
Putnam problems and solutions A1

(Many solutions are taken directly from http://www.unl.edu/amc/a-activities/a7-problems/
putnamindex.shtml where the authors are properly attributed. Others are from “The William
Lowell Putnam Mathematical Competition, 1985-2000, Problems, Solutions, and Commen-
tary,” by Kedlaya, Poonen, and Vakil. The remaining solutions are modified versions of
these or originals by Dennis.)

2006. Find the volume of the region of points (x, y, z) such that

(x2 + y2 + z2 + 8)2 ≤ 36(x2 + y2).

Solution:
We change to cylindrical coordinates, i.e., we put r =

√
x2 + y2. Then the given inequality

is equivalent to
r2 + z2 + 8 ≤ 6r,

or
(r − 3)2 + z2 ≤ 1.

This defines a solid of revolution (a solid torus) with volume

π

∫ 1

−1

(3 +
√

1− z2)2 − (3−
√

1− z2)2dz = π

∫ 1

−1

12
√

1− z2dz = 6π2,

where we have computed the final integral by realizing that it is equal to 12π times the area
of a half-disc with radius 1.

2005. Show that every positive integer is a sum of one or more numbers of the form 2r3s,
where r and s are nonnegative integers and no summand divides another. (For example, 23
= 9 + 8 + 6.)

Solution:
We will show by induction that we can construct a set Sn whose elements are each of

the form 2r3s with r and s nonnegative integers, no element of Sn divides another, and the
elements of Sn sum to n. Let S0 = ∅ and S1 = {1}, and notice that S0 and S1 both have the
desired properties. Assume that we have sets Sk with the desired properties for all k < n.
If n is even, let Sn = {2a : a ∈ Sn/2}, and we see that Sn will inherit all of the desired
properties from Sn/2. If n is odd, let 3t ≤ n be as large as possible with t an integer, and let
Sn = {3t} ∪ {2a : a ∈ S(n−3t)/2}. Since (n − 3t)/2 < 3t, 3t cannot divide any other element
of Sn, and since Sn \ {3t} contains only even elements, no other element of Sn can divide 3t.
Thus Sn has the desired properties, and so sets Sn exist for all n by induction.
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2004. Basketball star Shanille O’Keal’s team statistician keeps track of the number, S(N),
of successful free throws she has made in her first N attempts of the season. Early in the
season, S(N) was less than 80% of N , but by the end of the season, S(N) was more than
80% of N . Was there necessarily a moment in between when S(N) was exactly 80% of N?

How to solve it:
After looking at the possibilities for small N , it appears that S(N) will be exactly 80%

of N at some point. It makes sense to consider some free throw where, on the next throw,
Shanille reaches or exceeds 80%.

Solution:
Yes. Since Shanille’s free throw percentage is under 80% at some point, and above 80% at

the end of the season, there must be some N0 such that S(N0) < 80% of N0 and S(N0 +1) ≥
80% of N0 + 1. She must make the (N0 + 1)st free throw for this to happen, so S(N0)

N0
< 4

5

and S(N0+1)
N0+1

= S(N0)+1
N0+1

≥ 4
5
. Thus 5S(N0) < 4N0 and 5S(N0) + 5 ≥ 4N0 + 4 so that

5S(N0) < 4N0 ≤ 5S(N0) + 1. Since this is an inequality among integers, it must be that,
in fact, 4N0 = 5S(N0) + 1. Thus, S(N0 + 1) = S(N0) + 1 = 4N0−1

5
+ 1 = 4

5
(N0 + 1), and so

S(N0 + 1) is exactly 80% of N0 + 1.

Remark: This same argument works for any fraction of the form (n − 1)/n for some
integer n > 1, but not for any other real number between 0 and 1.

2003. Let n be a fixed positive integer. How many ways are there to write n as a sum of
positive integers, n = a1 + a2 + · · ·+ ak, with k an arbitrary positive integer and a1 ≤ a2 ≤
· · · ≤ ak ≤ a1 + 1? For example, with n = 4 there are four ways: 4, 2+2, 1+1+2, 1+1+1+1.

How to solve it:
A. If we look at a few particular values of n, we are soon led to conjecture that the number

of ways to write n in this manner is n.
B. Introduce suitable notation.
C. The method of our solution will now depend on why we think our conjecture is true.

If we see it inductively, we should use induction. If we see it constructively, we should think
about how the representations can be constructed. If we notice a refinement (that there is
exactly one representation with k parts for each 0 < k ≤ n, for example), we should try to
prove our refinement.

Solution 1:
Let f(n) be the number of ways to write n as described above. We conjecture that

f(n) = n for all n, which we now prove by induction. We see that f(1) = 1. Assume as our
induction hypothesis that f(j) = j. If we add one to the last (rightmost) occurrence of the
smallest part of each of our representations of j, we get a representation of j+1. We see that
each of these representations is counted by f(j + 1), since adding one to the last occurrence
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of the smallest part of a representation preserves the inequalities a1 ≤ a2 ≤ · · · ≤ ak ≤ a1 +1
(before adding one, exactly one of the above inequalities is strict; adding one to the last
occurrence of the smallest part effectively “moves the strict inequality one to the left”).
Similarly, if we have a representation counted by f(j + 1) that is not all ones, subtracting
one from the first occurrence of the largest part will give us a representation counted by
f(j). We see that each of these operations is one-to-one, and so the representations counted
by f(j+ 1) are exactly the representation that is j+ 1 ones plus the representations counted
by f(j) with an increased smallest part. Thus f(j + 1) = 1 + f(j) = j + 1.

