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LAGRANGIAN, GAME THEORETIC, AND PDE METHODS

FOR AVERAGING G-EQUATIONS IN TURBULENT

COMBUSTION: EXISTENCE AND BEYOND

JACK XIN, YIFENG YU, AND PAUL RONNEY

Abstract. G-equations are popular level set Hamilton–Jacobi nonlinear par-
tial differential equations (PDEs) of first or second order arising in turbulent
combustion. Characterizing the effective burning velocity (also known as the
turbulent burning velocity) is a fundamental problem there. We review rele-
vant studies of the G-equation models with a focus on both the existence of
effective burning velocity (homogenization), and its dependence on physical

and geometric parameters (flow intensity and curvature effect) through repre-
sentative examples. The corresponding physical background is also presented
to provide motivations for mathematical problems of interest.

The lack of coercivity of Hamiltonian is a hallmark of G-equations. When
either the curvature of the level set or the strain effect of fluid flows is ac-
counted for, the Hamiltonian becomes highly nonconvex and nonlinear. In the
absence of coercivity and convexity, the PDE (Eulerian) approach suffers from
insufficient compactness to establish averaging (homogenization). We review
and illustrate a suite of Lagrangian tools, most notably min-max (max-min)
game representations of curvature and strain G-equations, working in tandem
with analysis of streamline structures of fluid flows and PDEs. We discuss
open problems for future development in this emerging area of dynamic game
analysis for averaging noncoercive, nonconvex, and nonlinear PDEs such as

geometric (curvature-dependent) PDEs with advection.
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Figure 1. Level set modeling of flame propagation.

1. Introduction

Turbulent combustion is employed in practically all mobile and stationary power
generation devices because turbulence increases the mass consumption rate of reac-
tants to values much greater than laminar flames can achieve. This in turn increases
the heat release rate and thus power available from a gas turbine combustor, re-
ciprocating piston engine, or rocket motor of a given size. Few combustion engines
would function without the increase in mixing and burning rates caused by turbu-
lence. A fundamental and practically important property of a turbulent flame in a
pre-mixture of reactants is how the effective propagation speed (sT , also called tur-
bulent flame speed) is affected by turbulence intensity among other factors including
local flame front curvature, hydrodynamic strain, combustor geometry, thermal ex-
pansion, heat losses, and turbulence energy spectrum [12,36, 89]. To date, most of
our understanding of these effects in combustion science has been developed from
the so-called “flamelet” models that presume the existence of a continuous flame
sheet that is wrinkled by turbulence and thereby affecting the flame area, which in
turn affects the mass consumption rates. The local consumption rate per unit area
corresponds to the propagation rate of a planar front in the same mixture.

A well-known flamelet type model in turbulent combustion is the so called G-
equation [75, 89, 111, 112], which takes the following form:

(1.1) Gt + sl |DG|+ V (x) ·DG = 0.

Here G = G(x, t) ∈ C(Rn × (0,∞),R) is a reference function whose zero level set
{x ∈ R

n | G(x, t) = 0} represents flame front at time t; {x ∈ R
n | G(x, t) > 0} is

the unburned area and {x ∈ R
n | G(x, t) < 0} the burned area; V ∈ C(Rn,Rn) is

the velocity field of the ambient fluid (e.g. blowing wind in a wild fire or stirring a
mixture of air and gasoline inside car engines), see Figure 1; D the spatial gradient.
The motion of the flame front is driven by chemical reaction represented by the
so called laminar flame speed sl (or local burning velocity) and the ambient fluid.
Hence the flame front obeys the motion law:

(1.2) v�n = sl + V (x) · �n,

i.e., the front speed v�n in the normal direction �n is the laminar flame speed (sl)
plus the projection of fluid velocity V along the normal. The sl might not be a
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constant in general, and its geometric or physical modeling leads to different types
of G-equations.

The ratio of flame thickness and Kolmogorov scale (the small scale in fluid flows
below which dissipation dominates) determines different combustion regions. G-
equation is most suited in the so called corrugated flamelet regime where the ratio
is less than one [89]. Below we derive G-equation, assuming that the G function
and the flame front are smooth. Fix t > 0 and a point x on the flame front Γt.
Let x(s) be the flame propagation route starting from x(t) = x for s ≥ t. Then
G(x(s), s) = 0 and the motion law (1.2) implies that

(1.3) ẋ(s) = v�n(s) �n(s) = (sl + V (x(s)) · �n(s))�n(s),
where �n(s) is the outward normal vector of Γs at x(s) that can be expressed as
�n(s) = DG(x(s), s)/|DG(x(s), s)|. By chain rule:

0 =
dG(x(s), s)

ds
= Gt +DG · ẋ(s) = 0.

Plugging in (1.3) immediately gives G-equation (1.1), which was formally intro-
duced by Williams [111,112] in 1985, although the above derivation and an earlier
form of G-equation first appeared in Markstein’s work [75] in 1964. We also note
that the G-equation model and crystal growth front propagation model served as
two major sources in the systematic mathematical development of the level-set
method by Osher and Sethian [88].

Two observations are in order.

(1) The reference function G(x, t) has no physical meaning except its zero level
set (called nonreactive in combustion literature). Solutions to G-equations
are in general not C1 although the equation is derived under smoothness
assumptions. Mathematically, the solutions need to be defined in the sense
of viscosity solutions whose basic definition and backgrounds are in Section
2, providing mathematical foundation of level set equations. In particular,
the choice of different reference functions does not impact the zero level set.
Precisely speaking, if both G̃ and G are solutions to equation (1.1) subject
to

{x ∈ R
n | G̃(x, 0)} = {x ∈ R

n | G(x, 0)}
then

{x ∈ R
n | G̃(x, t) = 0} = {x ∈ R

n | G(x, t) = 0}
for all t > 0. An intuitive way to understand this is that G is a solution
if and only if G̃ = f(G) is also a solution for any differentiable function
f : R → R satisfying f ′ > 0. See [27, 44] for rigorous proofs.

(2) In more comprehensive combustion models, fluid velocity and chemical
transport are determined by a coupled system of Navier–Stokes and rea-
ction-diffusion-advection equations, which is called the direct method. A
flamelet approach based on G-equations neglects the effects of thermal ex-
pansion (and so the above two-way coupling between the flame and turbu-
lent flow field) as well as heat losses but may retain curvature and strain
dependence on sl in the G-equation formulation. In the simplified setting
of G-equation, the fluid velocity (turbulent flow field) is prescribed with the
focus to understand how the flame propagates in an ambient fluid. Such
an approach is known as passive modeling, making it more feasible to the-
oretically study (so called “pencil and paper”) or compute the impacts of
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significant factors in combustion, e.g., flow perturbation, flame intensity,
and flame stretch. That the passive modeling may yield physically mean-
ingful results has been demonstrated by experiments [1,94,99] that employ
aqueous autocatalytic chemical reactions rather than gaseous flames be-
cause the thermal expansion and heat loss effects are absent in the aqueous
mixtures.

To initiate a practical simulation of G-equation for turbulent flows, so-
lutions of Navier–Stokes equations are often computed first to set up the
velocity field V . For numerical approximations of G-equations and appli-
cations in combustion, we refer to [58, 62, 66, 70, 87, 88, 124] among others.

1.1. Different types of G-equations. In general, the local burning velocity sl
depends on flame stretch [89]:

(1.4) sL = (s0L − d s0L κ+ d�n · S · �n)+.
See [89, Section 2.6] for a formal derivation of relevant expressions from the reaction-
diffusion-advection equations. Here

• s0L is a positive constant representing the laminar flame speed of the un-
stretched flame. The positive part (a)+ = max{a, 0} is imposed to avoid
negative laminar flame speed since materials cannot be “unburned”. This
correction usually is not explicitly mentioned in combustion literature since,
by default, the laminar flame speed is always assumed to be nonnegative
there. However, mathematically, large positive curvature κ or negative
strain rate �n · S · �n could occur as time evolves. Hence it is necessary to
explicitly add (·)+ if physical validity is taken into consideration in the
modeling of flame propagation [9, 124];

• the expression −d s0Lκ + d�n · S · �n represents the correction due to flame
stretching. The constant d is the Markstein length which is proportional
to laminar flame thickness. Intuitively speaking, the local burning velocity
is affected by chemical reactions (or burning temperature) and heat release
that are related to the surface area of the flame front. Suppose that a
smooth hypersurface in R

n is moving in the velocity field V . Then the
front surface stretch rate is

1

σ

dσ

dt
= div(V )− �n · S · �n.

Here σ is the surface element area. The derivation of the above formula
could be found in [70, 76].

The first correction term − d s0L κ in (1.4) describes the curvature effect
[74, 75, 89], where

κ = div

(
DG

|DG|

)
is the mean curvature of the flame surface.

The second correction term d�n · S · �n in (1.4) quantifies the straining
effect on the flame from the flow [70,76]. The normal vector �n at the flame
surface points in the direction of the unburned region, and

S =
DV + (DV )�

2

is called the strain rate tensor.
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For convenience, we set the constant

s0L = 1

throughout this paper.

If (1.4) is plugged into equation (1.1), the general G-equation is a second order
quasilinear parabolic equation:

(1.5) Gt +H(D2G,DG, x) = 0,

where the associated Hamiltonian is

H(M,p, x) =

(
|p| − d

(
trM − p ·M · p

|p|2 − p · S · p
|p|

))
+

+ V (x) · p

for (M,p) ∈ Sn×n × (Rn\{0}). At p = 0, following [33], H(M, 0, x) is set to 0 for
subsolutions and 2dn‖A‖ for supersolutions. Here Sn×n is the space of n× n real
symmetric matrices. Note that H is monotonically nonincreasing with respect to
M , noncoercive (H �→ +∞ as |p| → +∞ if |V | > 1) and nonconvex with respect to
the p variable if d > 0.

For simplicity, we will treat curvature and strain terms separately.

1.1.1. Inviscid G-equation (d = 0). In the basic setting, the local burning velocity
sl is taken to be a constant (sl = s0L = 1), i.e., ignore the curvature effect and strain
rate by letting d = 0. The corresponding G-equation is then a first-order convex
but in general noncoercive (if |V | > 1) Hamilton–Jacobi equation (HJE):

Gt + |DG|+ V (x) ·DG = 0.

In this situation, the laminar flame speed could depend on locations, i.e., sl = a(x)
for some positive function a(x). A notable example is the celebrated Rothermel
surface fire spread model for forest fires [3], where a(x) depends on the landscape
(uphill or downhill) and the types of plants there. Due to diffusion in a numerical
scheme or artificial viscosity to stabilize computation [54,60,87], it is of interest to
assess such effects by considering the viscous version of G-equation

(1.6) −dΔG+Gt + |DG|+ V (x) ·DG = 0,

where the Laplacian term mimics numerical diffusion. The Laplacian term is also
found to be relevant for representing the effect of thermal relaxation under trans-
verse heat diffusion in the preheat zone of a wrinkled front [30, 54]. Moreover,
the viscous G-equation (1.6) is adopted for dynamic modeling of large eddy sim-
ulation of turbulent premixed combustion in homogeneous isotropic turbulence in
[54]. Surprisingly, such a second order regularization at any small d > 0 acts as a
singular perturbation drastically altering the effective burning velocity; see [69] for
a mathematical proof and [54, Figure 1] for numerical observations.

1.1.2. Curvature G-equation. Geometry on the flame front provides a phenomeno-
logical way to describe the change of temperature along the flame front, which
impacts the rate of chemical reactions and hence the local burning speed. Intu-
itively, it says that if the flame front bends toward the cold region (un-burned area,
point C in Figure 2), the flame propagation slows down. If the flame front bends
toward the hot spot (burned area, point B in Figure 2), it burns faster.
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Figure 2. Curvature effect: faster burn at B (bending towards
hot region) than C.

There is a vast literature in turbulent combustion discussing the impact of cur-
vature effect. Below is the most recognized empirical linear relation first proposed
by Markstein [74, 75] (see also [89]):

(1.7) sl = s0L(1− d κ)+.

