup gener-
ated by £,

(3) there is a commutative diagram (recall that Gy := Gal(Q(u,)/Q))

Bt
H&(QfaAm) - Htl(QZaAm)(gGZ

& :

£R[ - ,Qe(1y)/Qr]
7 )(ZX )P SRR L ) ® Gy

where the vertical isomorphisms are from (2) and [ -, Qe(pp)/Qe] is the
local Artin map.

PROOF. Since m < v(f), we have £ = 1 (mod p™) and (Fr, — 1)A,, = 0, so
lp~1(¢) =1 (mod p™). Hence p(¢) =1 (mod p™), and so p(¢) = ecya(¢) = 1. This
proves (1).

Since p({) =1 and £ =1 (mod p™),

Hl(Qf?‘Am) = Hl(Qf7ll’p"L) = QZ/(QZ)])"L’
and the description of H}(Qg, A,,) in (2) is similar to Proposition By defi-
nition,
H{(Qe, A) = ker[HN(Qe, A) — HH(Qe(pe), Am)]
= ker [Q /(Q;)"" — Qulkg)* /(Qe(pe) )]

Let (¢ denote a primitive ¢-th root of unity in Q(w,). We have

{—1 —1 .
; Lfid
S NQe(ue)/Qz(l =) = H(l —¢)=01- Cé)z ! H 1_75
i=1 i=1
Since Hf;ll tgﬁ = Hf;llz = —1 (mod ¢, — 1), we also see that Hf;ll i:gi €

(Qe(pey)*)P". Hence £ € (Qu(,)*)P", so £ € HY(Qy, Ap). On the other hand,
since Gq, acts trivially on A,,,

H{(Qe Am) = HY(Qe(pe)/Qes Ar) = Hom(Gal(Qe(k,)/ Qo) Am)

is cyclic of order p™, and (2) follows.
The proof of (3) is left as an exercise. O
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3.4. Example: Tate modules of elliptic curves.
Now suppose that E is an elliptic curve defined over Q, and
A=T,(E) :=lim E[p"™]

is the p-adic Tate module of E. Then the Weil pairing shows that A* = E[p],
and for every m, A,, = A¥ = E[p™]. We will also assume that

e p>5,

34, the p-adic representation Gq — Aut(E[p>]) = GL2(Z,) is surjective

and we let F be the Selmer structure Fean on Tp,(E).

Exercise 3.4.1. Show that under the assumptions of , T,(E) and F satisfy
hypotheses (H.1) through (H.5) of

Exercise 3.4.2. Show using Proposition [3.1.9| that x(7},(E)) = 1.

Proposition 3.4.3. (1) If ¢ # p, then HY(Qu, Tp(E)) and HY(Qu, E[p™])

are finite.
(2) For every £, H=(Qe, T,(E)) = H'(Qu, T,(E)) and H}:.(Qe, E[p™]) = 0.

PRrROOF. Suppose first that ¢ # p, and m > 0. Writing I, for the inertia group
in Gq,, we have (see (1.2)) and Proposition [1.4.13(1))
Hy(Qu, Elp™) = HY(QF"/Qu, Elp™") = E[p™]" /(Fre — D) (E[™]").
It follows from the exact sequence

Frp—1

0— E(Qu)p™] — Elp™]" —— Ep™)" — E[p™]"/(Fr, — 1)(E[p™]") — 0
that E[p™]¢/(Fr, — 1)(E[p™]¢) and E(Qy)[p™] have the same order, so
[Hy(Qe Ep™])] = [E(Qo)[p™]].

Since E[p™]* = E[p™], Proposition shows that H!(Qy, E[p™]) is its own or-
thogonal complement in H'(Qg, E[p™], so |[HY(Qq, E[p™])| = |E(Q¢)[p™]|?. Since
|E(Qe)[p™]| is bounded independently of m, we conclude that both H*(Qg, T,,(E))
and H'(Qy, E[p]) are finite. This proves (1), and (2) follows from the definition
of Fean (for HE(Qe, T, (E))) and Proposition 2) (for H:.(Qu, E[p™))).