Solution 2:
If we perform Euclidean Division on n with any positive integer k ≤ n, we have n = k·q+r,

for a unique q and r with q > 0 and 0 ≤ r < k. Letting q = a1 = a2 = · · · = ak−r and
any remaining ai = q + 1, we have a representation of n with k parts satisfying a1 ≤ a2 ≤
· · · ≤ ak ≤ a1 + 1. It is clear that there can be no other representation of n into k parts
of this type (e.g., any representation with the same smallest part must be the same, and
any representation with smaller or larger smallest part would be sum to either too little or
too much, respectively). Since there is exactly one representation of n into k parts for each
0 < k ≤ n, we have that the number of representations of n of the desired type is n.

2002. Let k be a fixed positive integer. The n-th derivative of 1
xk−1

has the form Pn(x)
(xk−1)n+1

where Pn(x) is a polynomial. Find Pn(1).

Solution:
Notice that the (n+ 1)st derivative of 1

xk−1
is just[

Pn(x)

(xk − 1)n+1

]′
=

P ′n(x)

(xk − 1)n+1
+
−(n+ 1)kxk−1Pn(x)

(xk − 1)n+2
=
P ′n(x)(xk − 1)− (n+ 1)kxk−1Pn(x)

(xk − 1)n+2
,

and so Pn+1(x) = P ′n(x)(xk − 1)− (n+ 1)kxk−1Pn(x).
Thus

Pn+1(1) = P ′n(1)(1k − 1)− (n+ 1)k1k−1Pn(1) = −(n+ 1)kPn(1).

Since P0(1) = 1, we see that Pn(1) = (−1)nknn!.

2001. Consider a set S and a binary operation ∗, i.e., for each a, b ∈ S, a ∗ b ∈ S. Assume
(a ∗ b) ∗ a = b for all a, b ∈ S. Prove that a ∗ (b ∗ a) = b for all a, b ∈ S.

Solution:
The hypothesis implies ((b ∗ a) ∗ b) ∗ (b ∗ a) = b for all a, b ∈ S (by replacing a by b ∗ a),

and hence a ∗ (b ∗ a) = b for all a, b ∈ S (using (b ∗ a) ∗ b = a).
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2000. Let A be a positive real number. What are the possible values of
∑∞

j=0 x
2
j , given that

x0, x1, . . . are positive numbers for which
∑∞

j=0 xj = A?

Solution:
The possible values comprise the interval (0, A2).
To see that the values must lie in this interval, note that(

m∑
j=0

xj

)2

=
m∑
j=0

x2
j +

∑
0≤j<k≤m

2xjxk,

so
∑m

j=0 x
2
j ≤ A2 − 2x0x1. Letting m→∞, we have

∑∞
j=0 x

2
j ≤ A2 − 2x0x1 < A2.

To show that all values in (0, A2) can be obtained, we use geometric progressions with
x1/x0 = x2/x1 = · · · = d for variable d. Then

∑∞
j=0 xj = x0/(1− d) and

∞∑
j=0

x2
j =

x2
0

1− d2
=

1− d
1 + d

(
∞∑
j=0

xj

)2

.

As d increases from 0 to 1, (1− d)/(1 + d) decreases from 1 to 0. Thus if we take geometric
progressions with

∑∞
j=0 xj = A,

∑∞
j=0 x

2
j ranges from 0 to A2. Thus the possible values are

indeed those in the interval (0, A2), as claimed.

1999. Find polynomials f(x),g(x), and h(x), if they exist, such that for all x,

|f(x)| − |g(x)|+ h(x) =


−1 if x < −1

3x+ 2 if −1 ≤ x ≤ 0

−2x+ 2 if x > 0.

How to solve it:
One may use the piecewise definition of the absolute value function to select possible forms

for f, g, and h, and then solve for the free variables to find them explicitly.

Solution:
Let f(x) = (3x+ 3)/2, g(x) = 5x/2, and h(x) = −x+ 1

2
.

For x < −1, ∣∣∣∣3x+ 3

2

∣∣∣∣− ∣∣∣∣5x2
∣∣∣∣− x+

1

2
= −3x+ 3

2
+

5x

2
− x+

1

2
= −1.

For −1 ≤ x ≤ 0,∣∣∣∣3x+ 3

2

∣∣∣∣− ∣∣∣∣5x2
∣∣∣∣− x+

1

2
=

3x+ 3

2
+

5x

2
− x+

1

2
= 3x+ 2.

For x > 0, ∣∣∣∣3x+ 3

2

∣∣∣∣− ∣∣∣∣5x2
∣∣∣∣− x+

1

2
=

3x+ 3

2
− 5x

2
− x+

1

2
= −2x+ 2.
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1998. A right circular cone has base of radius 1 and height 3. A cube is inscribed in the cone
so that one face of the cube is contained in the base of the cone. What is the side-length of
the cube?

Solution:
After drawing a picture, let the side length of the cube be s. Consider the rectangle

created by two parallel non-adjacent edges of the cube perpendicular to the base of the cone
and the connecting diagonals of the two cube faces parallel to the base of the cone. Since
the slope of the edge of the cone is −3, we see that

3− 3

√
2

2
s = s, so that s =

6

2 + 3
√

2
=
−6 + 9

√
2

7
.