Here the strain rate term in (1.4) is ignored. This correction leads to a mean
curvature type equation with advection:

(1.8) Gt +

(
1− d div

(
DG

|DG|

))
+

|DG|+ V (x) ·DG = 0.

This equation has both nonconvex and noncoercive nature. Moreover, due to the
presence of the physical cut-off ()+, this quasilinear parabolic equation is highly de-
generate, causing nonexistence of effective burning velocity in 3D flows (see Section
4.4).

1.1.3. Strain G-equation. By setting s0L = 1, the expression for laminar speed is

(1.9) sL = (1 + d�n · S · �n)+.
This leads to a nonconvex-noncoercive first order HJE:

(1.10) Gt +

(
1 + d

DG · S(x) ·DG

|DG|

)
+

|DG|+ V (x) ·DG = 0.

Nonconvex first order Hamilton–Jacobi equations first appeared in zero sum two-
person differential games [40,55]. The strain G-equation provides a natural physical
example. Although there is a large volume of combustion literature investigating
the strain rate effect, there is not much mathematical work studying the above
PDE, a nonconvex HJE with physical meaning.

1.2. Turbulent burning velocity and homogenization of G-equation. Effec-
tive burning velocity (a.k.a. turbulent flame speed) is one of the most fundamental
quantities in turbulent combustion. Roughly speaking, it is the flame propagation
speed after averaging the fluctuations around the mean flame front. Establishing
its existence rigorously has, in general, remained an open problem. Below are two
equivalent perspectives to describe it from the G-equation. Fix a unit direction
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Figure 3. A classical (left) vs. an effective (right, dashed) planar
front by averaging an oscillatory flame front (right, solid).

p ∈ R
n. Assume that the initial flame front is planar {x ∈ R

n | G(x, 0) = x} =
{x ∈ R

n | p · x = 0}. Due to the motion of the ambient fluid, the flame front
wrinkles as time evolves, see Figure 3.

Perspective 1. The mean flame front is still planar and might eventually propa-
gate with a steady speed sT (p).

Mathematically, this implies that

(1.11) G(x, t) ≈ p · x+ v(x)− t sT (p),

where the right-hand side is an approximate traveling wave solution of the G-
equation. The sT (p), if it exists, is the effective Hamiltonian sT (p) = H(p) (see
Figure 3) associated with the G-equation (a first or second order HJE), defined in
a nonlinear eigenvalue problem (a.k.a. cell or corrector problem [41, 67]):

(1.12) H(D2v, p+Dv, x) = (or ≈)H(p) in R
n

where v is called a corrector (eigenfunction), and H̄ the eigenvalue. Here ≈ refers
to approximate solutions when exact solutions do not exist. See Section 2 for more
details.

In general, the speed H(p) is direction p dependent or anisotropic. Moreover,
except in some simple cases (e.g., 2D shear flows), there is no closed form formula
of H. If H(p) exists, we have:

(1.13) H(p) = − lim
t→∞

G(x, t)

t
,

where G is the solution to the corresponding equation (1.1) subject toG(x, 0) = p·x.
Formula (1.13) can be used to numerically compute H(p), see [58, 70, 90].

Perspective 2. In combustion literature and experiments, the ratio sT /sl is mea-
sured by the ratio between the surface area of the wrinkled flame front and the flat
one (unwrinkled). According to [60, equations (11) and (12)], the turbulent flame
speed at time t is approximately the volume average

uT (t) =

∫
[0,1]n

sl|DG(x, t)| dx

when the flow field V is 1-periodic, incompressible with mean zero (see [24] for
relevant discussions). Integrating (1.1) over x gives∫

[0,1]n
sl|DG(x, t)| dx = −

∫
[0,1]n

Gt(x, t) dx.
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Figure 4. Averaging fluctuations around a general flame front.

Then the time average of uT is

1

t

∫ t

0

uT (s) ds = −
∫
[0,1]n

(G(x, t)− p · x) dx
t

∼
t�1

−
∫
[0,1]n

G(x, t) dx

t
.

As noted in [60], an open problem is whether the time average of uT converges to
a constant as t ↑ ∞, or the validity of the spatially averaged version of (1.13). A
computational example in [60] based on solutions of Navier–Stokes equations for
the flow velocity V showed the convergence of the time-averaged uT .

The existence of H(p) usually leads to the following full homogenization result
in the single small scale situation [42]. Denote by ε the Kolmogorov scale. Change
variables

x → x

ε
, V (x) → V

(x
ε

)
and d → d ε

and denote by Gε(x, t) the corresponding solution to (1.1) with the prescribed initial
flame front G(x, 0) = g(x). Then

lim
ε→0

Gε(x, t) = Ḡ(x, t),

where Ḡ(x, t) solves an effective equation⎧⎨
⎩
Ḡt +H(DḠ) = 0

Ḡ(x, 0) = g(x).

Following standard notations, we write sT (p) = H(p). The effective equation says
that the averaged flame front will propagate with speed

v�n = H(�n)

along its normal direction �n. See Figure 4 for an illustration.

We shall focus on the following two topics closely related to a central theme in
combustion (how fast can it burn? ).

(1) Proving the existence of H(p) under physically meaningful assumptions.
This is equivalent to finding solutions or approximate solutions of the form
(1.11), which reduces to studying cell problems in homogenization theory
of HJE [41, 67]. Due to the lack of coercivity from a large flow, standard
PDE methods are insufficient. The Lagrangian approaches are introduced,
especially game theoretic methods in the presence of nonconvexity from
curvature and flame stretching effects.
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(2) Studying qualitative and quantitative properties of H(p) beyond existence,
a mathematical topic of physical impact. Below are two issues addressed
in a large body of combustion literature through theoretical or empirical
approaches.
(a) Dependence of the turbulent burning velocity on flow intensity. Pre-

cisely speaking, scale the flow field V to AV by a positive constant A
and inquire about the growth behavior of H(p) as A → +∞. This is
one of the major approaches to speed up flame propagation within a
combustion vessel.

(b) Understanding how the turbulent burning velocity relies on the curva-
ture and strain effect. In particular, an important problem in turbulent
combustion is whether adding the curvature correction will decrease
the prediction of the turbulent burning velocity. This is equivalent to
asking whether H is a monotonically decreasing function of the Mark-
stein length (or Markstein number) d in (1.4) that mainly depends on
the type of burning fuel.

Tackling (a) and (b) often calls for challenging analysis of the underlying dynam-
ical systems (e.g., on flow geometry and asymptotics), which can be made precise
without making general assumptions by studying specific flows with physical ori-
gin. The two common candidates to start with are shear flows and two dimensional
(2D) cellular flows. Even for 2D shear flow where the PDE under study basi-
cally reduces to ordinary differential equation (ODE), the associated mathematical
questions could be highly nontrivial when curvature terms are involved. In the next
step to analyze 3D flows, we choose a well-known example, the Arnold–Beltrami–
Childress (ABC) flow [7,29,35,47], a steady solution to the 3D Euler equation with
chaotic yet nonergodic streamlines. The integrable case of the ABC flow is the
2D cellular flow (a.k.a. BC flow). Recent progress in constructing ballistic orbits
[58, 77, 120] is necessary to address issue I for the inviscid G-equation in the ABC
flow.

For curvature and strain G-equations, our integrated Lagrangian and Eulerian
methodology established first for the inviscid G-equation continues to shine in a
two-player game framework in the non-convex setting. Even though the classi-
cal Euler-Lagrange duality via Legendre transform is missing, the success of our
blended Lagrangian-Eulerian analysis points to a subtle and hidden duality for fu-
ture research to explore in geometric PDEs and flows. On the other hand, for the
curvature G-equations in three and higher dimensions, the averaging (homogeniza-
tion) breaks down in large enough intensity shear flows [79], indicating a non-convex
phenomenon that an existence proof for the effective burning speed through volume
preserving (incompressible) flows is dimension and flow dependent.

Outline of the paper. In Section 2, we review the basics of viscosity solutions and
homogenization theory. In Sections 3–4, we discuss different types of G-equations,
present theoretical and numerical results for the basic and curvature G-equations
based on control and two-player game representations as well as PDE methods.
Section 5 gives a two-player differential game and PDE analysis for the strain G-
equation. Section 6 revisits other passive scalar flame propagation models related
to G-equation. Section 7 is a brief overview of stochastic homogenization and multi-
scale modeling of the basic G-equation in turbulent combustion. Conclusions are
in Section 8. The open problems appear along the way.
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2. Preliminary: Viscosity solutions and homogenization

For the reader’s convenience, we will review some basic concepts and techniques
about viscosity solutions and homogenization theory most relevant to problems
discussed in this paper. See [33, 38, 39, 104] for more details.

Consider a general second order Hamilton–Jacobi equation (HJE)

(2.1) ut +H(D2u,Du, u, x) = 0 on R
n × (0,∞).

Here the Hamiltonian H = H(M,p, z, x) is a function defined on (M,p, z, x) ∈
Sn×n × R

n × R× R
n, where Sn×n is the set of n× n symmetric matrices. We say

that the Hamiltonian H is coercive in the gradient variable p if for any fixed K ≥ 0,

lim
|p|→+∞

min
|M |+|z|+|x|≤K

H(M,p, z, x) = +∞.

Definition 2.1. An upper semicontinuous function u(x, t) defined on R
n × (0,∞)

is called a viscosity subsolution of (2.1) if for any φ ∈ C2(Rn × (0,∞)) and any
point (x0, t0) ∈ R

n × (0,∞), when

0 = φ(x0, t0)− u(x0, t0) ≤ φ(x, t)− u(x, t)

holds for (x, t) in a neighborhood of (x0, t0), we have

φt(x0, t0) +H(D2φ(x0, t0), Dφ(x0, t0), φ(x0, t0), x0) ≤ 0.

Definition 2.2. A lower semicontinuous function u(x, t) defined on R
n × (0,∞)

is called a viscosity supersolution of (2.1) if for any φ ∈ C2(Rn × (0,∞)) and any
point (x0, t0) ∈ R

n × (0,∞), when

0 = φ(x0, t0)− u(x0, t0) ≥ φ(x, t)− u(x, t)

holds for (x, t) in a neighborhood of (x0, t0), we have

φt(x0, t0) +H(D2φ(x0, t0), Dφ(x0, t0), φ(x0, t0), x0) ≥ 0.

Definition 2.3. A continuous function u(x, t) defined on R
n × (0,∞) is called

a viscosity solution of (2.1) if it is both a viscosity subsolution and a viscosity
supersolution.

Similarly, we can define viscosity subsolutions, supersoltutions, and solutions for
steady state equations

(2.2) H(D2u,Du, u, x) = 0 on U,

where U is an open subset of Rn.
Moreover, we say that (2.2) has approximation solutions if for any δ > 0, there is

a continuous function uδ(x, t) that satisfies the following inequality in the viscosity
sense

(2.3) −δ ≤ H(D2uδ, Duδ, uδ, x) ≤ δ on R
n × (0,∞).

The notion of viscosity solutions provides a rigorous mathematical framework
to describe the correct “physical” solution of the corresponding equations (2.1) or
(2.2) when classical solutions might not exist. Important examples include first
order HJ equations or second order degenerate elliptic equations arising from con-
trol theory or front propagation problems in applications. Heuristically, the name
comes from the vanishing viscosity method. To stabilize the equation numerically,
an artificial viscosity term is added to the equation, although often without clear
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physical meanings. Precisely speaking, given h > 0, let uh be a smooth solution (if
it exists) to

−hΔuh + uh
t +H(D2uh, Duh, uh, x) = 0 on R

n × (0,∞)

with given initial data uh(x, 0) = g(x). Then it is natural to expect that uh

converges to the correct physical solution of (2.1) as h → 0 (vanishing viscosity).
In fact, using maximum principle, it is not hard to prove that if

lim
h→0

uh(x, t) = u(x, t) locally uniformly in R
n × (0,∞),

then u is the viscosity solution to (2.1) subject to u(x, 0) = g(x). A similar limiting
process can also be carried out for the steady case (2.2) with given boundary data
u on ∂U . Although this vanishing viscosity limit is intuitively clear, the existence
of viscosity solutions is usually established by Perron’s method, which is more
convenient. Under suitable assumptions, uniqueness of viscosity solutions holds
with prescribed initial data or boundary data. We refer to [33] for more details.