If ¢ = p, then (2) is the definition of Fe,, (for H:(Qy, Tp(E))) and Proposition

BIT(1) (for Hj. (Qe E[p])). O

Exercise 3.4.4. Show that if E(Qy)[p] = 0, then H-(Q,, E[p™]) = HY(Qq, E[p™])
and HL.(Qq, E[p™]) = 0. (Hint: use Theorem with i = 2.)

Recall (Definition [1.6.13)) that for every ¢ and m, H{ (Qq, E[p™]) is the image
of the Kummer map E(Q)/p™E(Q¢) — H'(Qq, E[p™]), and Sel,n(E/Q) is the
corresponding Selmer group.

Proposition 3.4.5. Suppose £ # p and m > 0. Then
H3(Qe, Elp™]) = Hz.(Qe, Ep™]) = H{ (Qe, E[p™]).
PROOF. By Exercise[3.1.8land Proposition[3.4.3] there is a natural isomorphism
(3.5) E(Q0)p™]/r™E(Qo)p™] = Hz-(Qe, Ep™)).
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By [Sil Theorem IV.6.4 and Proposition VII.2.2], there is a (noncanonical) decom-
position
E(Qr) = Zp x E(Qe)tors
so there is a canonical isomorphism
E(Q0)/p"E(Qe) = E(Qo)tors/P" E(Qe)tors = E(Qe)[p™]/p™ E(Qu) [p™]-
Combined with (and checking that the obvious diagram commutes) this proves
that H:. (Qe, E[p™]) = H}(Qe, E[p™]). By Example HE(Qq, E[p™)) is its

own orthogonal complement in H'(Qg, E[p™]) under the Tate pairing, so we have
HE(Qe, E[p™]) = H} (Qu, E[p™]) as well. 0

Corollary 3.4.6. There are exact sequences

0 —Selym (E/Q) — Hx(Q, E[p™]) —= Hx(Qp, E[p™])/H{ (Qp. E[p™])

0 — Hj.(Q, E[p™]) — Selpym (E/Q) —= H} (Qp, E[p™])/Hz-(Qp, E[p™)).

Exercise 3.4.7. Show directly from the definition that x(7,(F)) = 1. Hint:

use Corollary Theorem [1.10.2] Exercise and the fact that E(Q,) =
E(Qp)tors D Zp-



LECTURE 4

Euler systems

The preceding lectures have shown that Kolyvagin systems are useful for de-
scribing the structure of Selmer groups, and even that Kolyvagin systems exist for
certain p-adic representations. It still remains to construct Kolyvagin systems and
to relate them to special values of L-functions (something that has been done only
in very special cases). In this lecture we describe general machinery for constructing
Kolyvagin systems.

4.1. Definition of an Euler system.

Fix a rational prime p and a p-adic representation A (a free Z,-module of finite
rank with a continuous action of Gq) as in the previous lecture. Fix a finite set X
of places containing oo, p, and all primes ¢ where A is ramified.

If ¢ ¢ X, define
Py(x) = det(1 — Frpz|A) € Zy[z].
Let
N = {np" : n is a squarefree product of primes ¢ ¢ ¥, k > 0},
An FEuler system for A is a collection
&= {6 € H(Q(p,), A) :ne N}
such that for nf € N,

Pz(Frzl)'fn if £ 7é b,
(4.1) Corq(u,,,)/Qm,)ént = { ‘, if £ = p.

Let ES(A) denote the Z,[Gq]-module of Euler systems for A.

4.2. Example: the cyclotomic unit Euler system

Fix a nontrivial character p : Gq — Gal(Q(u,)/Q) — Z, and let A = Z,(1)®@p~!
as in Then for every £ # p, Fr, acts on A as £p~1(¢), so

Pi(z)=1—tp *(0)x.

Let ¥ = {00, p}.
If p | n then p(Gq(u,)) = 1, so there are isomorphisms

(42)  HYQu,),A) = H (Qr,), Zpy(1) @ p~1 = (Qu,)* © Zp) @ p "

and commutative diagrams for every /¢

(Q(uné)x ® ZP) ® pil — Hl(Q(“nZ)"A)

(4.3) NQ(un,g)/Q(l—Ln)@’ll lCOFme/Q(un)

(Qp,)* ©Zy) © p~' —— H'(Q(n,,), A).