1997. A rectangle, HOMF , has sides HO = 11 and OM = 5. A triangle ABC has H as
the intersection of the altitudes, O the center of the circumscribed circle, M the midpoint
of BC, and F the foot of the altitude from A. What is the length of BC?

How to solve it:
First, draw a picture (the solution may seem like gibberish without it). Label all of the

points described and all of the known lengths. Establish some notation. For example, for
two points X and Y , let |XY | denote the length of XY . Think about BC, and consider
what other lengths would allow us to calculate |BC|. Use the information given to establish
relationships that will allow us to find one of these lengths.

There is more than one way to solve this problem. We could introduce coordinate axes, or
we could do without. In thinking about the problem, we may realize that |AH| and |BF | are
two critical unknown lengths. If we can use two different facts about the figure to establish
two different relationships between |AH| and |BF |, we can solve for |BF |, and then find
|BC|. In the solution below, we avoid introducing axes, although doing so would be valid
(if we introduced axes, we would find the coordinates of B instead of finding |BF |, and we
would replace the use of similar triangles below by using the fact that the slope of AC must
be the negative reciprocal of the slope of BH, since they are perpendicular).

Solution:
Let P be the foot of the altitude from B to AC. Notice that 4BPC is similar to 4AFC

since they both have one right angle, and they share ∠C. Also notice that 4BPC is
similar to 4BFH since they both have one right angle, and they share ∠PBF (recall that

H is on BP by our hypotheses). Thus 4AFC is similar to 4BFH. Thus |AF ||FC| = |BF |
|FH| .

Notice that |FC| = |BF | + 22 since M is the midpoint of BC. Then, substituting |AF | =

|AH|+ 5, |FC| = |BF |+ 22, and |FH| = 5, we have |AH|+5
|BF |+22

= |BF |
5

, or

(1) 5|AH|+ 25 = |BF |2 + 22|BF |,
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our first relationship between |AH| and |BF |.
Now notice that |OA| = |OB| since they are both radii of the same circle. Thus, by the

Pythagorean Theorem, |HO|2 + |AH|2 = |OM |2 + |BM |2, or equivalently, 112 + |AH|2 =
52 + (|BF |+ 11)2, which we can rewrite as

(2) |AH|2 − 25 = |BF |2 + 22|BF |,

a second relationship between |AH| and |BF |.
Combining (1) and (2), we have |AH|2 − 25 = 5|AH| + 25 which, after solving this

quadratic, implies |AH| = 10. Then, solving for |BF |, we find |BF | = 3, so that |BC| = 28.

1996. Find the least number A such that for any two squares of combined area 1, a rectangle
of area A exists such that the two squares can be packed in the rectangle (without interior
overlap). You may assume that the sides of the squares are parallel to the sides of the
rectangle.

Solution:
If x and y are the sides of two squares with combined area 1, then x2 + y2 = 1. Suppose

without loss of generality that x ≥ y. Then the shorter side of a rectangle containing both
squares without overlap must be at least x, and the longer side must be at least x+y. Hence
the desired value of A is the maximum of x(x+ y).

To find this maximum, we let x = cos θ, y = sin θ with θ ∈ [0, π/4]. Then we are to
maximize cos2 θ + sin θ cos θ. Setting[

cos2 θ + sin θ cos θ
]′

= −2 cos θ sin θ + cos2 θ − sin2 θ = − sin 2θ + cos 2θ

equal to 0, we have θ = π/8. After verifying that a maximum does occur here, we have that
the desired value of A is

x(x+ y) = cos2 π

8
+ sin

π

8
cos

π

8
=

1 + cos 2π
8

2
+

1

2
sin 2

π

8
=

1 +
√

2

2
.

1995. Let S be a set of real numbers which is closed under multiplication (that is, if a and
b are in S, then so is ab). Let T and U be disjoint subsets of S whose union is S. Given
that the product of any three (not necessarily distinct) elements of T is in T and that the
product of any three elements of U is in U , show that at least one of the two subsets T, U is
closed under multiplication.

Solution:
Suppose on the contrary that there exist t1, t2 ∈ T with t1t2 ∈ U and u1, u2 ∈ U with

u1u2 ∈ T . Then (t1t2)u1u2 ∈ U while t1t2(u1u2) ∈ T , contradiction.
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1994. Suppose that a sequence a1, a2, a3, . . . satisfies 0 < an ≤ a2n + a2n+1 for all n ≥ 1.
Prove that the series

∑∞
n=1 an diverges.

Solution:

For, n ≥ 0, let bn =
2n+1−1∑
j=2n

aj. Since an ≤ a2n + a2n+1, we have

bn =
2n+1−1∑
j=2n

aj =
2n−1∑
j=2n−1

a2j + a2j+1 ≥
2n−1∑
j=2n−1

aj = bn−1.

Thus, bn 6→ 0, and we have that

∞∑
n=1

an =
∞∑
n=0

2n+1−1∑
j=2n

aj =
∞∑
n=0

bn

diverges.

1993. The horizontal line y = c intersects the curve y = 2x − 3x3 in the first quadrant as
in the figure. Find c so that the areas of the two shaded regions are equal. [Figure not
included. The first region is bounded by the y-axis, the line y = c and the curve; the other
lies under the curve and above the line y = c between their two points of intersection.]

Solution:
Let the final intersection of y = c and y = 2x − 3x3 occur at x = d. We then have∫ d

0

2x− 3x3 − c = 0 so that d2 − 3

4
d4 − cd = 0. Solving for c, we have c = d− 3

4
d3, and by

the definition of d, we have c = 2d − 3d3. Thus 0 = d − 9
4
d3 = d(1 − 3

2
d)(1 + 3

2
d), so our d

must be 2
3
. Thus c = 22

3
− 3(2

3
)3 = 4

9
.