Next, we review the basics of homogenization of nonlinear equations that started
from [67]. In our context, assume that H = H(M,p, x) is periodic in x and consider
the solution uε to the oscillatory equation

(2.4)

{
uε
t +H

(
εD2uε, Duε, x

ε

)
= 0 in R

n × (0,∞)

uε(x, 0) = g(x).

when the underlying environment has small scale ε > 0. Here we omit the de-
pendence on the u variable for convenience. Under proper assumptions, it can be
shown [42, 67] that

(2.5) lim
ε→0

uε(x, t) = u(x, t) locally uniformly in R
n × (0,∞).

Here u(x, t) is the unique continuous viscosity solution to the effective equation

(2.6)

{
ūt +H(Dū) = 0

ū(x, 0) = g(x).

The above limiting process is called homogenization. Given p ∈ R
n, the effective

Hamiltonian H(p) : Rn → R is the unique number such that the following cell
(corrector) problem

(2.7) H(D2v, p+Dv, x) = H(p) in R
n

has a continuous Z
n-periodic viscosity solution (or approximate solutions in the

sense of (2.3)) v(x), which is called a corrector. Here we would like to stress that
the solution v in general might not be unique even up to an additive constant.
When the original Hamiltonian H is from front propagation problems, the effective
Hamiltonian H has a clear physical meaning of effective propagation speeds in the
corresponding setting. For the mechanical Hamiltonian H(p, x) = 1

2 |p| + V (x),
the effective Hamiltonian and the associated cell problem have helped construct
quasi-modes of Schrödinger operators via various quantization procedures [43].

If the existence of the cell problem can be established (i.e., existence of effective
Hamiltonian), then the convergence (2.5) usually follows from the perturbed test
function method [41,42]. Moreover, comparison principle implies that if the initial
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value u(x, 0) = p · x, then

(2.8) − lim
t→+∞

u(x, t)

t
= H(p) for all x ∈ R

n.

Technically speaking, the key part is to establish the existence of the cell problem
(2.7). Below is the mechanism first introduced in [42, 67]: for λ > 0, let vλ be the
unique periodic viscosity solution of

λ vλ +H(D2vλ, p+Dvλ, x) = 0 in R
n.

Then show that

− lim
λ→0

λ vλ(x) = a constant for x ∈ R
n.

This constant, if it exists, is the effective Hamiltonian H(p). To prove the above,
it suffices to show that the oscillation of vλ is uniformly bounded:

(2.9) max
x,y∈Rn

|vλ(x)− vλ(y)| ≤ C

for a constant C independent of λ. The standard approach to prove the uniform
bound is to derive equicontinuity of vλ(x) for λ ∈ [0, 1] (e.g., uniform Hölder conti-
nuity [67]). Then v = limλ→0(vλ(x)− vλ(0)) (up to a subsequence if necessary) is
a solution to the cell problem.

However, when H is not coercive in the gradient variable p or is only degenerate
elliptic in the Hessian variable M , like the curvature G-equation, the equicontinuity
is usually not valid. There appears no systematic way to obtain (2.9). Customized
methods based on the structure of equations are often needed, often relying on
approximate solutions of the cell problem (2.7) in the sense of (2.3).

From a numerical point of view [38], the effective equation can be used to approxi-
mate the original oscillatory equation (2.4) where the computation is very expensive
in order to resolve the small scale ε. Of course, one has to first compute the effective
Hamiltonian H(p), which can be viewed as some sort of nonlinear averaging of the
original Hamiltonian. However, even for simple cases like H(p, x) = 1

2 |p|2+V (x) or
H(p, x) = a(x)|p|, the effective Hamiltonian does not have close-form formulas ex-
cept in 1D. Various numerical schemes [58,70,90] have been developed to compute
H(p) based on the large time limit (2.8).

Understanding nontrivial analytic properties of the effective Hamiltonian is ex-
tremely challenging and often requires deep tools beyond standard PDE techniques.
Such kinds of problems have been studied for decades in the areas of first passage
percolation in probability theory, stable norm/β-functions in geometry, and dy-
namical systems, which are essentially effective Hamiltonian in the corresponding
context. We refer to [105] and references therein for more discussion about such
connections. Nevertheless, there are not many relevant works in the PDE litera-
ture. See [57,106] for recent progress in this direction. In particular, it is surprising
to see that local properties of H could be dramatically different from the original
Hamiltonian. For example, when n = 2, for generic potential function V , the effec-
tive Hamiltonian H(p) associated with H(p, x) = 1

2 |p|2 + V (x) is piecewise 1D for

p in a dense open set U ⊂ R
2 ([122]).

Finally, we would like to mention that there is a large body of literature and ac-
tive research on homogenization of scalar conservation laws and Hamilton–Jacobi
PDEs in random environments (see [92,102,110] for early works). It is an interest-
ing question to explore how stochastic modeling of turbulent flows V in practical
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situations is related to typical mathematical assumptions in stochastic homogeniza-
tion. In this survey paper, we will mainly focus on the periodic setting, with the
stochastic aspects of G-equation briefly reviewed in Section 7.

3. Inviscid G-equation: The basic case

Let G(x, t) be the unique viscosity solution to the inviscid G-equation

(3.1)

{
Gt + |DG|+ V (x) ·DG = 0 on R

n × (0,∞),

G(x, 0) = g(x).

As a solution to a convex HJE, G(x, t) has a control formula [39]:

(3.2) G(x, t) = inf
α∈At

g(ξα(t)).

Here At is the set of measurable functions α = α(s) : [0, t] → B1(0) and ξα is the
Lipschitz continuous curve satisfying{

ξ̇α(s) = −V (ξα(s)) + α(s) for a.e. s ∈ [0, t]

ξα(0) = x.

See [39] for connections between general convex Hamilton–Jacobi equations and
control theory. We define the following reachability notion.

Definition 3.1. Given x, y ∈ R
n, we say that y is reachable from x within time

T if there exists a Lipchitz continuous curve ξ : [0, T ] → R
n such that ξ(0) = x,

ξ(T ) = y and |ξ̇(s) + V (ξ(s))| ≤ 1 for a.e. s ∈ [0, T ].

Then we have the following one-sided bound.

Lemma 3.2. Suppose that u is a viscosity subsolution to

|Du|+ V (x) ·Du ≤ C in R
n

for some fixed constant C. If y is reachable from x within time T , then

u(x) ≤ u(y) + CT.

Proof. For convenience, we may assume that u and the curve ξ connecting x and y
are both C1. Then

du(ξ(t))

dt
= Du · ξ̇ ≥ −V (ξ) ·Du− |Du| ≥ −C.

Hence

u(y)− u(x) =

∫ T

0

du(ξ(t))

dt
≥ −CT. �

3.1. Homogenization of inviscid G-equation. For convenience, we assume that
the flow field V is Z

n-periodic, C1 and incompressible (i.e., div(V ) = 0). The
incompressiblity assumption can be relaxed. Meanwhile, it is easy to give examples
of smooth V where homogenization fails. The following homogenization result of
inviscid G-equation was proved independently in [116] and [22] through distinct
methods. For ε > 0, let Gε(x, t) be the solution to

(3.3)

{
Gε

t + |DGε|+ V
(
x
ε

)
·DGε = 0 on R

n × (0,∞)

Gε(x, 0) = g(x).
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Theorem 3.3.

lim
ε→0

Gε(x, t) = Ḡ(x, t) locally uniformly on R
n × (0,∞).

Here Ḡ is the unique viscosity solution to the effective equation

(3.4)

{
Ḡt +H(DḠ) = 0 on R

n × (0,∞),

Ḡ(x, 0) = g(x).

H(p) ∈ C(Rn, [0,∞)) is a convex positive homogeneous function of degree one and
satisfies the enhancement property, i.e., H(p) ≥ |p|.

3.1.1. Sketch of proof. As mentioned in Section 2, the key is to prove the existence
of periodic solution or approximate solution to the cell problem for any given vector
p ∈ R

n:

|p+Dv|+ V (x) · (p+Dv) = H(p) in R
n.

Below we present the method in [116] with a slightly refined version in [119].

Step 1. Consider the λ-auxiliary equation for λ > 0:

λ vλ + | p+Dvλ|+ V (x) · (p+Dvλ) = 0.

The goal is to show that

lim
λ→0

λ vλ(x) = constant uniformly on R
n.

This will follow immediately if we can establish the uniform boundedness of the
oscillation:

max
x,y∈Rn

|vλ(x)− vλ(y)| ≤ C

for a constant C independent of λ. Due to the lack of coercivity, the standard
uniform Lipschitz continuity estimate of vλ is not available. To overcome that, we
consider

v̄(x) = lim sup
y→x, λ→0

λ vλ(y).

Then routine argument shows that v̄ is an upper semicontinuous solution to

|Dv̄|+ V (x) ·Dv̄ ≤ 0.

Integrating over the unit cube Q1 = [0, 1]n on both sides leads to∫
Q1

|Dv̄| dx = 0.

Accordingly, |Dv̄| ≡ 0 and v̄(x) = constant that is denoted by v∗.

Step 2. For x ∈ R
n, set

v(x) = lim inf
y→x, λ→0

λ vλ(y).

Due to the convexity of the Hamiltonian H(p, x) = |p|+ V (x) · p with respect to p,
hλ(x) = −vλ is a viscosity subsolution to

−λhλ + | p−Dhλ|+ V (x) · (p−Dhλ) ≤ 0.

Note that this is in general not true for viscosity solutions of nonconvex HJ equa-
tions. Similar to Step 1, lim supλ→0 λhλ(x) = −v(x) is a constant. Hence v(x) =
constant that is denoted by v∗.
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Obviously, v∗ ≤ v∗. It suffices to prove that

v∗ ≥ v∗

By choosing a suitable subsequence of λ, this follows from Step 3 and Lemma 3.2.

Step 3. It is easy to see that for any x ∈ R
n, there exist y ∈ R

n, r > 0 and T > 0
such that for every pair (x′, y′) ∈ Br(x) × Br(y), y

′ is reachable from x′ within
time T .

Remark 3.4. The above method and conclusion can be easily extended to the time
dependent case where V = V (x, t) and is periodic in (x, t). The key is to recover
Step 1, i.e., showing that the limsup is a constant. The other parts are similar.
In fact, assume that v̄(x, t) is periodic in both time and space and a viscosity
subsolution to

v̄t + |Dv̄|+ V (x, t) ·Dv̄ ≤ 0 on R
n × R.

As in Step 1, integrating with respect to both x and t on Q1× [0, 1] leads to Dv̄ = 0,
i.e., v̄ is constant in x. Then vt ≤ 0, which implies that v̄ is also constant in t due
to the periodicity in t.

3.1.2. Optimal convergence rate O(ε). We expect to obtain the optimal convergence
rate O(ε) if the initial data g is Lipschitz continuous:

(3.5) |Gε(x, t)− Ḡ(x, t)| ≤ O(ε).

This O(ε) optimal convergence rate has been established in [105] for general coer-
cive convex Hamilton–Jacobi equations. See [105] and references therein for other
important works in this topic.

Below we list the main steps with details left to the interested readers to explore.
It is enough to prove this for (x, t) = (0, 1).

Step 1. For x, y ∈ R
n, define a distance function

d(x, y) = the minimum time to reach y from x.

See [23, 81] for some interesting estimates about d(x, y) although we only need
d(x, y) < ∞ for our purpose. Note that d might not be continuous due to the lack
of coercivity.

