Math 194, problem set \#3

For discussion Tuesday October 20
(1) Prove that $36^{36}+41^{41}$ is divisible by 77 .
(2) A positive integer's digits are all 6 or 0 ; can it be be a perfect square?
(3) Show that $x^{2}-y^{2}=a^{3}$ always has positive integer solutions for x and y whenever a is an integer greater than one. For which values of a is the solution unique?
(4) What is the smallest natural number that leaves remainders $1,2,3,4,5,6,7,8$ and 9 when divided by $2,3,4,5,6,7,8,9$ and 10 , respectively?
(5) Determine all n such that the n-digit number $R_{n}=1111 \cdots 111$ is divisible by 37 . For which n is it divisible by 41?
(6) Show that there is a sequence of 10^{6} consecutive positive integers, each of which is divisible by the cube of some integer greater than 1 .
(7) (a) How many zeroes does 100 ! end in?
(b) What is the final non-zero digit in 100!?
(8) Let $A=4444^{4444}$. Let B be the sum of the (base 10) digits of A. Let C be the sum of the digits of B. What is the sum of the digits of C ?
(9) Prove that the sequence (in base-10 notation)

$$
11,111,1111,11111, \ldots
$$

contains no squares.