1992. Prove that f(n) = 1 − n is the only integer-valued function defined on the integers
that satisfies the following conditions.

(i) f(f(n)) = n, for all integers n;
(ii) f(f(n+ 2) + 2) = n for all integers n;

(iii) f(0) = 1.

Solution:
By (i), f(f(f(n+2)+2)) = f(n+2)+2, and by (ii), f(f(f(n+2)+2)) = f(n), each holding

for all integers n. Thus, f(n) = f(n+2)+2. Also notice that f(f(0)) = f(1) = 0 by (iii) and
(i). Since f(2m) = f(2m+2)+2 = f(2(m+1))+2, f(2m) = f(2m−2)−2 = f(2(m−1))−2,
f(2m + 1) = f(2m + 3) + 2 = f(2(m + 1) + 1) + 2, and f(2m + 1) = f(2m − 1) − 2 =
f(2(m− 1) + 1)− 2, we have that f(n) = 1− n for all integers n by induction.
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1991. A 2× 3 rectangle has vertices as (0, 0), (2, 0), (0, 3), and (2, 3). It rotates 90◦ clockwise
about the point (2, 0). It then rotates 90◦ clockwise about the point (5, 0), then 90◦ clockwise
about the point (7, 0), and finally, 90◦ clockwise about the point (10, 0). (The side originally
on the x-axis is now back on the x-axis.) Find the area of the region above the x-axis and
below the curve traced out by the point whose initial position is (1,1).

Solution:
If we sketch the path of the point whose initial position is (1,1), we see that the area of the

region in question can be broken up into five solid triangles and four quarter discs. Adding
the area of each of these, we see that the region has area 7π/2 + 6.

1990. Let

T0 = 2, T1 = 3, T2 = 6,

and for n ≥ 3,

Tn = (n+ 4)Tn−1 − 4nTn−2 + (4n− 8)Tn−3.

The first few terms are

2, 3, 6, 14, 40, 152, 784, 5168, 40576.

Find, with proof, a formula for Tn of the form Tn = An + Bn, where {An} and {Bn} are
well-known sequences.

Solution:
From either the recurrence itself or from looking at the ratios of the first several pairs of

consecutive values, we might guess that Tn grows in a way similar to n!. If we consider the
first several values of Tn − n!, it looks like Tn = n! + 2n, which we now verify by induction.

For n = 0, 1, and 2, our formula holds. Assume our formula holds for all n ≤ k− 1. Then
for k ≥ 3,

Tk = (k + 4)Tk−1 − 4kTk−2 + (4k − 8)Tk−3

= (k + 4)[(k − 1)! + 2k−1]− 4k[(k − 2)! + 2k−2] + (4k − 8)[(k − 3)! + 2k−3]

= (k − 3)! · [(k + 4)(k − 1)(k − 2)− 4k(k − 2) + (4k − 8)] +

2k−3 · [4(k + 4)− 2(4k) + (4k − 8)]

= (k − 2)! · [(k + 4)(k − 1)− 4k + 4] + 2k

= (k − 1)! · [(k + 4)− 4] + 2k = k! + 2k.

Thus Tn = n! + 2n for all n ≥ 0 by induction.
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1989. How many primes among the positive integers, written as usual in base 10, are
alternating 1’s and 0’s, beginning and ending with 1?

Solution:
Suppose N = 101 · · · 0101 with k ones for some k ≥ 2. Then 99N = 102k − 1 = (10k +

1)(10k − 1). If N is prime, then N divides either (10k + 1) or (10k − 1), and thus one of
99

10k−1
= 10k+1

N
and 99

10k+1
= 10k−1

N
is an integer. For k > 2, (10k + 1) and (10k − 1) are both

greater than 99, so we get a contradiction. Therefore k = 2, and N = 101 must be the only
prime of the desired form.

1988. Let R be the region consisting of the points (x, y) of the cartesian plane satisfying
both |x| − |y| ≤ 1 and |y| ≤ 1. Sketch the region R and find its area.

Solution: (sketch omitted)
Upon sketching the region, we see that it is the area inside the polygon with vertices

(1, 0), (2, 1), (−2, 1), (−1, 0), (−2,−1), and (2,−1). This region can be divided into two con-
gruent trapezoids with height 1 and base lengths 2 and 4, so their combined area is 6.

1987. Curves A,B,C and D are defined in the plane as follows:

A =

{
(x, y) : x2 − y2 =

x

x2 + y2

}
,

B =

{
(x, y) : 2xy +

y

x2 + y2
= 3

}
,

C =
{

(x, y) : x3 − 3xy2 + 3y = 1
}
,

D =
{

(x, y) : 3x2y − 3x− y3 = 0
}
.

Prove that A ∩B = C ∩D.

Solution:
Let z = x + iy. The equations defining A and B are the real and imaginary parts of

the equation z2 = z−1 + 3i, and similarly the equations defining C and D are the real and
imaginary parts of the equation z3 − 3iz = 1. Hence for all real x and y, we have

(x, y) ∈ A ∩B ⇐⇒ z2 = z−1 + 3i⇐⇒ z3 − 3iz = 1⇐⇒ (x, y) ∈ C ∩D.
Thus A ∩B = C ∩D.
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1986. Find, with explanation, the maximum value of f(x) = x3 − 3x on the set of all real
numbers x satisfying x4 + 36 ≤ 13x2.