Step 2. This is the key step. Due to [13] and the corresponding connections elab-
orated in [105], there exists a continuous function d̄(x, y) such that∣∣∣εd(0, x

ε

)
− d̄(0, x)

∣∣∣ ≤ Cε|x|

for a constant C independent of ε. We want to point out that to establish the
upper bound εd

(
0, x

ε

)
≤ d̄(0, x) + Cε|x| is not very hard. The main difficulty is to

verify the other direction that relies on a surprising and beautiful cutting lemma
[13, Lemma 2]. Then (3.5) should follow by establishing connection between (3.2)
and the control formulation of the solution to the effective equation (3.4) by the
approach in [81].
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3.2. Explicit formula of H(p) in 2D shear flows. For 2D shear flow V (e.g., the
flow within a slot burner), we obtain the explicit formula of H(p). Let V (x1, x2) =
(0, f(x1)) for a continuous periodic function f : R → R. Given p = (a, b), the
corresponding cell problem reduces to the ODE:√

(a+ v′(y))2 + b2 + b f(y) = H(p),

where v : R → R is a periodic Lipschitz continuous function. Then

|a+ v′(y)| =
√
(H(p)− b f(y))2 − b2.

It is not hard to derive that

(1) when |a| ≤
∫ 1

0

√
(M − bf(y))2 − b2 dy,

H(p) = M = |b|+max
R

b f ;

(2) when |a| >
∫ 1

0

√
(M − b f(y))2 − b2 dy, H is given by the following implicit

formula

|a| =
∫ 1

0

√
(H(p)− b f(y))2 − b2 dy.

The computation is similar to that in [67] for H(p, x) = |p|2 +W (x). The
detail is left to interested readers.

3.3. Growth law of H(p) in 2D cellular flows. In general, the behavior of
H(p) as a function of p is quite complicated and does not possess any formula in
closed form. Here we focus on how H(p) depends on the large flow intensity, an
extensively studied issue in combustion literature. Precisely speaking, for A > 0,
let V (x) → AV (x) and consider the corresponding H(p,A) in the cell problem

|p+Dv|+AV (x) · (p+Dv) = H(p,A) in R
n.

Question 1. What is the growth pattern of H(p,A) as A → +∞?

To derive a meaningful result, we need to look at physically interesting examples
of V . The first is a 2D Hamiltonian flow, the cellular flow with a typical form:

V (x1, x2) = (−Hx2
, Hx1

).

Here the stream function H = sin x1 sin x2. As mentioned before, this is an inte-
grable form (after suitable rotation) of the ABC flow [7, 35, 47], a steady periodic
solution to the 3D Euler equation. Using (2.8) and the control formulation (3.2),
it was proved in [117] that for any unit vector p ∈ R

2

(3.6)
Aπ(|p1|+ |p2|)
2 logA+ C2

≤ H(p,A) ≤ Aπ(|p1|+ |p2|)
2 logA+ C1

.

Here C1 and C2 are two constants independent of A and p. Below is an interesting
question:

Question 2. Does there exist a constant C such that∣∣∣∣H(p,A)− Aπ(|p1|+ |p2|)
2 logA+ C

∣∣∣∣ ≤ O(Aα)

for some α ∈ [0, 1)?
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This question is closely related to identifying the curvature effect discussed in
Section 4.

In numerical computation [60] and physical modeling [30, 54] of G-equation, a
viscosity term is often added (explicitly or implicitly), which leads to the viscous
G-equation:

−dΔG+ |DG|+AV (x) ·DG = 0.

Accordingly, a natural question is to identify the effect of viscosity term in lieu of the
curvature term. Let H(d, p, A) be the unique constant such that the corresponding
cell problem

−dΔv + |p+Dv|+AV (x) · (p+Dv) = H(d, p, A) in R
n

has a periodic solution v. Due to the presence of the Δv, the existence of H(d, p, A)
is well known (see [42]). Surprisingly, it turns out that the viscosity term will
dramatically slow down the effective burning velocity. Precisely speaking, Theorem
3.5 was proved in [69].

Theorem 3.5. For fixed d > 0 and V (x1, x2) = (−Hx2
, Hx1

) with H=sin x1 sin x2

sup
A≥0

H(d, p, A) ≤ Cd |p|

for a constant Cd depending only on d.

Below is the outline of the proof. Integrating both sides of the above cell problem
gives

H(d, p, A) =

∫
Tn

|p+Dv| dx.

Accordingly, we need to derive a uniform L1 bound of Dv. This is done in two
steps.

Step 1. Consider periodic solution T of the linear equation

−dΔT + AV (x) · (p+DT ) = 0 in R
n.

It was first established that L1 norms of D v and DT are comparable:

1

C
‖DT‖L1(T2) ≤ ‖D v‖L1(T2) ≤ C‖DT‖L1(T2)

for a constant C independent of A.

Step 2. Prove that the L1 norm of Dv is uniformly bounded

‖DT‖L1(T2) ≤ C.

This is achieved by (1) carefully using interior decay estimates of ‖DT‖L2 estab-
lished in [85]; and (2) delicate estimates of ‖DT‖L1 near the boundary {H = 0},
especially near corners, via suitable change of variables.

3.4. Growth law of H(p) in the ABC flow and Kolmogorov flow. In 3D in-
compressible flows, due to the presence of chaotic structures, it becomes much more
challenging to analyze the dependence of H(p,A) on A. The following asymptotic
result was proved in [118]:
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Theorem 3.6.

lim
A→+∞

sT (p,A)/A = max
σ∈Λ

∫
Tn

p · V (x) dσ

= max
ξ̇=V (ξ)

lim sup
T→+∞

ξ(T ) · p/T.

where Λ is the collection of all Borel probability measures on T
n which are invariant

under the flow ξ̇ = V (ξ).

Below is a basic question.

Question 3. For a given 3D periodic incompressible flow, determine whether

(3.7) lim
A→+∞

sT (p,A)

A
> 0

or, equivalently, whether H(p,A) grows linearly with respect to A.

This seemingly simple problem is, in general, very challenging when n ≥ 3 since it
requires identifying the long-time behavior of trajectories of ξ̇ = V (ξ) that usually
has chaotic structures. In particular, to prove the linear growth might require
finding unbounded trajectories with predictable long time behavior (e.g., periodic
or quasi-periodic when projected on the flat torus T

n). For example, if there is a
periodic trajectory with a rotation vector not perpendicular to p, then (3.7) holds.

Now let us turn to a well-known example of 3D incompressible flow introduced
by Arnold, Beltrami, and Childress, the so-called ABC flow [7, 35, 47]. For x =
(x1, x2, x3) ∈ R

3,

V (x) = (A sinx3 + C cosx2, B sinx1 +A cosx3, C sin x2 +B cosx1),

where A, B and C are three positive constants. Note that the parameter A here is
not the flow intensity. If one of them is zero, the flow is up to a π/4 rotation the
integrable cellular flow. The ABC flow is a periodic steady solution of the Euler
equation. In fact, the ABC flow satisfies the Beltrami property (∇ = ( ∂

∂x1
, ∂
∂x2

, ∂
∂x3

)

denotes the gradient operator):

∇× V := curl(V ) = V.

Using the following identity in vector calculus

(V · ∇)V = ∇1

2
|V |2 − V × (∇× V ),

we have that the second term on the right hand side vanishes and

Vt + (V · ∇)V = (V · ∇)V = −∇P and ∇ · V = 0,

where the pressure P = − 1
2 |V |2. Hence ABC flow is a steady state of the 3D

incompressible Euler equation in fluid mechanics, see [35,47] for more discussion of
its dynamic properties.

In the symmetric case A = B = C = 1, the existence of noncontractable periodic
orbits (in the sense stated precisely below) has been proved by using symmetry of
the flow [120]:

Theorem 3.7. There exists t0 > 0 and a solution X(t) = (x(t), y(t), z(t)) to the
1-1-1 ABC flow system such that for each t ∈ R we have

X(t+ t0) = X(t) + (2π, 0, 0).
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Figure 5. Ballistic orbits, periodic (modulo 2π) along x-direction,
in 1-1-1 ABC (left) and Kolmogorov (right) flows.

Then Y (t) = (z(t), x(t), y(t)) and Z(t) = (y(t), z(t), x(t)) are clearly also solutions
and satisfy

Y (t+ t0) = Y (t) + (0, 2π, 0) and Z(t+ t0) = Z(t) + (0, 0, 2π).

The Kolmogorov flow with more chaotic phase space [29] is

(3.8) V (x, y, z) = (sin z, sin x, sin y),

for which similar ballistic orbits exist [58], e.g., those that extend along each coor-
dinate direction. See Figure 5 for an illustration of two such orbits extending in a
spiral manner in the x direction. For related studies, we refer to [58, 77].

Thanks to control formula (3.2), an immediate corollary is that in the 1-1-1 ABC
and Kolmogorov flows, the effective burning velocity grows linearly with respect to
the flow intensity A, i.e.,

lim
A→+∞

H(p,A)

A
> 0 for all unit vector p ∈ R

3.

Moreover, for p along a coordinate direction [58],

(3.9)
2π

t0
A+

2π

t0‖V ‖∞
≤ H(p,A) ≤ ‖V · p‖∞A+ 1.

With numerical estimates of period values t0 from the 1-1-1 ABC and Kolmorogov
flows, the following inequalities [58] follow from (3.9):

1.942A+ 0.793 ≤ H ≤ 2A+ 1, (1-1-1 ABC);

0.414A+ 0.239 ≤ H ≤ A+ 1, (Kolmogorov).

Connection with the Weinstein conjecture. To find noncontractible periodic
orbits for general Beltrami flows is much more difficult and is closely related to the
well known Weinstein conjecture due to the relation between Beltrami and Reeb
vector fields (see [78]). Given a Beltrami flow V (x), we can define a one-form on
the flat torus T3:

a = V (x) · dx.
Since curl(V ) = λV for a constant λ �= 0 (Beltrami property),

a ∧ da = λ |V (x)|2dx1 ∧ dx2 ∧ dx3.
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Accordingly, V
|V |2 is a Reeb vector field if V is nowhere vanishing. Owing to a

celebrated result of Taubes [103], V has at least one unbounded periodic orbit with
certain rotation vector q, which implies that

lim
A→+∞

H(p,A)

A
> 0, if p · q �= 0.

However, this is not enough to obtain linear growth along every unit direction.
Note that Taubes’s result does not apply to the 1-1-1 ABC flow that has critical
points.

4. Curvature G-equation

Recall the curvature G-equation

(4.1) Gt +

(
1− d div

(
DG

|DG|

))
+

|DG|+ V (x) ·DG = 0.

A fundamental question is to understand how the curvature term influences the
prediction of the effective burning velocity. The first step is to rigorously establish
the existence of effective burning velocity. Precisely speaking, given a unit direction
p ∈ R

n, let G(x, t) be the unique solution to

(4.2)

⎧⎨
⎩
Gt +

(
1− d div

(
DG
|DG|

))
+
|DG|+ V (x) ·DG = 0

G(x, 0) = p · x.

Question 4. Does there exist constant H(p) such that

(4.3) − lim
t→+∞

G(x, t)− p · x
t

= H(p) uniformly for x ∈ R
n?

Due to the presence of curvature term, this question is much harder than the
inviscid case (d = 0).

First, let us review some literature related to the homogenization of mean cur-
vature type equations. In other applications such as crystal growth (e.g. freezing
or melting of ice in pure liquid [65]), the curvature effect is also considered and the
motion law is given by (without the drift term V · �n and ()+ correction)

v�n = a(x)− dκ

for a continuous positive Zn-periodic function a(x). The above formula is known as
the Gibbs–Thomson relation. The ()+ is not needed in crystal growth since both
freezing and melting could occur. Equation (4.4) is the associated equation

(4.4) ut +

(
a(x)− d div

(
Du

|Du|

))
|Du| = 0 in R

n × (0,∞).