39
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If p 1 n, then Exercise [3.3.3] gives a commutative diagram
(QHnp)* ®Zp) ® p~F —— H (Q(ppy), A)
(4.4) Ysea p1(6)6®1—l lcorQ(unp)/Q(un)
(Qrnp)* ®@Zp) @ p~1)> —"= H'(Q(p,), A).

For every n > 1 fix a primitive n-th root of unity ¢, such that for every m,
n = Cu- If n € N and p | n, we identify A := Gal(Q(p,,)/Q) with a subgroup of
Gal(Q(p,,)/Q) as follows. Write n = p*n’ with k > 1 and p { n’, and identify A with
the (unique) subgroup of order p — 1 in Gal(Q(u,,)/Q(p,,/)) = Gal(Q(p,r)/Q) =
(Z/p"Z)".
If n € N, define
[ sea (¢4 =17 /07D € (Q(u,)* ©2Z,) ifp|n.
Q= - .
H deA ( gp - 1)p 1(6) € (Q(/J'np)x ® Zp)p 1fp+n7

_ rfl
ﬁn: H Oé}:l/ed‘d( e )
d|n,ptd

Note that a = o and B = ﬁﬁ(é) for every § € A.

Lemma 4.2.1. Suppose nf € N'. Then

1—¢Fr; ! ifl+p
N Bre = " ’
Qb)) / QHr) {ﬁn if¢t=pandp|n.

-1
If ptn, then [[5ca Bhp 035 _ B

-1
SKETCH OF PROOF. First suppose ¢ # p, and note that 7y := Cgr'z /Cnt € Wy
(see this by raising both sides to the ¢-th power). Then

n—1 —1
N,/ (G =1 = ] e —1)= f[—f = (Co— 1)
NEHNFN0 Cn -1
1-Fr, !
= NQu,,)/Qu,) e = an
1—¢Fr, "

= NQ(I"‘n?)/Q(“n)ﬁne = ﬁn

If £ = p and p | n, a similar argument shows that NQ(MW)/Q(M)(C@ -1)=¢ -1
If £ = p and p t n, the desired equality follows easily from the definition of a,. O

Definition 4.2.2. Fix a generator u, of the free, rank-one Z,-module “p~!”. For
every n € N’ define £ € H(Q(p,,),A) to be the image of 3, ® u, under the
isomorphism (4.2]). Let

£ ={gr in e N}

Proposition 4.2.3. The collection €Y is an Euler system for A.

Proor. This follows from Lemma and the commutative diagram (4.3)).
O
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Exercise 4.2.4. If £ is the cyclotomic unit Euler system defined above, show
that

=== [[( -1 D e @Qu,)* ©Z,)".
JEA

What can you say about £¥ when p is trivial? When p is odd? When p is even?

Exercise 4.2.5. Define an Euler system &% for Z,(1) @ p~! for more general
characters p than the ones in §4.2]

4.3. Euler systems and Kolyvagin systems.

Theorem 4.3.1. Suppose
(1) for every £ ¢ 3, Py(x) has no roots in fi,e,
(2) HY(Q,, A*) is a divisible Z,-module.
Then there is a canonical map ES(A) — KS(A, Fean) such that if € maps to k, then

k1 =& € H;lccan(Q,.A), where Fean @S the canonical Selmer structure of Example
(3. 1.l

For the proof of Theorem {4.3.1} see [MR1], Theorem 3.2.4] and [R2, Chapter
4]. Here we will describe the construction of the map of Theorem and give
some details for the cyclotomic unit Euler system of where the construction is
particularly explicit.

Let NV ={n € N :p{n}. Forevery n € N, let T, = Gal(Q(u,,)/Q). If
n = ning, then there is a canonical isomorphism I',, = T',,, x I'y,,, so we can view
I, as either a subgroup or a quotient of I',,. With this identification we have

T, = Hrg.
ln

For every ¢ ¢ 3, fix a generator oy of I'y. Define Kolyvagin’s derivative opera-

tors
-2

Dy =) io; € Z[TY]
=1

and for n € NV,

Dy, =[] D¢ € Z[1,]
Ln
where we view Z[[';] C Z[T',,] as above. Also define the norm elements