Solution:
Notice that x4 + 36 ≤ 13x2 is equivalent to x4 − 13x2 + 36 = (x2 − 4)(x2 − 9) ≤ 0, which

holds exactly when x ∈ [−3,−2] ∪ [2, 3]. Also, f ′(x) = 3x2 − 3 is positive on both of these
intervals, so that f(x) is increasing there. Thus, the maximum of f(x) in this region is
max{f(−2), f(3)} = max{−2, 18} = 18.

1985. Determine, with proof, the number of ordered triples (A1, A2, A3) of sets which have
the property that

(i) A1 ∪ A2 ∪ A3 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and
(ii) A1 ∩ A2 ∩ A3 = ∅.

Express your answer in the form 2a3b5c7d, where a, b, c, d are nonnegative integers.

Solution:
Each element of {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} must belong to exactly one of A1 ∩ A2, A1 ∩

A3, A2 ∩ A3, A3 \ (A1 ∪ A2), A2 \ (A1 ∪ A3), and A1 \ (A2 ∪ A3). Furthermore, every such
distribution is possible, and each uniquely determines the triple (A1, A2, A3). Thus, there
are 610 = 2103105070 such triples.
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Putnam problems and solutions B1

2006. Show that the curve x3 + 3xy + y3 = 1 contains only one set of three distinct points,
A, B, and C, which are vertices of an equilateral triangle, and find its area.

Solution:
The “curve” x3 + 3xy + y3 − 1 = 0 is actually reducible, because the left side factors as

(x+ y − 1)(x2 − xy + y2 + x+ y + 1).

Moreover, the second factor is

1

2
((x+ 1)2 + (y + 1)2 + (x− y)2),

so it only vanishes at (−1,−1). Thus the curve in question consists of the single point
(−1,−1) together with the line x+y = 1. To form a triangle with three points on this curve,
one of its vertices must be (−1,−1). The other two vertices lie on the line x+ y = 1, so the
length of the altitude from (−1,−1) is the distance from (−1,−1) to (1/2, 1/2), or 3

√
2/2.

The area of an equilateral triangle of height h is h2
√

3/3, so the desired area is 3
√

3/2.

2005. Find a nonzero polynomial P (x, y) such that P (bac, b2ac) = 0 for all real numbers a.
(Note: bνc is the greatest integer less than or equal to ν.)

Solution:
If a − bac < 0.5, then b2ac = 2bac. Otherwise, b2ac = 2bac + 1. Thus P (bac, b2ac) =

P (bac, 2bac) or P (bac, 2bac+ 1), so P (x, y) = (2x− y)(2x+ 1− y) is a nonzero polynomial
such that P (bac, b2ac) = 0 for all real numbers a.

2004. Let P (x) = cnx
n + cn−1x

n−1 + · · · + c0 be a polynomial with integer coefficients.
Suppose that r is a rational number such that P (r) = 0. Show that the n numbers

cnr, cnr
2 + cn−1r, cnr

3 + cn−1r
2 + cn−2r,

. . . , cnr
n + cn−1r

n−1 + · · ·+ c1r

are integers.

Solution:
Let k be an integer, 0 ≤ k ≤ n− 1. Since P (r)/rk = 0, we have

cnr
n−k + cn−1r

n−k+1 + · · ·+ ck+1r

= −(ck + ck−1r
−1 + · · ·+ c0r

−k).



12

Write r = p/q where p and q are relatively prime. Then the left hand side of the above
equation can be written as a fraction with denominator qn−k, while the right hand side is a
fraction with denominator pk. Since p and q are relatively prime, both sides of the equation
must be an integer, and the result follows.

2003. Do there exist polynomials a(x), b(x), c(y), d(y) such that

1 + xy + x2y2 = a(x)c(y) + b(x)d(y)

holds identically?

Solution:
No, there do not. Suppose such polynomials do exist. By setting y = −1, 0, and 1, we

see that the polynomials 1 − x + x2, 1, 1 + x + x2 are linear combinations of a(x) and b(x).
However, these three polynomials are linearly independent, so cannot all be written as linear
combinations of two other polynomials, a contradiction.

2002. Shanille O’Keal shoots free throws on a basketball court. She hits the first and
misses the second, and thereafter the probability that she hits the next shot is equal to the
proportion of shots she has hit so far. What is the probability she hits exactly 50 of her first
100 shots?

How to solve it: Can we solve a more accessible related problem? A more general problem?
When asked to find something involving a fixed integer (like 100, for example), we should
often consider trying to solve the problem for general n. When given two fixed integers (such
as 50 and 100), we should consider trying to solve for general k and n.

Solution:
Let P (n, k) be the probability that after n shots, Shanille will have made k of them. After

computing a few values, we are soon led to conjecture that P (n, k) = 1
n−1

for all 1 ≤ k ≤ n−1
and all n ≥ 2, which we now prove by induction. Notice P (2, 1) = 1 by the conditions of the
problem. Assume as our induction hypothesis that P (m, k) = 1

m−1
for all 1 ≤ k ≤ m − 1.