• When a(x) and Da(x) satisfy the following coercivity condition

min
Rn

{a2 − (n− 1)d|Da|} > 0,

the existence of effective propagation speed (a corresponding form of (4.3)
and full homogenization have been proved in all dimensions [68];
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• When n = 2, homogenization was proved in [18] for all positive a(x) by a
geometric approach. See [15] for a survey on relevant methods. Moreover,
counterexamples are constructed there when n ≥ 3. (See [21, 25, 32, 34, 49,
52,53,56] and the references therein for other related works and mathemat-
ical models.)

The proofs in [18, 68] rely heavily on the coercivity of HJE in the gradient vari-
able. A new approach needs to be developed to deal with the curvature G-equation
where coercivity is lost when the flow intensity |V | exceeds the local burning velocity
s0L = 1, which is the typical scenario in turbulent combustion.

4.1. Existence of average flame speeds in cellular flows. Let V : R2 → R
2

be the steady two dimensional cellular flow, e.g., V (x) = A (DH(x))⊥ with stream
function H(x1, x2) = sin(x1) sin(x2) and flow intensity A > 0. Theorem 4.1 is the
main theorem proved in [50].

Theorem 4.1. For any unit vector p ∈ R
2 and initial data G(x, 0) = p · x, there

exists a positive number HA(p) such that

(4.5)
∣∣G(x, t)− p · x+HA(p)t

∣∣ ≤ C in R
2 × [0,∞),

holds for solution G(x, t) of the curvature G-equation (4.1) with a constant C de-
pending only on d and V . In particular, this implies that

− lim
t→∞

G(x, t)

t
= H(p) locally uniformly for x ∈ R

2.

The effective Hamiltonian HA(p) corresponds to the effective burning velocity
(turbulent flame speed) in the physics literature [89, 93, 112]. The inequality (4.5)
says that to leading order, the solution of curvature G-equation (4.1) from the
planar initial data p · x develops into a traveling front p · x−HA(p)t.

Sketch of proof. Our proof combines PDE methods with a dynamical analysis of the
Kohn–Serfaty deterministic game characterization [63, 64] of (4.1) while utilizing
the streamline structure of the cellular flow. To the best of our knowledge, this is
the first time that a Lagrangian method has been used to prove homogenization
of second order PDEs. For the reader’s convenience, we will briefly review key
ideas, tools, and steps in the proof. Let us look for a solution to (4.1) of the form
p ·x−HA(p)t+v(x), where v is the corrector which satisfies the following equation
(a.k.a. cell problem) upon substitution:

(4.6)

(
1− d div

(
p+Dv

|p+Dv|

))
+

|p+Dv|+ V (y) · (p+Dv) = HA(p)

subject to 2π-periodic boundary condition in y. The spatial variable of (4.6) is
renamed y from the original x, since (4.6) becomes an independent problem that
relates the flow velocity to a large scale constant HA in the direction p. One may
view (4.6) as a nonlinear eigenvalue problem with v an eigenfunction (v± const.
still a solution) and HA(p) an eigenvalue for any given unit vector p.

As in [67], we start with a modified (a.k.a. discount) cell problem:

(4.7) λ v +

(
1− d div

(
p+Dv

|p+Dv|

))
+

|p+Dv|+ V (y) · (p+Dv) = 0,
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for a parameter λ > 0, so that the existence and uniqueness of solution v = vλ to
(4.7) is known by Perron’s method [33]. Also, the comparison principle applies to
(4.7) where we evaluate maximum of vλ(x) to find

(4.8) max
x∈R2

|λ vλ(x)| ≤ 1 + max
R2

|V |.

Our goal is to show that there exists a positive constant HA(p) such that

(4.9) lim
λ→0

λ vλ(x) = −HA(p) uniformly on R
2,

thereby showing that (4.6) follows in the λ ↓ 0 limit with further estimate on vλ.
In Sections 4.2 and 4.3, we explain the main ideas for proving (4.9) while omitting

the subscript A for simplicity. Let C be a constant depending only on d and V . A
key inequality we shall establish is

(4.10) max
x, y∈[−π,π]2

|vλ(x)− vλ(y)| ≤ C,

which implies the constant limit of (4.9). Due to the curvature term and nonco-
ercivity in the discount cell problem (4.7), it is not clear that the equicontinuity
of vλ, a standard yet stronger estimate than (4.10), even holds. Our strategy is:
(1) establishing one-way reachability from the associated game dynamics; and (2)
leveraging a minimum value principle (Eulerian) to compensate for the lack of full
reachability. The proof coherently integrates Lagrangian and Eulerian thinking. It
turns out that the game trajectory under player I’s strategy more or less reverses
the propagation route of flame, hence a generalized method of characteristics is at
work.

4.2. Two-player game representation and analysis. The deterministic game
representation of Kohn and Serfaty [63] applies to (4.1) on R

2 as follows. Consider
the discrete dynamical system {xn}Nn=1 ⊂ R

2 associated with the game starting
from x0 = x. For n = 0, 1, 2, .., N − 1, |�ηn| ≤ 1 and bn ∈ {−1, 1},{

xn+1 = xn + τ
√
2d bn �ηn + τ2 �η⊥n − τ2 V (xn)

x0 = x.

Player I controls direction via �ηn and player II controls sign via bn. Let g = g(x)
be a final payoff function. Player I (II) aims to minimize (maximize) g(xN ). If
both players proceed optimally, the value function u(x,Nτ2) := g(xN ), converges
to a solution of (4.1) with initial data g(x): limNτ2→t,τ→0 u(x,Nτ2) = G(x, t). See
Remark 4.7 for a high-dimensional version of the game.

Remark 4.2. We shall derive inequalities from one-way reachability in the flow
−V (x) via game trajectories {xn}Nn=1. A typical scenario to get an upper bound
of the game value is for player I to devise a strategy so that the game trajectory,
starting at a point P , ends at a point Q in a desired region U in N moves despite
any strategy of player II. Then

u(P,Nτ2) ≤ g(Q) ≤ max
q∈U

g(q).
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O π

π
Q

flow of −V (x) Qμ and Γμ

ΓμQμ

π

π

O

Figure 6. Flow lines of −V (left), two domains in the analysis
(right): Qμ and Γμ.

4.2.1. Reachability of game trajectory in and across cells. The one-way reachability
property of the game dynamics in the interior of cellular flow, whose quarter-cell
with streamline is shown in Figure 6 (left). The quarter-cell Q = [0, π]× [0, π] has
core Qμ = {x ∈ Q | H(x) > μ} and boundary region

Γμ = {x = (x1, x2) ∈ R
2 | min{|x1|, |x2|, |x1 − π|, |x2 − π|} < μ}.

for μ ∈ (0, 1]. Note that Qμ is −V flow invariant.

Lemma 4.3. Let μ ∈ (0, 1), then the level curve {x ∈ Q | H(x) = μ} is reach-
able from P1 ∈ Qμ within time T1 depending only on V . Each point P2 ∈ {x ∈
Q | H(x) = μ} is reachable from P1 within time C(1 + | log μ|) for a constant C
depending only on V .

The proof is based on construction of a game trajectory in Figure 7. The reach-
ability is only one way. If P1 is near the center of Q where H(P1) is close to 1
and the curvature on the level curve there exceeds 1, it is not reachable from P2.
This is different from the inviscid case (d = 0) where any two points are mutually
reachable.

The game trajectory can go across the quarter-cell boundary and reach any
adjacent quarter-cell. More precisely,

Lemma 4.4. There exists μ0 > 0 and T0 > 0 depending only on d and V such that
the set Q2μ0

is reachable from each point x ∈ Γμ0
within time T0.

The crucial part of Lemma 4.4 is that if the game trajectory is in the outside
portion of the quarter-cell boundary layer Γμ0

∩Qc, it can pass the boundary and
go inside Q, as shown in Figure 8, where S := (0, 1)2, Wα,δ := [−α, α] × [δ, 1 − δ],
for α > 0 and δ ∈ (0, 12 ). The proof relates an inward optimal game trajectory with
the outward motion of the zero level set through a PDE comparison argument.

Based on Lemma 4.4, one can further show that all quarter cells of cellular flow
are reachable by a game trajectory starting from one of them within a finite travel
time, which leads to Lemma 4.5.
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Figure 7. a game trajectory (in red) of Lemma 4.3.

S

Ω

Wα,δ

Figure 8. Game trajectory reaching a large enough interior region
Ω ⊂ S = (0, 1)2 from a thin rectangular boundary layer Wα,δ =
[−α, α]× [δ, 1− δ].

Lemma 4.5. Let G(x, t) be the unique solution of (4.1) with G(x, 0) = p · x.
There exist positive constants β and C depending only on d and V such that for all
(x, t) ∈ R

2 × [0,∞),

(4.11) G(x, t)− p · x ≤ −β t+ C
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and

(4.12) max
x∈R2

λ vλ(x) < −β

2
+ λC.

Inequality (4.11) follows from estimating travel times of game trajectories across
cells. Inequality (4.12) comes from constructing a supersolution to a time-dependent
variant of the discount cell problem (4.7) via inequality (4.11) where t corresponds
to 1/λ in (4.12). Applying inequality (4.12), we have from equation (4.7) for
λ < β/(4C),

(4.13)

(
1− d div

(
p+Dvλ
|p+Dvλ|

))
+

|p+Dvλ|+ V (y) · (p+Dvλ) ≥ β/4

implying the minimum principle: the minimum value of uλ := p ·x+vλ in a domain
can only be attained on its boundary.

Next we combine minimum principle with one-way reachability of the game tra-
jectory to prove inequality (4.10). First by (4.7)–(4.8), u = uλ is a viscosity sub-
solution of the stationary G-equation:

(4.14)

(
1− d div

(
Duλ

|Duλ|

))
+

|Duλ|+ V (y) · (Duλ) = 1 + max
[−π,π]2

|V |(y) := α,

for which the following inequality holds:

(4.15) uλ(x0) ≤ max
y∈S̄

uλ(y) + αT0

if a bounded set S is reachable from x0 via a game trajectory within time T0, and
S is invariant under −V flow. To see (4.15), consider w := uλ − α t so that w is
a subsolution of G-equation (4.1) with initial data G(x, 0) = uλ. By Remark 4.2
and the comparison principle, uλ(x0)− αT0 ≤ G(x0, N τ2) ≤ maxy∈S̄ uλ(y). Note
that if the game trajectory reaches S before time T0, then player I can just choose
�η = 0, which makes the trajectory flow within S until T0 due to the flow-invariance
of S.

By Lemma 4.3 and equation (4.15), for each point x ∈ ∂Qμ and each point

y ∈ Qμ, uλ(x) ≥ uλ(y)− Cμ for some constant Cμ > 0. Accordingly,

min
x∈∂Qμ

uλ(x) ≥ max
x∈Qμ

uλ(x)− Cμ.

By minimum principle: minx∈∂Qμ
uλ(x) = minx∈Qμ

uλ(x), and so

(4.16) max
x∈Qμ

uλ(x)− min
x∈Qμ

uλ(x) = max
x,y∈Qμ

|uλ(x)− uλ(y)| ≤ Cμ.

With the help of the minimum principle and more delicate analysis, similar esti-
mates hold over the cell boundary and in other quarter cells, and so key inequality
(4.10) holds. Theorem 4.1 follows with a sub/supersolution argument [50].

4.3. Existence of H for 2D incompressible flows. The proof for the case of
cellular flow in the last subsection can be modified to establish the existence of
H(p) for a large class of 2D incompressible flows [50], for example, if V = D⊥H for
a smooth periodic stream function H that has finitely many non-degenerate critical
points whose flow struture is well described in [8]. Also, the constant local burning
velocity can be replaced by a positive, continuous and periodic function a(x).

Question 5. Does (4.3) hold for all 2D periodic incompressible flows?



LAGRANGIAN, GAME THEORETIC, AND PDE METHODS 495

4.4. Bifurcation of effective burning velocity in 3D shear flows. A natu-
ral question is whether our robust approach for 2D incompressible flows can be
extended to 3D flows. Surprisingly, the effective burning velocity ceases to exist
when the flow intensity surpasses a threshold value (bifurcation) for general 3D
shear flows, the simplest class of 3D incompressible flows. Meanwhile, the existence
of effective burning velocity for 2D shear flows can be easily established by PDE
methods. The methods in this section mainly rely on PDE approaches. It is not
clear to us how to interpret it by 3D game theory (see Remark 4.7).