N, := Y 7€z,
YELR

for n e N.
Lemma 4.3.2. For every { ¢ ¥, we have (cg —1)Dy = (£ — 1) — Ny.
PRrROOF. Exercise. O
Asin §3.2] if £ ¢ %, let
v(f) := max{m : £ =1 (mod p™)
and A,,/(Fry — 1)A,, is free of rank 1 over Z/p™Z}.

and if n € N4 define v(n) := min{v(¢) : £ | n}. By convention we let v(1) = oo,
and Ay = A.
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Exercise 4.3.3. Show that p*(“) divides P,(1) for every £ ¢ ¥. Deduce that the
reduction of P;(x) modulo p*® lies in (x — 1)(Z/p* D Z)[x].

Let NV ={neN :pt{n}.
Proposition 4.3.4. If £ € ES(A) and n € N, then the image of D,&, under the
map Hl (Q(ll’n)ﬂ A) - Hl (Q(p’n)a Av(n)) lies in Hl(Q(p’n)7 Au(n))rn .

PROOF. We need to show that (y —1)D,&, maps to zero in H'(Q(g,, ), Ay (n))
for every v € T',. Since T, is generated by {oy : £ | n}, it is enough to check this
for v = g4. We will show, by induction on the number of primes dividing n, that
(o0 — 1) D&, € p"™HY (Q(p,,), A). This will prove the lemma.

Using Lemma we have

(00 =1)Dp&p = ((€—1) — NZ)Dn/Egn = ({— 1)Dn/ffn - Dn/ZNZé-n

The composition

H'(Q(p,,), A) HY Q) A) 2 HY(Q(p,,), A)

is multiplication by Ny, so by definition of an Euler system we conclude
(00— 1)Dp&y = (€ — 1) D&y, — Res(Dy Po(Fry M€ 0).-
We have p”(©) | £ — 1, so p*(™ | £ — 1. By Exercise we have
Pulw) = (2 — 1)g(a) + p*Oh(x)
with h(z), g(z) € Z[z], so we conclude by induction that
Pu(Fr, s € (0770, p"O)H QU1 0), A) = 9" H Q11 0), A)-
This completes the proof. ([l

CorQ(un)/Quy, /¢)

Proposition 4.3.5. Suppose & € ES(A) and n € N’'. The image of D,&, in
HY(Q(py,), Ap(n)) has a canonical inverse image in H'(Q, Ay(,)) under the re-
striction map

Hl(Qv Au(n)) - Hl(Q(H’n)v Au(n))rn'

SKETCH OF PROOF. The inflation-restriction exact sequence of Theorem [1.4.5
shows that the kernel and cokernel of the restriction map of the proposition are
HY(Q(p,)/Q, Af(?l()“")) and H?(Q(w,,)/Q, Af(‘i()”")), respectively. If Af(‘z()“") =0,
then it follows that the the restriction map is an isomorphism, and the proposition
follows directly from Proposition [4.3.4

For the proof in the general case, see [R2] §4.4] O

Exercise 4.3.6. Show that if A=1Z,(1)® p~! as in and p is not the mod-p
cyclotomic character, then Aﬁ%‘") = 0 for every n € N’ and every m.
Example 4.3.7. Let £€%° be the cyclotomic unit Euler system of We will

describe the construction of Proposition explicitly in this case.
Keep the notation of in particular for every n € N7 we identify

Erczyd = ﬂn € (Q(an)X & Zp)p'

Fix n € N’ and let m = v(n). The proof of Proposition shows that for every
oely,

B IP € (Qny)* © Zp)"
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but even more, that argument gives a canonical p™-th root

Cn(o') € (Q(H‘np)x ® Zp)p

of B YP" . The map o — cn(0) is a 1-cocycle in Z'(Tyy, (Q(pty,,,) " ® Zyp)P). Since
HY(Tp, (Q(p,,)* ® Zy)?) = 0 (see Proposition it follows that there is a
1 € (Qptny) ¥ © Z,)° and i € (Q(s,)* ® Z,)° such that

ﬂf” = 7£mxn-
Then 7, is well-defined modulo (Q(u,,)* ® Z)?, so ,, is well-defined element of
(Qpy)* /(Qpy)* )P )P = HY(Q, Ay, that restricts to D&Y € HY(Q(py,), Am).

