
Math 194, problem set #7
For discussion Tuesday November 17

(1) Let 0 < xi < π, i = 1, ..., n and set x = (x1 + · · ·+ xn)/n. Prove that
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(2) If a, b, c are positive real numbers, show that
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(3) For every positive integer n, show that√
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(4) If f : Z+ → Z+ is an injective function, then for every n
n∑
k=1

f(k)

k2
≥

n∑
k=1

1

k
.

(5) Prove that for every positive integer n
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(6) Let f(x) be a function such that f(1) = 1 and for x ≥ 1

f ′(x) =
1

x2 + f(x)2
.

Prove that limx→∞ f(x) exists and is less than 1 + π
4
. (Putnam, 1947)

(7) Show that if ε(n) = 1/n, then for every n ≥ 1,
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Can you improve the “error term” ε(n)?