Assume that f is a Lipschitz continuous function satisfying

(4.17) {x ∈ R
2 : f(x) = max

R2
f} = Z

2, {x ∈ R
2 : f(x) = min

R2
f} = Z

2 + �q

for some �q ∈ R
n. Here we do not pursue the optimal assumptions on f . Consider

the 3D shear flow
V (x) = (0, 0, Af(x′)),

for x = (x′, x3) ∈ R
3 and x′ ∈ R

2, the constant A > 0 represents the flow intensity.
Then equation (4.2) is reduced to

(4.18)

⎧⎪⎨
⎪⎩
vt +

(
1− d div p+Dv√

p2
3+|p′+Dv|2

)
+

√
p23 + |p′ +Dv|2 +Ap3f(x

′) = 0,

v(x′, 0) = 0

for G(x, t) = v(x′, t) + p · x and p = (p′, p3) ∈ R
3 and p′ ∈ R

2.
For any p ∈ R

3 with p3 �= 0, denote by SH the set of all A ≥ 0 such that

(4.19) lim
t→∞

−G(x, t)

t
= H(p,A) for all x ∈ R

3

for a constant H(p,A).
For λ > 0, let vλ be the periodic continuous viscosity solution to the discount

λ-problem on R
2:

λvλ +

(
1− d div

p+Dvλ√
p23 + |p′ +Dvλ|2

)√
p23 + |p′ +Dvλ|2 +Ap3f(x

′) = 0.

Then (4.19) is equivalent to

lim
λ→0

λ vλ(x
′) = H(p,A), for x′ ∈ R

2.

Theorem 4.6 is proved in [79]:

Theorem 4.6. For any p ∈ R
3 with p3 �= 0,

SH(p) = [0, A0(p)]

for a constant A0(p) that is continuous with respect to p and A0(sp) = A0(p) for
any s > 0.

Consequently, Ā = minp∈R3 A0(p) is the bifurcation value for the full homog-
enization of the corresponding curvature G-equation with uniformly continuous
initial data.

Below, we explain how to characterize the bifurcation value A0(p). Consider the
cell problem without ()+ cutoff:

(4.20)

(
1− d div

p+Dṽ√
p23 + |p′ +Dṽ|2

)√
p23 + |p′ +Dṽ|2 +Ap3f(x

′) = H̃(p,A).
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By the Bernstein technique, it can be shown that, unlike the physical cutoff case,

for any given p ∈ R
3, there exists a constant H̃(p,A) such that the above equation

always has a C2,α periodic solution ṽ = ṽ(x). This can be viewed as a special

case of [68]. Moreover, H̃(p,A) − F (p)A is strictly decreasing for A ≥ 0 and
F (p) = maxx′∈R2(p3f(x

′)).

Apparently, if H̃(p,A) ≥ AF (p), the ṽ is also a solution to the equation with
physical cut-off:(

1− d div
p+Dṽ√

p23 + |p′ +Dṽ|2

)
+

√
p23 + |p′ +Dṽ|2 +Ap3f(x

′) = H̃(p,A).

Then A ∈ SH(p) and

lim
t→∞

−G(x, t)

t
= H̃(p,A).

Characterization of A0(p). For fixed p ∈ R
3, the bifurcation value A0(p) is the

unique number such that

(4.21) H̃(p,A0(p)) = F (p)A0(p).

Moreover,

H(p,A) = H̃(p,A) for A ∈ [0, A0(p)].

Hereafter, we reviewed main ideas of the proof. For convenience, we assume that
maxR2 f = 0 and p3 = 1. Then F (p) = 0.

Step 1. Using a comparison principle, we can deduce that the set sH is either [0,∞)
or [0, A0(p)] for a positive constant A0(p).

Step 2. We need to show that when A is large enough, H̃(p,A) < 0. The main
idea is that if that is not true, then we can construct a radial symmetric function
v(x) = g(|x|) satisfying(

1− d div
p+Dv√

1 + |p′ +Dv|2

)√
1 + |p′ +Dv|2 ≥ 1 for r ≤ |x| ≤ 2r

for small r or equivalently in terms of g : [r, 1
2 ] → R√

1 + (g′)2 − d

(
g′′

1 + (g′)2
+

g′

r

)
≥ 1 for r ∈ (r0, 3r0).

Both are in the viscosity sense. Moreover, g(2r) − g(r) ≥ 1. This will lead to a

contradiction when r is small due to the presence of the term g′

r on the left-hand
side. We note in passing that for the 2D shear flow, such a term is absent.

Step 3. Finally we need to verify the characterization (4.21), which will provide the
continuous dependence on p. It suffices to show that if limλ→0 λvλ(x) = 0, then

H̃(p,A) = 0. This can be done in two steps. Let uλ(x) = vλ(x) + p′ · x.

Step 4. Employing estimates of minimal surface-type equations established in [100],
we can show that as λ → 0, uλ − uλ(0) in R

2\Z2 locally and uniformly converges
to a function u that is a C2,α solution to(

1− d div
Du√

1 + |Du|2

)√
1 + |Du|2 +Af(x′) = 0 in R

2\Z2.
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Step 5. Using integration by parts through suitable test functions, the isolated
singularities Z

2 are proved to be removable at least in the viscosity sense. As a

result, compared to the cell problem without cutoff (4.20) leads to H̃(p,A) = 0.

Remark 4.7. The Kohn-Serfaty game can be naturally extended to higher dimen-
sions [63]. Consider the 3D case. For k ≥ 1, at the kth step, let τ be the time step
size.

(1) Player I chooses three vectors uk, vk and wk such that they are mutually
perpendicular and |uk| = |vk| = |wk| ≤ 1.

(2) Player II chooses bk = ±1 and ck = ±1 to replace (vk, wk) by (bkvk, ckwk).

(3) Update: Xk = Xk−1 + τ
√
2d (bkvk + ckwk) + τ2uk − τ2V (Xk−1).

The above generalization is based on the following fact: given a symmetric matrix
S and mutually orthogonal unit vectors u, v and q,

u · S · u+ v · S · v + q · S · q = tr(S).

The other parts are similar to the 2D case. A major difficulty of the 3D game is
that it is hard for player I to design a strategy to move between orbits of ξ̇ = −V (ξ)
due to the lack of topological restrictions. It is not clear to us if the bifurcation
phenomenon in shear flows is typical for 3D flows.

Question 6 is the first step towards understanding the role of game theory in 3D
flows.

Question 6. Can we find a game theoretic interpretation of the failure of homog-
enization in 3D shear flows?

Unlike shear flows, turbulent 3D flows often have swirl structures (eddies) which
help mix things well. Accordingly, an interesting and challenging problem is Ques-
tion 7.

Question 7. If V is the ABC flow, do we have

SH(p) = [0,∞)

for all p ∈ R
3?

4.5. Impact of curvature on effective burning velocity. A significant problem
in the combustion literature is to understand how the curvature term impacts the
prediction of the burning velocity. There is a consensus that curvature slows down
flame propagation [93]. Heuristically, this is because the curvature term smooths
out the flame front and reduces the total area of chemical reaction. Under the
G-equation model, this is equivalent to showing that the effective burning velocity
H is decreasing with respect to the Markstein number d, which has been observed
in combustion experiments [26] and numerical computations [60,62]. We would like
to point out that different Markstein number is achieved by the mixture of different
fuels in experiments [26]. To establish it rigorously from curvature G-equation is
challenging. Below we look at shear flows and 2D cellular flows.

4.5.1. Decrease with respect to the Markstein number in shear flows. Theorem 4.8
is the first mathematically rigorous result in this direction obtained in [72] for 2D
shear flows.
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Theorem 4.8. Let V (x) = (0, f(x′)) for x = (x1, x
′) ∈ R

2 and f is a nonconstant
periodic continuous function. Then for any fixed vector p = (p1, p2) ∈ R

2 with
p2 �= 0 and h(d) = H(p, d),

h′(d) ≤ 0 for d > 0

and

h′(d) < 0 when d is close to 0.

In particular, this implies that

H(P, d) < H(P, 0).

Sketch of proof. For 2D shear flows, the effective burning velocity H(p, d) always
exists and

H(p, d) = max
{
H̃(p, d), F (p)

}
.

If d is small, H(p, d) = H̃(p, d). Here F (p) = maxx′∈R(p2f(x
′)) and H̃(p, d) is from

(4.20) without ()+ correction. Hence it is enough to show that for fixed unit vector

p, H̃(p, d) is strictly decreasing with respect to d

Step 1. For convenience, write

E(d) = H̃(p, d).

Without loss of generality, we may assume that p2 = 1. Then the cell problem is
reduced to an ODE satisfied by φ(x′) = p1 + ṽ′(x′) for x′ ∈ R,

− dφ′

1 + φ2
+
√
1 + φ2 + f(x′) = E(d).

Taking derivative on both sides with respect to d, we obtained a linear ODE satisfied
by F = φd,

−dF ′(x′) + b(x′)F = E′(d)(1 + φ2) + φ′.

Here b(x′) = 2dφ′φ
1+φ2 + φ

√
1 + φ2.

Step 2. Due to the periodicity of F , E′(d) can be expressed by complicated inte-
grations involving φ and φ′. Then E′(d) < 0 can be proved by establishing the
following delicate inequality

eT
∫ T

0

f(t) e−t

∫ t

0

g(f(s)) es ds dt+

∫ T

0

f(t) e−t

∫ T

t

g(f(s)) es ds dt

≥ (eT − 1)

∫ T

0

f(t)g(f(t))) dt+
θ

2

∫
[0,T ]2

|f(t)− f(s)|2 dt ds

for any continuous positive function f ∈ C([0, T ]) and g ∈ C1((0, L]) for L =
max[0,T ] f satisfying g′ ≤ −θ for some θ ≥ 0.

Step 3. To prove the above inequality, we look at a suitable discrete form where
the question is reduced to finding maximum points of functions of finitely many
variables. Hence the conclusion can be derived by the simple fact that the gradient
vanishes at maximum points.

Note that the proofs in [72] heavily depend on 1D (or x′ ∈ R). Hence a natural
question is Question 8.
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Figure 9. Comparison of the homogenized Hamiltonian function
in the cellular flow amplitude A without curvature (H(p, 0, A), blue
line-star) and with curvature (H(p, 0.1, A), red dashed-line-circle)
by a finite difference method [70].

Question 8. Consider 3D shear flow V (x1, x2, x3) = (0.0, f(x1, x2)) and the asso-

ciated E(d) = H̃(p, d) for p = (p′, 1) ∈ R
3. Do we have

E′(d) < 0

for d > 0 and nonconstant f?

4.5.2. Slow down in 2D cellular flows. In case of 2D cellular flow, numerical com-
putation at d = 0.1 and different values of A (Figure 9) suggests that for fixed flow
intensity

(4.22) H(p, d, A) < H(p, 0, A)

and the gap
H(p, 0, A)−H(p, d, A)

increases as A increases.
It remains a very interesting question to prove (4.22) rigorously. Due to the

lack of smooth solutions, we cannot take the derivative of the equation to track the
change with respect to d as for the shear flows, i.e., the PDE method in Section
4.4 does not work. Accordingly, the only available tool we have is the game theory
interpretation. However, to prove (4.22) might require accurate analysis of the
game trajectory, which is particularly difficult given the hidden nonlinear stochastic
nature of the game. One hopes that when the flow intensity A gets large (the typical
scenario in turbulent combustion), the subtle curvature effect might be amplified
and become easier to capture. Thus, a more realistic question is Question 9.

Question 9. Do we have

lim inf
A→∞

(H(p, 0, A)−H(p, d, A)) > 0,

or do we actually have the limit equal to ∞?
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We can show that H(p, d, A) also grows like O(A/ logA) as in the inviscid case
(d = 0). Hence, finding the constant (if it exists) in Question 2 seems relevant.