Recall (Definition [2.1.3) that if n € N7, then G,, = @, Ts.
Fix an Euler system & € ES(A). For every n € N/, let z,, € H'(Q, Ay(n))
be the canonical inverse image of D,&, € H'(Q(u,,), Ay (ny) given by Proposition

and define
5':1 =T ® (®Z\TLU€) € Hl(Q(,J’n)vAu(n)) ® GTL

Exercise 4.3.8. Show that, although D,,§,, depends on the choice of the generators
op of Ty, &, does not.

Definition 4.3.9. Suppose n € N’ and ¢ | n. By Proposition 3) we have a
decomposition

HY(Qe, Aygny) = Hy(Qe, Auny) @ H (Qe, Ayny)

and if v € HI(Q,AU(n)) we let @, and zy, denote the projections of Res;(z) €
HY(Qq, Ayry) into HY(Qp, Ay(ny) @ G and HE (Qe, Ay (n)) ® G, respectively.

Ideally, we would like to show that the collection
¢ ={g neN}

is a Kolyvagin system for A as defined in §3.2l (In fact it isn’t in general, but a
slight modification of it will be.) To do this we would need to verify that for every
neN”

e Resy(§),) € Hy, (Qu, Ayn)) ©@ Gy if L4,

e Resy(€),) € HH(Qu, Ayn)) @ Gy if £ | m,

g (blft S Resl(%/z) = (& )es € Htl(QéaAV(n)) ® Gy if £ ] n.

The following theorem deals with the first and third of these conditions, and

Theorem below investigates the second.

Theorem 4.3.10. Suppose & € ES(A) and H(Q,, A*) is a divisible Z,-module,
andn € N'.

(1) If €t n, then Rese(€,) € Hy. (Qe, Apn)) @ Gh.

can

(2) If € | n, then ¢}t o ReSg(f;/Z) = (&)t in Htl(Qg,Al,(n)) ® G,,.

Proor. For the proof of Proposition see [R2, Theorem 4.5.1] for (1)
when ¢ # p, and [R2, Theorem 4.5.4] for (2). Note that since H°(Q,, A*) is
divisible, Exercise @ shows that Hr (Qp, Ayy) = H' (Qp, Ay(n)), so (1) is
trivially satisfied when ¢ = p.

See also [R1l Proposition 2.4] for the proof in the case of the cyclotomic unit
Euler system. (I




44 LECTURE 4. EULER SYSTEMS

Note that if £ | n and z € H'(Q, A, (,)), then
Resy(z) € Htl(Qg,Al,(n)) = x4 = 0.
The (&],)¢,u are not zero in general, but they are described by Theorem below.
Definition 4.3.11. If £ ¢ %, let I; be the augmentation ideal of (Z/p*(YZ)[G/].

Then there is a canonical isomorphism
pe:Io/I] — Ge @ (Z/p"V7Z)

that sends g — 1 to g for every g € Gy.
If n € N’ let &(n) denote the set of permutations of the primes dividing n,
and if £ | n let G}(n) C &(n) be the subset

{m € &(n) : the £ not fixed by = form a single m-orbit, and 7 (¢) # £}.
If m e &(n) let de =[], 4=y @

Recall that w(d) is the number of prime factors of a positive integer d.

Theorem 4.3.12. Suppose & € ES(A) and for every £ ¢ ¥, Py(x) has no roots in
Hyoo- If n € N and £ | n then

Eew= 3 (D“OIRes(€)) ® palPyFrad laguy).
meSE(n) ql(n/dx)

PRrROOF. For the proof, see [MR1, Theorem A.4]. For a proof in the special
case of the cyclotomic unit Euler system, see [MR2, Appendix A]. O
Corollary 4.3.13. Suppose & € KS(A) and

(1) for every £ ¢ ¥, Py(x) has no roots in fi,e,
(2) H°(Qp, A*) is a divisible Z,-module.
Forn € N' define
ko= sign(m&, Q@ pu(PeFr ) € H'(Q, Aym)) @ G-
TES(n) £(n/dx)
Then the collection k = {k, : n € N'} is a Kolyvagin system for (A, Fean), and
k1 =&
PrROOF. By Theorem [4.3.10} it is enough to prove that (k)¢ = 0 whenever

n € N/ and ¢ | n. This follows from Theorem [4.3.12} for the details see the proof
of Theorem 3.2.4 on pages 80-81 of [MRA1]. O

The map ES(A) — KS(A, Fean) of Theorem is given by € — k as de-
scribed above.