The probability of Shanille making k shots after m + 1 attempts is the probability of her
making k out of m and then missing plus the probability of her making k − 1 out of m and
then hitting. Thus

P (m+ 1, k) = P (m, k)
m− k
m

+ P (m, k − 1)
k − 1

m
=

1

m− 1

(
m− k
m

)
+

1

m− 1

(
k − 1

m

)
=

1

m− 1

(
m− k + k − 1

m

)
=

1

m

as desired. Thus, our conjecture holds, and P (100, 50) = 1
99

.
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2001. Let n be an even positive integer. Write the numbers 1, 2, . . . , n2 in the squares of an
n× n grid so that the k-th row, from left to right, is

(k − 1)n+ 1, (k − 1)n+ 2, . . . , (k − 1)n+ n.

Color the squares of the grid so that half of the squares in each row and in each column are
red and the other half are black (a checkerboard coloring is one possibility). Prove that for
each coloring, the sum of the numbers on the red squares is equal to the sum of the numbers
on the black squares.

Solution:
Let R (resp. B) denote the set of red (resp. black) squares in such a coloring, and for s ∈

R∪B, let f(s)n+g(s)+1 denote the number written in square s, where 0 ≤ f(s), g(s) ≤ n−1.
Then it is clear that the value of f(s) depends only on the row of s, while the value of g(s)
depends only on the column of s. Since every row contains exactly n/2 elements of R and
n/2 elements of B, ∑

s∈R

f(s) =
∑
s∈B

f(s).

Similarly, because every column contains exactly n/2 elements of R and n/2 elements of B,∑
s∈R

g(s) =
∑
s∈B

g(s).

It follows that ∑
s∈R

f(s)n+ g(s) + 1 =
∑
s∈B

f(s)n+ g(s) + 1,

as desired.

2000. Let aj, bj, cj be integers for 1 ≤ j ≤ N . Assume for each j, at least one of aj, bj, cj is
odd. Show that there exist integers r, s, t such that raj + sbj + tcj is odd for at least 4N/7
values of j, 1 ≤ j ≤ N .

Solution:
Since at least one of aj, bj, cj is odd, the parity of raj + sbj + tcj changes if we change the

parity of any r, s, or t that is coupled with an odd value. Thus, for each j, if we allow r, s,
and t to range over the eight triples (r, s, t) with r, s, t ∈ {0, 1}, half of the sums raj+sbj+tcj
are even and half are odd. The sum with r = s = t = 0 is even, so at least four of the seven
triples with r, s, t not all zero yield an odd sum. In other words, at least 4N of the 7N
4-tuples (r, s, t, j) with r, s, t not all zero yield odd sums. By the pigeonhole principle, there
is a triple (r, s, t) for which at least 4N/7 of the sums are odd.
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1999. Right triangle ABC has right angle at C and ∠BAC = θ; the point D is chosen
on AB so that |AC| = |AD| = 1; the point E is chosen on BC so that ∠CDE = θ. The
perpendicular to BC at E meets AB at F . Evaluate limθ→0 |EF |.

Solution:
The answer is 1/3. Let G be the point obtained by reflecting C about the line AB. Since

∠ADC = π−θ
2

, we find that ∠BDE = π − θ − ∠ADC = π−θ
2

= ∠ADC = π − ∠BDC =
π − ∠BDG, so that E,D,G are collinear. Hence

|EF | = |BE|
|BC|

=
|BE|
|BG|

=
sin(θ/2)

sin(3θ/2)
,

where we have used the law of sines in 4BDG. But by l’Hôpital’s Rule,

lim
θ→0

sin(θ/2)

sin(3θ/2)
= lim

θ→0

cos(θ/2)

3 cos(3θ/2)
= 1/3.

1998. Find the minimum value of

(x+ 1/x)6 − (x6 + 1/x6)− 2

(x+ 1/x)3 + (x3 + 1/x3)

for x > 0.

Solution:
Let y = x+ 1/x and z = x3 + 1/x3. Thus

(x+ 1/x)6 − (x6 + 1/x6)− 2

(x+ 1/x)3 + (x3 + 1/x3)
=

y6 − z2

y3 + z
=
y6 − z2

y3 + z

y3 − z
y3 − z

=
(y6 − z2)(y3 − z)

y6 − z2
= y3 − z

= (x+ 1/x)3 − (x3 + 1/x3) = 3(x+ 1/x).

The latter is easily seen (using the AM-GM inequality or calculus) to have minimum value
6 (achieved at x = 1).

1997. Let {x} denote the distance between the real number x and the nearest integer. For
each positive integer n, evaluate

Fn =
6n−1∑
m=1

min({m
6n
}, {m

3n
}).

(Here min(a, b) denotes the minimum of a and b.)
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Solution:
It is trivial to check that m

6n
= {m

6n
} ≤ {m

3n
} for 1 ≤ m ≤ 2n, that 1− m

3n
= {m

3n
} ≤ {m

6n
} for

2n ≤ m ≤ 3n, that m
3n
− 1 = {m

3n
} ≤ {m

6n
} for 3n ≤ m ≤ 4n, and that 1− m

6n
= {m

6n
} ≤ {m

3n
}

for 4n ≤ m ≤ 6n. Therefore the desired sum is
2n−1∑
m=1

m

6n
+

3n−1∑
m=2n

(
1− m

3n

)
+

4n−1∑
m=3n

(m
3n
− 1
)

+
6n−1∑
m=4n

(
1− m

6n

)
.

Rewriting each sum as the number of terms times its average term, we have

2n− 1

6
+
n+ 1

6
+
n− 1

6
+

2n+ 1

6
= n.

1996. Define a selfish set to be a set which has its own cardinality (number of elements)
as an element. Find, with proof, the number of subsets of {1, 2, . . . , n} which are minimal
selfish sets, that is, selfish sets none of whose proper subsets is selfish.