5. Strain G-equation

Recall that G-equation with a strain term has the following form:

(5.1) Gt +

(
1 + d

DG · S(x) ·DG

|DG|2

)
+

|DG|+ V (x) ·DG = 0,

where S = DV+(DV )�

2 is the strain rate tensor. This is a noncoercive and noncon-
vex Hamilton–Jacobi equation (HJE). Again, we consider the existence of effective
burning velocity and its dependence on the constant d and flow intensity. It is well
known that solutions to nonconvex first-order HJEs can be interpreted by deter-
ministic two-person differential games [55] which will play important roles in our
analysis.

5.1. Shear flows. Consider the (n+ 1)-dimensional shear flow

V (x) = (0, 0, . . . , 0, f(x′))

for x = (x′, xn+1) ∈ R
n+1 and x′ ∈ R

n. Then for p = (p′, 1) ∈ R
n+1, the corre-

sponding cell problem is reduced to(
1 +

d(p′ +Dv) ·Df

1 + |p′ +Dv|2

)
+

√
1 + |p′ +Dv|2 + f(x′) = H(p′, d).

First, let H̃(p′, d) be the effective Hamiltonian when the ()+ correction is absent:(
1 +

d(p′ +Dṽ) ·Df

1 + |p′ +Dṽ|2

)√
1 + |p′ +Dṽ|2 + f(x′) = H̃(p′, d).

The existence follows directly from [67]. Since Df = 0 when f attains maximum,
it is easy to see that for all d ≥ 0

min
p′∈Rn

H̃(p′, d) ≥ 1 + max
Rn

f.

Hence ṽ is also a solution to(
1 +

d(p′ +Dṽ) ·Df

1 + |p′ +Dṽ|2

)
+

√
1 + |p′ +Dṽ|2 + f(x′) = H̃(p′, d).

Accordingly, H̃(p′, d) = H(p′, d), i.e., the cell problems with or without the ()+
corrections are the same for shear flows. Hence we write

(5.2)

(
1 +

d(p′ +Dv) ·Df

1 + |p′ +Dv|2

)√
1 + |p′ +Dv|2 + f(x′) = H(p′, d).

Here the corresponding Hamiltonian is

H(P, y) =
√
1 + |P |2 + dP ·Df(y)√

1 + |P |2

for (P, y) ∈ R
n × R

n. Note that H is not convex in the P variable. When n = 1,
H is quasiconvex in P , which is not true when n ≥ 2.

An interesting question is how the presence of the strain rate term impacts the
value of effect burning velocity H . Numerical results show that H is decreasing
with respect to the Markstein number d [60]. This is consistent with Theorem 5.1
which says that for 2D shear flows it reduces the value of H(p′, d).
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Theorem 5.1. Assume that n = 1 and fix p′ ∈ R. Then H(p′, d) is strictly
decreasing with respect to d ≥ 0 when H(p′, d) > 1 + maxR f = minp∈Rn H(p, d).

Proof. For simplicity, write E(d) = H(p′, d) and u(x) = p′x+v(x) for x ∈ R. Then

(5.3)

(
1 +

du′f ′

1 + |u′|2

)√
1 + |u′|2 + f(x′) = E(d).

Suppose that E(d) > 1 + maxR f . Note that for fixed x ∈ R, the Hamiltonian is

H(p, x) =
√
1 + p2 +

dpf ′(x)√
1 + p2

for (p, x) ∈ R× R. Then the derivative of H with respect to p has the form

Hp(p, x) =
p√

1 + p2
+

df ′(x)

(
√
1 + p2)3

=
p(1 + p2) + df ′(x)

(
√
1 + p2)3

.

Apparently, for fixed x there exists a unique p = p(x) such that Hp(p(x), x) = 0.
Then H attains minimum at p = p(x) and Hp(p, x) < 0 when p < p(x) and
Hp(p, x) > 0 when p > p(x). Thus H−1 is a well-defined smooth function on either
(−∞, p(x)] or [p(x),∞). Since

min
p∈R

H(p, x) ≤ H(0, x) = 1 < E(d)− f(x),

we have either

u′(x) > max{0, p(x)} for a.e. x ∈ R

or

u′(x) < min{0, p(x)} for a.e. x ∈ R.

Therefore u must be smooth due to the strict monotonicity of H on either side of
p = p(x). Without loss of generality, we assume that

u′(x) > max{0, p(x)} for all x ∈ R.

Then for fixed x

Hp(u
′(x), x) > 0 and u′(x) = H−1(E(d)− f(x), x).

Here for fixed x, H−1(·, x) is the inverse map of H(·, x) for p ≥ p(x). Let g(x) =
u′(x) > 0. Taking derivative of (5.3) with respect to d says that

Hp(g(x), x)gd +
gf ′√
1 + g2

= E′(d).

Since h(x) = 1
g(1+g2) > 0 and

Hp(g(x), x) =
g√

1 + g2
(1 + dh(x)f ′(x)) > 0,

we have that

gd =
E′(d)− gf ′√

1+g2

Hp
.

Thanks to
∫ 1

0
gd(x) dx = 0,

E′(d)

∫ 1

0

1

Hp(g(x), x)
dx =

∫ 1

0

gf ′√
1+g2

Hp
dx.
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Then
gf ′√
1+g2

Hp
=

f ′(x)

1 + dh(x)f ′(x)
,

so

∫ 1

0

gf ′√
1+g2

Hp
dx =

∫ 1

0

f ′(x)

1 + dh(x)f ′(x)
dx

=

∫ 1

0

f ′(x)

1 + dh(x)f ′(x)
dx−

∫ 1

0

f ′(x) dx

= −
∫ 1

0

dh(x)(f ′(x))2

1 + dh(x)f ′(x)
dx < 0. �

Question 10. Does Theorem 5.1 hold for n = 2 (or 3D shear flows)?

5.2. 2D cellular flows. Let

(5.4) V (x) = (−Hx2
, Hx1

)

for x = (x1, x2) ∈ R
2 and H = sinx1 sinx2. The corresponding strain tensor is

S =

(
−Φ 0
0 Φ

)
for Φ(x) = cosx1 cosx2. The strain G-equation with linear initial

data then takes form of

(5.5)

⎧⎨
⎩Gt +

(
1−AdΦ(x)

|Gx1
|2−|Gx2

|2
|DG|2

)
+
|DG|+AV (x) ·DG = 0

G(x, 0) = p · x.

Here A ≥ 0 represents the flow intensity. We expect the existence of effective
burning velocity for cellular flows to be established by a strategy similar to that in
Section 4 using two-player differential game (revisited in Section 5.3): (1) first prove
some one way reachability; and then (2) use the minimum value principle to take
care of the other direction. The argument will be simpler for the strain G-equation
due to the deterministic nature of its game dynamics valid in all dimensions. On the
other hand, compared with the curvature G-equation, one analytical disadvantage
of the strain G-equation is the lack of clear connection between the value of the
strain term and the geometric structure of the streamlines.

Question 11. Does the effective burning velocity exist in (5.5) for general incom-
pressible periodic flows in all dimensions?

Expressing the associated Hamiltonian

H(p, x) =

(
1−AdΦ(x)

|p1|2 − |p2|2
|p|2

)
+

|p|+AV (x) · p

in a min-max or max-min form of differential game (see (5.6) or (5.7) in Section
5.3) is not easy. It is helpful to first consider a simplified Hamiltonian such as

H̃(p, x) = (|p| −AdΦ(x)(|p1| − |p2|))+ +AV (x) · p

when applying a game theory interpretation and then employ comparison principle
to control solutions to the strain G-equation.
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For mathematical interest, let us also consider the equation without “+” correc-
tion {

G̃t +
(
1−AdΦ(x)

|G̃x1
|2−|G̃x2

|2

|DG̃|2

)
|DG̃|+AV (x) ·DG̃ = 0

G̃(x, 0) = p · x.
It was proved in [119] that there are different ranges of A in terms of the existence
and non-existence of effective Hamiltonian. This is quite different from the strain
G-equation where the existence of effective burning velocity is expected to hold for
all A > 0 . For simplicity, we state the result for p = e1 = (1, 0) below.

Theorem 5.2. There exists 0 < A0 < A1 such that

(i) (Homogenization and propagation range). If A ∈ [0, A0) for

A0 =
1

dmaxx∈Rn ‖S(x)‖ ,

then the effective Hamiltonian

lim
t→∞

− G̃(x, t)

t
= H(e1, A) for all x ∈ R

2

exists and is positive. The proof is similar to that of the basic case (sl = 1)
[116].
(ii) (Homogenization and trapping range). There exists A1 > 0 such that
when A ≥ A1,

lim
t→∞

− G̃(x, t)

t
= 0 for all x ∈ R

2.

The proof is based on a very delicate analysis of the game dynamics (in
Section 5.3) and the streamline structure of cellular flow.
(iii) (Intermediate nonhomogenization range). There exists A ∈ [A0, A1)
such that the effective Hamiltonian does not exist, i.e.,

lim
t→∞

− G̃(x, t)

t
, if it exists, depends on x.

More precisely, the limit (if it exists) is nonpositive when x is very close to
integer points Z2 and is positive when x is away from those integers points.

5.3. Two-person differential game for first order nonconvex HJEs. We
revisit the two-person zero sum differential game representation for first order non-
convex HJEs [55] based on notations and formulations from [40]. For simplicity, we
only consider HJEs for front propagation:{

ut +H(Du, x) = 0, on R
n × (0,∞),

u(x, 0) = g(x),

and refer to [40] for general HJEs. The equations in [40] are formulated as terminal
value problems. To be consistent with other parts of the paper, we adopt the initial
value problem. Assume that

(5.6) H(−p, x) = max
y∈Y

min
z∈Z

{f(x, y, z) · p} for all (x, p) ∈ R
n × R

n

or

(5.7) H(−p, x) = min
z∈Z

max
y∈Y

{f(x, η, μ) · p} for all (x, p) ∈ R
n × R

n.
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Here Y and Z are subsets of Rn. We also set

(1) M(t) as the set of measurable functions [0, t] → Y ;
(2) N(t) as the set of measurable functions [0, t] → Z;
(3) Γ(t) as the set of strategies of player I, i.e, nonanticipating mappings α :

N(t) → M(t) satisfying that for all s < t and z, z̃ ∈ N(t):{
z(s) = z̃(s) for a.e. 0 ≤ s ≤ t

impliesthatα(z)(s) = α(z̃)(s) for a.e. 0 ≤ s ≤ t;

(4) Δ(t) as the set of strategies of player II, i.e., nonanticipating mappings
β : M(t) → N(t) satisfying that for all s < t and y, ỹ ∈ M(t):{

y(s) = ỹ(s) for a.e. 0 ≤ s ≤ t

impliesthatβ(y)(s) = β(ỹ)(s) for a.e. 0 ≤ s ≤ t.

Given t > 0 and (y(s), β) ∈ M(t) × α(t) or (z(s), α) ∈ N(t) × β(t), let
x = x(s) : [0, t] → R

2 be a Lipschitz continuous curve satisfying x(0) = x
and
(i) if at each time s, player I moves first by choosing y(s) and player II

chooses a corresponding strategy β, then

ẋ(s) = f(x(s), y(s), β(y)(s)) for a.e s ∈ (0, t);

(ii) if at each time s, player II moves first by choosing z(s) at each time s
and player I chooses a corresponding strategy α, then

ẋ(s) = f(x(s), α(z)(s), z(s)) for a.e t ∈ (0, t).

In both situations, player I wants to minimize the final payoff g(x(t))
and player II aims to maximize g(x(t)). Assume that both players play
optimally, [40, Theorem 4.1] says that

u(x, t) = sup
β∈Δ(t)

inf
y∈M(t)

{g(x(t))} if (5.6) holds

or

u(x, t) = inf
α∈Γ(t)

sup
z∈N(t)

{g(x(t))} if (5.7) holds.