LECTURE 5

Applications

5.1. Cyclotomic units and ideal class groups.

Fix a rational prime p > 2, and let F' = Q(up)+, the real subfield of Q(u,,). Let
Cr denote the p-part of the ideal class group of F. Let £ C O denote the group
of cyclotomic units of F, the intersection of O with the group generated by

{C,C—ligeﬂp»g7é1}'

The following theorem was first proved (by a different method) by Mazur and
Wiles [MW].

Theorem 5.1.1. Let p: Gal(F/Q) — Z, be a nontrivial (even) character. Then
Crl = [((OF/€r) © Z,)"|.

PROOF. Asin let £ € ES(Z,(1)®p~") be the Euler system constructed

there. Let k¥ € KS(Z,(1)®p 1) be the Kolyvagin system constructed from £
in Theorem 3.1l Then we have

£ = gyl = H (gg _ 1)ff1<6> € (Er ®Zy,)°
6€Gal(Q(F)/Q)
C(0F®Z)" = H(QZ,(1)@p ).
In fact, k¥ is a Z,-generator of (g ® Z,)?, so by Corollary [3.3.13
(51) CEI < (OF ©2,)° : Zyrr] = [((OF /Er) @ 2,7

Note that (5.1)) also holds when p = 1, since in that case both sides are equal to 1.
Taking the product over all p, we have

Carl = [ ICol < TTI(OF/€r) © Z,)) = (05 /€r) © Zy).

The analytic class number formula (see for example [Ll Theorem 5.1 of Chapter
3]) says that |Cqr| = [(OF /EF) ® Z,|, so we must have equality in (5.1)) for every
p- O

Remark 5.1.2. Note that using Corollary [3.3.13] the proof of Theorem [5.1.1] also
shows that the cyclotomic unit Kolyvagin system x<° is primitive.
5.2. Elliptic curves.

Return now to the example of §3.4] Namely, F is an elliptic curve defined over
Q. p > 5 is a rational prime, and the p-adic representation Gg — Aut(E[p*>]) =
GL2(Z,) is surjective.
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In this setting, an Euler system for T),(E) was constructed by Kato in [K]J.
We will not touch on his construction here, but we will discuss briefly the essential
properties of Kato’s Euler system, and some of its consequences. For more details,
see [K]|, [R2] §3.5], and [Sd].

For simplicity, we also assume from now on that

(5.2) E has good reduction at p and p 1 |E(F,)|.

Recall that for every m > 0, H} (Q,, E[p™]) is the image of E(Q,)/p™E(Q,)
in H'(Q,, E[p™]) under the (injective) Kummer map as in Definition [1.6.13] We
define

Hfl(vaTp(E)) = @Hfl(va EPp™]) C Hl(Qpan(E))
so H(Q,, T,(E)) & E(Q,) ®Z,. It follows from (5.2)) that £(Q,) has no p-torsion,
so H}(Q,,T,(E)) is a free, rank-one Z,-module.
Fix a minimal Weierstrass model of E. Let wp and Qg be the corresponding

holomorphic differential on E, and real period. Corresponding to wg there is a dual
exponential map exp,,,, and an exact sequence

(5:3) 0 — HHQyTy(E) — H'(Qu1,(E) —* p'Z, —0.
Let L(E,s) denote the Hasse-Weil L-function of F, and
Ly(B.s) = (1 —app™ + ") L(B,s),

the L-function with the Euler factor at p removed (here a, :=p+1— |E(F,)|).
We make no attempt here to prove the following theorem of Kato.