Solution:
Let [n] denote the set {1, 2, . . . , n}, and let fn denote the number of minimal selfish subsets

of [n]. Then the number of minimal selfish subsets of [n] not containing n is equal to fn−1.
On the other hand, for any minimal selfish subset of [n] containing n, by subtracting 1 from
each element, and then taking away the element n − 1 from the set, we obtain a minimal
selfish subset of [n − 2] (since 1 and n cannot both occur in a selfish set). Conversely, any
minimal selfish subset of [n− 2] gives rise to a minimal selfish subset of [n] containing n by
the inverse procedure. Hence the number of minimal selfish subsets of [n] containing n is
fn−2. Thus we obtain fn = fn−1 + fn−2. Since f1 = f2 = 1, we have fn = Fn, where Fn
denotes the nth term of the Fibonacci sequence.

1995. For a partition π of {1, 2, 3, 4, 5, 6, 7, 8, 9}, let π(x) be the number of elements in the
part containing x. Prove that for any two partitions π and π′, there are two distinct numbers
x and y in {1, 2, 3, 4, 5, 6, 7, 8, 9} such that π(x) = π(y) and π′(x) = π′(y). [A partition of a
set S is a collection of disjoint subsets (parts) whose union is S.]

Solution:
For a given π, no more than three different values of π(x) are possible (four would require

one part each of size at least 1,2,3,4, and that’s already more than 9 elements). If no such
x, y exist, each pair (π(x), π′(x)) occurs for at most 1 element of x, and since there are only
3 × 3 possible pairs, each must occur exactly once. In particular, each value of π(x) must
occur 3 times. However, clearly any given value of π(x) occurs kπ(x) times, where k is the
number of distinct partitions of that size. Thus π(x) can occur 3 times only if it equals 1 or
3, but we have three distinct values for which it occurs, contradiction.
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1994. Find all positive integers n that are within 250 of exactly 15 perfect squares.

Solution:
This happens if and only if, for some m, (m − 1)2 + 1 ≤ n − 250 ≤ m2 and (m + 14)2 ≤

n + 250 ≤ (m + 15)2 − 1. Flipping the first string of inequalities and subtracting it from
the second, we have 28m + 196 ≤ 500 ≤ 32m + 222, which implies m = 9 or 10. For m =
9, 82+1 ≤ n−250 and n+250 ≤ (24)2−1 imply 315 ≤ n ≤ 325. For m = 10, 92+1 ≤ n−250
and n−250 ≤ (10)2 imply 332 ≤ n ≤ 350. Thus, n is within 250 of exactly 15 perfect squares
if and only if 315 ≤ n ≤ 325 or 332 ≤ n ≤ 350.

1993. Find the smallest positive integer n such that for every integer m with 0 < m < 1993,
there exists an integer k for which

m

1993
<
k

n
<
m+ 1

1994
.

Solution:
The smallest such n = 3987.
Lemma: If a, b, c, d ∈ R+ and a

b
< c

d
, then

a

b
<
a+ c

b+ d
<
c

d
.

Proof of Lemma: Notice a
b
< c

d
implies ad < bc. Thus, ab+ ad < ab+ bc, so that a

b
< a+c

b+d
.

Also, ad+ cd < bc+ cd, so that a+c
b+d

< c
d
.

By our Lemma,
m

1993
<

2m+ 1

3987
<
m+ 1

1994
,

so that the smallest such n ≤ 3987. Also, if 1992
1993

< k
n
< 1993

1994
, then 1

1993
> n−k

n
> 1

1994
, and

so 1993 < n
n−k < 1994. From this we see that n − k 6= 1, so n − k ≥ 2, which implies that

3986 < n.

1992. Let S be a set of n distinct real numbers. Let AS be the set of numbers that occur
as averages of two distinct elements of S. For a given n ≥ 2, what is the smallest possible
number of elements in AS?

Solution:
The smallest possible number of elements in AS is 2n− 3.
Proof: To see that the smallest possible number of elements in AS is ≤ 2n−3, observe that

for any n, if S = {0, 2, . . . , 2n− 2}, then AS = {1, 2, . . . , 2n− 3}, which has 2n− 3 elements.
To prove that the smallest possible number of elements in AS is ≥ 2n − 3, we proceed by
induction on n. For n = 2, |AS| = 1 ≥ 2(2)− 3. Assume that the smallest possible number
of elements in AS is at least 2k − 3 for any set S of k distinct real numbers. Let S ′ be a set
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of k+ 1 distinct real numbers. Let s0 < s1 < s2 be the three smallest elements of S ′. By our
induction hypothesis, AS′\{s0} has at least 2k− 3 elements. Also, (s0 + s1)/2 and (s0 + s2)/2
are not equal, and they are both smaller than every element of S ′ \ {s0}. Thus, AS′ must
contain at least 2k − 3 + 2 = 2(k + 1) − 3 elements. Hence, by induction, we have shown
that if S is a set of n distinct real numbers, the smallest possible number of elements in AS
is ≥ 2n− 3. Combining this with our first observation, our result follows.

1991. For each integer n ≥ 0, let S(n) = n − m2, where m is the greatest integer with
m2 ≤ n. Define a sequence (ak)

∞
k=0 by a0 = A and ak+1 = ak + S(ak) for k ≥ 0. For what

positive integers A is this sequence eventually constant?