In particular, if H satisfies the Issacs condition [55]:

max
y∈Y

min
z∈Z

{f(x, y, z) · p} = min
z∈Z

max
y∈Y

{f(x, η, μ) · p},

then

sup
β∈Δ(t)

inf
y∈M(t)

{g(x(t))} = inf
α∈Γ(t)

sup
z∈N(t)

{g(x(t))},

which says that the game value is the same regardless of which player
moves first as long as both of them play optimally.

Compared with the curvature G-equation, the strain G-equation has advantages
(first order with a game formula in R

n) and disadvantages (harder to discern useful
strategies for estimates and leverage streamline properties in the flow). A reasonable
first step towards the open question in Section 5.2 via the differential game here is
to look at flows where some knowledge of streamlines is available, such as cellular
flows in 2D, and ABC and Kolmogorov flows in 3D.
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6. Other passive scalar combustion models

In this section we briefly review two other ways to model the turbulent flame
speeds based on the following reaction-diffusion-advection (RDA) equation

Tt + V (x) ·DT = dΔT +
1

τr
f(T ),

T (x, 0) = T0(x), x ∈ R
n,(6.1)

where T represents the reactant temperature, D is the spatial gradient operator,
V (x) is a prescribed fluid velocity, d is the molecular diffusion constant, f is a
nonlinear function and τr is the reaction time scale. Among different nonlinearities,
a popular choice is Fisher–Kolmogorov–Petrovsky–Piskunov (FKPP) reaction. A
prototypical example is f(T ) = T (1− T ) (see [114] for more details). The reaction
term f corresponds to the L1 term sl|Du| in G-equation model.

(1) In (6.1), the effective burning velocity along any unit vector p ∈ R
n is

the minimal spreading speed c∗p from nonnegative initial data. Similar
to G-equation, two active research topics are (1) the existence of c∗p; and
(2) how it depends on the flow intensity if V is scaled to AV (x). We
refer to [10, 11, 17, 31, 46, 51, 71, 80, 82–84, 86, 95–98, 109, 113–115, 126, 127]
and references therein, among others. A comparison between (6.1) and
G-equation was studied in [118].

(2) An inviscid model was derived in [73] from (6.1) with FKPP reaction in
the scaling regime

κ = d ε, τr = ε and V = V
( x

εα

)
for α ∈ (0, 1) and a small ε > 0 by assuming that the flame thickness is
much smaller than the turbulence scale. Then the turbulent flame speed
along direction p is given by

cT (p) = inf
λ>0

f ′(0) +H(pλ)

λ
.

Here H(p) is the effective Hamiltonian associated with the following cell
problem: for each p ∈ R

n, there is a unique number H(p) such that the
inviscid quadratic HJE equation below has a periodic viscosity solution
w(x) ∈ C0,1(Tn)

(6.2) d |p+Dw|2 + V (x) · (p+Dw) = H(p) in R
n.

We refer to [37] and [117] for comparison with the G-equation model.

If the flame is burning through a material at rest (i.e., V = 0) and f(r) = 1
ε g(

r
ε )

for a suitable nonnegative function g ∈ C1
0 (0, 1), reaction-diffusion equation (6.1)

tends to an interesting free boundary problem as ε → 0 ([20])

(6.3)

⎧⎨
⎩
ut −Δu = 0 in {u > 0}

|Du| = 1 in ∂{u > 0}.

Existence and regularity of the solution u have been studied in [20], among others.
Moreover, this singular limit and the corresponding homogenization problem has
been considered in [16, 17] for a generalized version when (6.3) has an advection
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term in the homogeneous media. (Also, see [19] for a survey on other scaling related
to the stationary version of the above equation and phase transition problems.)

7. Basic stochastic G-equation

The existence of average front speeds in the basic G-equation

(7.1) Gt + |DG|+ V (x, ω) ·DG = 0,

with a stochastic incompressible vector field V (x, ω) (where ω is the random sam-
pling variable) has been studied via homogenization [14,23,81]. Theoretical and nu-
merical studies in physics and engineering literature include [28,59,60,101,121,124],
among others.

Due to lack of compactness, stochastic flows or random media have extreme
behavior and cause additional difficulty on the large scale so that homogenization
can fail even in the coercive and convex Hamilton–Jacobi equations ([115, Chapter
4] and references therein). Hence technical assumptions on the random field are
needed. Stochastic homogenization of HJE in several space dimensions was first
proved in [102] and [92] in the coercive, convex, and stationary ergodic setting.
The strategy is to first find suitable subadditive quantities, then apply the subaddi-
tive ergodic theorem instead of relying on corrector problems to obtain an effective
quantity (often equal to the dual of the effective Hamiltonian), and finally recover
the effective Hamiltonian via duality. In statistical mechanics, such a method was
developed in the study of first passage percolation through the connectivity func-
tion to establish the existence of limiting shapes [2, 61], which can be viewed as a
discrete propagation problem associated with the Hamiltonian H(p, x) = a(x, ω)|p|.
This method, however, does not work for a nonconvex HJE that requires completely
different approaches and might fail in general [45, 125]. To the best of our knowl-
edge, the only available method to homogenize nonconvex HJEs under the general
stationary ergodic setting is to first identify the shape of the effective Hamiltonian
and then build customized correctors [5,6,48,91]. When i.i.d type assumptions are
imposed, approaches from first passage percolation can be used [4, 45]. We would
like to mention that the periodic setting is a special case of the general stationary
ergodic situation, but periodicity is on the opposite side of decorrelation.

7.1. Homogenization analysis. As in the case of periodic flows, the control for-
mulation and the reachability concept play an essential role. The key quantity is
the minimal travel time τ (x, y, ω) for the control trajectory ξα(s) to connect two
points x = ξα(0) and y = ξα(τ ). In two dimensions, the incompressible flow is
given by V = (−Ψy,Ψx), Ψ a stream function. Under stationarity, ergodicity, and
a third order moment condition of Ψ (i.e., E[|Ψ(0)|3] < +∞), the scaled τ (0, r y, ω)
as a function of r ∈ R is subadditive, and r−1 τ (0, r y, ω) converges at large r to a
deterministic function q = q(y) almost surely by the subadditive ergodic theorem
in [81]. Then homogenization similar to Theorem 3.3 holds with probability one
based on control formula (3.2). The effective Hamiltonian is recovered from q̄ by
duality (Legendre transform):

(7.2) H̄(p) = sup{p · y : y ∈ R
d, q̄(y) = 1}.

That H̄ being convex and homogeneous of degree one follows from (7.2), as it is
the supremum of a family of linear functions of p.
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In dimensions higher than two, results in [81] extend under certain assumptions
of τ (x, y, ω) when |x−y| diverges. Through a refined analysis of τ and its long-time
behavior along a selected random sequence of times, [23] removed these assump-
tions and proved homogenization under V = V (x, ω) being stationary, ergodic,
divergence free, and zero mean. The subadditive techniques extend to problems
involving time-dependent flows. For space-time flows V = V (t, x, ω), with a quan-
titative estimate of reachability of any two points by a controlled path, [14] proved
the almost sure homogenization of (7.1) under uniform bound (supt,x,ω V < ∞),
stationarity, finite time decorrelation, small mean, Lipschitz continuity and incom-
pressibility. As in periodic flows of Section 3, the reachability under control in the
stochastic flows is both ways for any two points. The relatively strict finite time
decorrelation assumption in [14] has been relaxed to allow the infinite temporal
range of dependence of the space-time flow V in a recent work [123] based on a
nonautonomous subadditive theorem.

The travel time approach in [23,81] is fully Lagrangian and bypasses the corrector
problem entirely. It relies on duality to come back to H̄. The duality is lost however
in a nonconvex HJE (e.g., when the strain rate is considered in G-equation), and it
is open what would replace duality for a fully Lagrangian (corrector free) method
to work.

Question 12. Can homogenization be established for strain G-equation for some
interesting stochastic flows? A basic example is 3D random shear flow.

7.2. Formal analysis and numerical and physical experiments. Formal re-
normalization group and scaling analysis [28, 121] for basic stochastic G-equation
(7.1) showed that H̄ = H̄(A) scales as O(A/

√
logA) at large A for a random

incompressible flow of the form AV (x, t, ω) in three dimensions. In aqueous auto-
catalytic chemical reaction experiments on four different multiscale flows, namely
Hele–Shaw, capillary wave, Taylor–Couette, and vibrating-grid flows [1,94,99], the
theory [121] and a sublinear power law fit reach good agreement with measurements
in the range of flow intensities scaled by sl (denoted by u′/sl, u

′ := A is the flow
intensity) in Figure 10.

In view of the asymptotic law O(A/ logA) in BC (cellular) flows [118] and the
law O(A) in ABC and Kolmogorov flows [58,120], we see that the presence of con-
tinuously many scales in stochastic flow [28,121] indicates the absence of structures
such as closed streamlines (in BC/cellular flows) and ballistic orbits (in ABC and
Kolmogorov flows) as a plausible explanation of the O(A/

√
logA) enhancement. A

rigorous study awaits to be carried out to discover the mathematics of this long-
standing random phenomenon.

Curvature dependence of flame speeds remain an active research topic in com-
bustion science today [62]. With the increasing concern of global warming, new
combustion systems aim specifically to reduce or eliminate greenhouse gas emis-
sions. Since carbon dioxide is a key greenhouse factor, fuels without carbon content,
such as hydrogen and ammonia, are promising alternatives but come with new chal-
lenges, such as widened range of flammability, high flame speed and low activation
energy for ignition [107]. In [62], premixed flames subject to turbulent disturbances
and harmonic oscillation are studied experimentally and computationally. These
flames come from mixtures of methane/hydrogen/air and are stabilized on an os-
cillating holder to consistently produce harmonic wrinkles for studying curvature
effects. The direct numerical simulations are also conducted for a range of flow
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Figure 10. Comparison of propagation speeds (sT /sl) of wrinkled
aqueous autocatalytic reaction fronts in Hele–Shaw, capillary wave,
Taylor–Couette and vibrating-grid flows [1, 94, 99] along with a
prediction by [121] and a sublinear power-law fit (applied only to
data at u′/sl > 2) in the range [0.1, 1000] of scaled flow intensity.

intensities. The turbulent flame speed and the Markstein length are characterized
via the basic G-equation as a reduced order model. A power law relating turbulent
flame speed to the ensemble-averaged flame curvature in the curved flame regions
is observed in [62].

Likewise, flow-induced flame stretch, a fundamental quantity measuring the rate
of change of flame surface area, continues to receive attention from experimental
measurements to direct simulations (see [108] and references therein).

8. Conclusions

We have reviewed mathematical tools for averaging (homogenizing) level-set G-
equations arising in turbulent combustion. As curvature and flame stretch effects
are included, the G-equations become nonconvex and noncoercive. We showed how
to leverage Lagrangian ideas (e.g., reachability of control and game trajectories) to
compensate for the lack of compactness in the Eulerian (viscosity solution) frame-
work to prove the existence and analyze qualitative properties of average flame
speeds in prototypical (shear, BC, ABC, and Kolmogorov) flows. We discussed
growth laws of flame speeds as flow intensities become large based on the stream-
line structures of the ambient fluid flows. We explored physical background and
proposed open problems for further research in this emerging area of game theoretic
analysis of nonconvex and noncoercive geometric PDEs in complex advection.
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[123] Y. Zhang and A. Zlatoš, Homogenization for space-time-dependent KPP reaction-diffusion
equations and G-equations, Calc. Var. Partial Differential Equations 62 (2023), no. 9, Paper
No. 248, 22, DOI 10.1007/s00526-023-02589-1. MR4655793

[124] J. Zhu and P. Ronney, Simulation of front propagation at large non-dimensional flow dis-
turbance intensities, Combustion Science and Technology, 100(1):183–201, 1994.

[125] B. Ziliotto, Stochastic homogenization of nonconvex Hamilton–Jacobi equations: a coun-
terexample, Comm. Pure Appl. Math. 70 (2017), no. 9, 1798–1809, DOI 10.1002/cpa.21674.
MR3684310
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