Theorem 5.2.1 (Kato [K]). There is a nonzero Euler system £€5°*° ¢ ES(T,(E))

such that
L,(E,1)

Qp
Theorem 5.2.2 (Kato [K|). With assumptions as above, we have:
(1) If L(E,1) # 0 then E(Q) s finite and |III(E/Q)[p™]| divides L(E,1)/QE.
(2) If L(E,1) = 0 and &K% £ 0, then either E(Q) or II(E/Q)[p™] is infi-
nite.

exp,,,, (Res, (€1')) =

PROOF. Let F denote the canonical Selmer structure on 7,,(E), and let kKatc €
KS(T,(E), F) be the Kolyvagin system attached to £<** by Theoremm (Note
that the hypotheses of Theorem hold, thanks to (5.2)).)

Suppose first that L(FE,1) # 0. Define integers —1 < b < ¢ by

P'Zy = exp,,, (Res,(H3(Q, T, (E))))
U U

P°Zy = CXPug (ZpResp( {(am))

so ¢ = ord,(L,(F,1)/Qg). Then (see Definition [3.2.5) 9°(k¥2°) < ¢ — b, so by
Corollary 1)
(5.4) |HE. (Q, E[p™])| divides p°~°.

We need to compare Hx. (Q, E[p>]) with the classical Selmer group

Sel,~ (E/Q) := H{ (Q, E[p™))
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defined using the Selmer structure of local cohomology groups H{ (Qg, E[p™]) (see

Definition [1.6.13)). By Proposition [3.4.5, HL((Qe, E[p™]) = H}(Qq, E[p™]) for
every £ # p. Passing to the limit in Corollary gives

0—= H{ (Q, T,(E)) —= Hx(Q.T,(E)) — H'(Qy, T,(E))/H{ (Qp, T (E))

0 — H}.(Q, E[p™]) — Sel,~ (E/Q)

Hi (Qp, E[p™]).

By global duality (Theorem 7 together with the fact that H} (Qq, E[p™]) is
its own orthogonal complement under the Tate pairing for every ¢ (Example ,
the images of the two right-hand maps are orthogonal complements under the limit
of the local Tate pairings. By definition of b and , the cokernel of the upper
right-hand map has order p®*!. Hence we conclude from the bottom sequence that

[Selpoo (E/Q) : Hjl_-* ((;27 ELpOO])] _ pb_|_17
and combining this with (5.4]) we see that
Selp (£/Q)] divides peb . phtl = petl,

Further

c+1=ord,(pL,(E,1)/Qg) = ord,((p+ap, —1)L(E,1)/QE)
= ordy (| E(F,)L(E, 1)/9) = ordy (L(E, 1)/05)

since we assumed that p { |E(F,)|. Now (1) follows from the exact sequence
0 — E(Q)®Qp/Zp — Selp=(E/Q) — HI(E/Q)[p™] — 0,

the direct limit of the exact sequences .
Suppose now that L(E,1) = 0 and &% # 0. By we have Res,(£K8t0) €
H{ (Qp, Ty(E)), so
1 € Hi (Q, T,(E))
and in particular H{ (Q,T,(E)) # 0. But the inverse limit of the exact sequences

give
0— B(Q)®Zy, — H; (Q,T,(E)) — lmII(E/Q)[p™] — 0.

The inverse limit on the right is with respect to the maps “multiplication by p”,
so this inverse limit is either zero or infinite. Similarly, since we assumed that the
p-adic representation Gq — Aut(E[p™]) is surjective, E(Q) has no p-torsion so
E(Q) ® Z, is either zero or infinite. Hence if £K2% #£ 0 then one of those two
groups is infinite, and this completes the proof of (2). |

Exercise 5.2.3. Using Corollary [3.2.9(1) and the proof of Theorem show
that if L(E,1) # 0 then

length(III(E/Q)[p™]) = ord,(L(FE,1)/Qg) <= &5 is primitive.

Note that according to the Birch and Swinnerton-Dyer conjecture, it is not
always the case that length(III(E/Q)[p*°]) = ord,(L(E,1)/QE), and therefore it is
not always the case that £K*' is primitive.
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5.3. General speculation.

In this section we sketch a general framework for the example of the previous
section.