Solution:
This sequence eventually constant if and only if A is an integer square.
Proof: If a0 = A is a square, then an = A for all n. Suppose a0 = A is not a square. If

ak = B is not a square, then for some m, (m+1)2 > B > m2, so that ak+1 = B+(B−m2) ≤
B + 2m < (m + 2)2. Also, (m + 1)2 − ak+1 = (m + 1)2 − 2B + m2 is odd, so in particular
nonzero. Thus, since m2 < ak+1 < (m + 2)2 and ak+1 6= (m + 1)2, ak+1 cannot be a square.
That being the case, since a0 = A is not a square, no term of (ak)

∞
k=0 is a square, and so

S(an) > 0 for all n, so that (ak)
∞
k=0 is eventually not constant.

1990. Find all real-valued continuously differentiable functions f on the real line such that
for all x,

(f(x))2 =

∫ x

0

[(f(t))2 + (f ′(t))2] dt+ 1990.

Solution:
Differentiating both sides of this equation, we have

2f(x) · f ′(x) = (f(x))2 + (f ′(x))2,

or equivalently,
[f(x)− f ′(x)]2 = 0,

which implies f(x) = f ′(x). Thus, f(x) = cex for some constant c. Setting x = 0 in
our original equation, we have that f(0) = ±

√
1980 = c, so that f(x) =

√
1980ex and

f(x) = −
√

1980ex are the only real-valued continuously differentiable functions that satisfy
our condition.

1989. A dart, thrown at random, hits a square target. Assuming that any two parts of the
target of equal area are equally likely to be hit, find the probability that the point hit is

nearer to the center than to any edge. Express your answer in the form
a
√
b+ c

d
, where

a, b, c, d are integers.
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Solution:
Without loss of generality, assume the dartboard has corners at (±1,±1). A point (x, y) in

the square is closer to the center than to the top edge if and only if
√
x2 + y2 ≤ 1−y, which

is equivalent to x2 + y2 ≤ (1 − y)2, and to y ≤ (1 − x2)/2. This describes a region below a
parabola. The region consisting of points in the board closer to the center than to any edge
is the intersection of the four symmetrical parabolic regions inside the board: it is the union
of eight symmetric copies of the region A bounded by x ≥ 0, y ≥ x, and y ≤ (1 − x2)/2.
A short calculation shows that the bounding curves y = x and y ≤ (1 − x2)/2 intersect at
(x, y) = (

√
2− 1,

√
2− 1). Thus the desired probability is

8 Area(A)

Area(board)
= 2 Area(A) = 2

∫ √2−1

0

(
1− x2

2
− x
)
dx =

4
√

2− 5

3
.

1988. A composite (positive integer) is a product ab with a and b not necessarily distinct
integers in {2, 3, 4, . . . }. Show that every composite is expressible as xy + xz + yz + 1, with
x, y, z positive integers.

Solution:
Let x = a−1, y = b−1, and z = 1. Then xy+xz+yz+1 = (a−1)(b−1)+(a−1)+(b−1)+1 =

ab.

1987. Evaluate ∫ 4

2

√
ln(9− x) dx√

ln(9− x) +
√

ln(x+ 3)
.

Solution:
Let

I =

∫ 4

2

√
ln(9− x) dx√

ln(9− x) +
√

ln(x+ 3)
.

Making the change of variables y = 6− x, we have

I = −
∫ 2

4

√
ln(y + 3) dy√

ln(y + 3) +
√

ln(9− y)
=

∫ 4

2

√
ln(y + 3) dy√

ln(y + 3) +
√

ln(9− y)
.

Thus

2I =

∫ 4

2

√
ln(9− x) +

√
ln(x+ 3) dx√

ln(9− x) +
√

ln(x+ 3)
=

∫ 4

2

1 dx = 2,

and so I = 1.
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1986. Inscribe a rectangle of base b and height h in a circle of radius one, and inscribe an
isosceles triangle in the region of the circle cut off by one base of the rectangle (with that
side as the base of the triangle). For what value of h do the rectangle and triangle have the
same area?

Solution:
The radius has length equal to h/2 plus the altitude of the triangle, so the altitude of the

triangle is 1−h/2. If the rectangle and the triangle have the same area, then bh = 1
2
b(1−h/2).

Solving for h, we have h = 2/5.

1985. Let k be the smallest positive integer for which there exist distinct integers m1,m2,m3,
m4,m5 such that the polynomial

p(x) = (x−m1)(x−m2)(x−m3)(x−m4)(x−m5)

has exactly k nonzero coefficients. Find, with proof, a set of integers m1,m2,m3,m4,m5 for
which this minimum k is achieved.

Solution:
The leading term of p(x) is x5, but p(x) 6= x5 since the mi are not all zero, so k 6= 1.

Also, p(x) must have either a nonzero constant term or a nonzero x1 term (or both), because
otherwise x2|p(x), which would imply that two of the mi are zero (and thus not distinct).

Suppose k = 2. Then p(x) = x5 + c or p(x) = x5 + cx. The roots of x5 + c are the fifth
roots of c, but there is only one real fifth root of c, and we need all of the roots to be integers,
so p(x) 6= x5 + c. The roots of x5 + cx are zero and the fourth roots of c, but there are at
most two real fourth roots of c, so p(x) 6= x5 + cx. Thus, k 6= 2.

Setting m1 = −2,m2 = 2,m3 = −1,m4 = 1, and m5 = 0, we have p(x) = (x2 − 4)(x2 −
1)x = x5 − 5x3 + 4x, for which k = 3.


