Math 194, problem set \#6

For discussion Tuesday November 10
You are strongly urged to write up and hand in a careful and complete solution to (at least) one of these problems.
(1) The horizontal line $y=c$ intersects the curve $y=2 x-3 x^{3}$ in the first quadrant as in the figure. Find c so that the areas of the two shaded regions are equal. (Putnam, 1993)

(2) A not uncommon calculus mistake is to believe that the product rule for derivatives says that $(f g)^{\prime}=f^{\prime} g^{\prime}$. If $f(x)=e^{x^{2}}$, determine, with proof, whether there exists an open interval (a, b) and a nonzero function g defined on (a, b) such that this wrong product rule is true for x in (a, b).
(Putnam 1988)
(3) If n is a positive integer, prove for $x>0$ that $\frac{x^{n}}{(x+1)^{n+1}} \leq \frac{n^{n}}{(n+1)^{n+1}}$.
(4) (a) Assuming that temperature is a continuous function, show that at any given time on the earth's equator there are two points directly opposite points that have the same temperature.
(b) A rock climber starts to climb a mountain at 7:00 AM on Saturday and gets to the top at 5:00 PM. She camps on top and climbs back down on Sunday, starting at 7:00 AM. Show that at some time of day on Sunday she was at the same elevation as she was at that time on Saturday.
(5) Suppose f and g are differentiable functions and for every $x, f^{\prime}(x) g(x) \neq$ $f(x) g^{\prime}(x)$. Show that between every two zeros of f there is a zero of g.
(6) (a) Suppose that $f(x)$ is continuous and $f(x) \geq 0$ on $[0,1]$. Show that if $\int_{0}^{1}(x-1)^{2} f(x) d x=0$, then $f(x)=0$ on $[0,1]$.
(b) Find all continuous functions $f(x)$ on $[0,1]$ such that $f(x) \geq 0$ and

$$
\int_{0}^{1} f(x) d x=1, \quad \int_{0}^{1} x f(x) d x=\alpha, \quad \int_{0}^{1} x^{2} f(x) d x=\alpha^{2}
$$

where α is a given real number.
(7) Suppose f is a differentiable function on $[0,1], f(0)=0$, and $f^{\prime}(x)$ is strictly increasing. Show that $f(x) / x$ is strictly increasing.
(8) Suppose f is a continuous function on $[0,1], n \in \mathbf{Z}^{+}, \int_{0}^{1} x^{k} f(x) d x=0$ for $k=0,1, \ldots, n-1$, and $\int_{0}^{1} x^{n} f(x) d x=1$. Show that there is a $c \in[0,1]$ such that $|f(c)|>2^{n}(n+1)$.

