Math 194, problem set \#4

For discussion Tuesday October 27
(1) What is the remainder when the polynomial $f(x)$ is divided by $(x-a)^{2}$? by $x^{2}-a$?
(2) For which real values of p and q are the roots of the polynomial $x^{3}-p x^{2}+11 x-q$ three successive integers? Give the roots in these cases.
(3) Find, without a calculator, the smallest integer larger than $(\sqrt{3}+\sqrt{2})^{6}$.
(4) (a) Determine all (a, b, c) such that the quadratic polynomial, $Q(n)=a n^{2}+$ $b n+c$, assumes integer values for every integer n.
(b) Determine all (a, b, c, d) such that the cubic polynomial, $C(n)=a n^{3}+$ $b n^{2}+c n+d$, assumes integer values for every integer n.
(5) If $P_{n}(x)$ denotes a polynomial of degree n such that $P_{n}(k)=\frac{1}{k}$ for $k=$ $1,2,3, \ldots, n+1$, determine $P_{n}(n+2)$.
(6) For which real numbers c is there a straight line that intersects the curve

$$
y=x^{4}+9 x^{3}+c x^{2}+9 x+4
$$

in 4 distinct points?
(Putnam 1994)
(7) Let k be a positive integer. Find all polynomials $P(x)$ with coefficients that are real numbers, satisfying the identity

$$
P(P(x))=P(x)^{k} .
$$

(8) For which ordered pairs of real numbers (b, c) do both of the roots of the quadratic polynomial $z^{2}+b z+c$ lie inside the unit disk $\{z:|z|<1\}$?
(Putnam 1975)
(9) Let $f(x)$ be a polynomial, and $a \neq b$. Suppose $f(x)$ leaves the remainder A when divided by $x-a$ and the remainder B when divided by $x-b$. Find the remainder when $f(x)$ is divided by $(x-a)(x-b)$.
(10) Is there an infinite sequence of nonzero real numbers $a_{0}, a_{1}, a_{2}, \ldots$ such that the polynomial $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ has exactly n real roots?