Suppose A is a p-adic representation of Gq as in Lecture 3} a free Z,-module of
finite rank with a continuous action of Gq, ramified at only finitely many primes.
Let F denote the canonical Selmer structure on A, and suppose G is another Selmer
structure on A, with the property that H(Qg, A) = H}(Qq, A) for all ¢ different
from p. Then H;(Q, A) C Hx(Q, A), and we have a diagram

Res,

Res,

00— Hi. (Q,A") — H}.(Q, A*)

HE. (Qp, A%).
Passing to the limit in Theorem [1.10.2] we see that
[Hg-(Q,A") - Hy.(Q, A")] = [H'(Qp, A) : H5(Qp, A) + Res, (Hx(Q, A))].
Suppose in addition there is an isomorphism
£ HY(Qp A)/Hg(Qp A) = Zy.
Then we conclude that
(5.5) [Hg-(Q, A") : Hi-(Q, A")] = [Z, : £(Res, (Hx(Q, A)))]-

Theorem 5.3.1. Suppose that A, G, and £ are as above, that A satisfies hypotheses

(H.1-4) of 3.1 and the hypotheses of Theorem[{.3.1, and that the core rank x(A) =
1. If € € ES(A) is an Euler system for A, then

lengthy (HL(Q, A%)) < ord, (L£(Res,(&1)))-
PROOF. Let k € KS(A, F) be the Kolyvagin system corresponding to & under

Theorem By Corollary using that k1 = &1,

* 0

[Hp(Q,AN)| < p” " < [E(Res, (HF(Q, A))) : L(Resp(61))Zy)-
Combining this with (5.5)), we see that
|Hg (Q, A™)| < [Z, : £(Resy(€1))Z,),

which proves the theorem. [
Example 5.3.2. Suppose F is an elliptic curve as in Let A = T,(E), let
HY(Qu, T,(E)) = HE(Qe, Ty(E) for every £, let £ = pexp,,,, and let & = £5**.

Then H}(Q, A*) = Sely (E/Q), £(Resy(&1)) = |E(Fp)|L(E,1)/Qg, and Theorem
is part of Theorem 1).

Example 5.3.3. Suppose p is a nontrivial character of Gal(Q(u,)"/Q), A =
Z,(1) @ p~', and €Y € ES(Z,(1) ® p~') is the cyclotomic unit Euler system of
Let F be the canonical Selmer structure on Z,(1) ® p~!, and let G be the
Selmer structure defined by

H3(Qu,Zy() @ p~t) if £ #p,

H{(QuZp(1) @ p ") = {0 if £ =p.
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Let M is the maximal abelian p-extension of Q(g,)* unramified outside of p (with
no local restriction at p), and X := Gal(M/Q(u,)"). Then H}.(Q,, Qp/Zy @ p) =
HY(Q,,Qp/Z, ® p), so as in Proposition [3.3.11| we have

HCI/* (Qa Q;D/Z;D ® p) = Hom(Xpa Q;D/ZP)

Let F:= Q(p,,)*. By Exercisef3.3.10, Hz(Qy, Z,(1)2p™") = (OF ,@Z,)". Let
log, : Op,, — F}, denote the p-adic logarithm map, let 7(p™") : ZZ: p~H(a)(s € F,
be the Gauss sum, and define

L= ylog, t Hp(Qp, Zpy(1) @ p71) = (O, ® Zy) — .
Exercise 5.3.4. Show that £ is an isomorphism from H}:(Q,, Z,(1) ® p~!) onto
Z,.

By Exercise [1.2.4 we have

£(Res, (§77)) = ~Ly(L,p)

where L,(s,p) is the Kubota-Leopoldt p-adic L-function attached to p (see for
example [LL Theorem 4.3.6]). Therefore we can apply Theorem to conclude
that

(5.6) length(X*) < ord,(L,(1, p)).

Exercise 5.3.5. Use the fact that k' is primitive (Remark [5.1.2) to show that
equality holds in (5.6]).

Remark 5.3.6. Returning to the case of a more general p-adic representation A4,
it is clear what we would like to do in general: find an Euler system & € ES(A),
and a map
£:HY(Q,,A) — Z,

such that £(Res,(&1)) is (related to) a special value of a (p-adic) L-function attached
to A. Then (under suitable assumptions) Theorem will bound the length of
the Selmer group Hé (Q, A*) in terms of that L-value, where the Selmer structure
G is defined by H}(Qp, A) := ker(£).

Although very little general progress has been made in this direction, one can
formulate a more precise conjecture. See for example [PR], or [R2, Chapter 8].
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