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Introduction

This will be a year long course on holomorphic functions and complex manifolds. A very
rough outline:

• Holomorphic functions of 1 complex variable.

• Holomorphic function of several complex variables.

• Newlander-Nirenberg Theorem

• Sheaf cohomology.

• Riemann surfaces.

• Higher dimensional complex manifolds.

1 Lecture 1

1.1 Cauchy’s formula in one complex variable

For now, just consider f : U → C, where U ⊂ C is an open set. We write z ∈ U as z = x+iy.
Assume that f , as a mapping from R2 → R2, is differentiable. This means that, for each
z ∈ U , there exists a linear mapping Lz : R2 → R2 such that

lim
h→0

∥f(z + h)− f(z)− Lzh∥
∥h∥

= 0. (1.1)
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This implies that the partial derivatives of f exist. Conversely, if the partial derivatives exist
and are continuous at z, then the mapping Lz exists. Writing

f(x, y) =

(
u(x, y)
v(x, y)

)
, (1.2)

we have that

Lz =

(∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
. (1.3)

We say that f is complex differentiable at z ∈ U if there exists complex number cz ∈ C such
that

lim
h→0

∥f(z + h)− f(z)− cz · h∥
∥h∥

= 0. (1.4)

This is a much stronger condition than (1.1). If such a cz exists, then

cz = lim
h→0

f(z + h)− f(z)

h
≡ ∂f

∂z
. (1.5)

Note that if f is complex differentiable at z, writing cz = c1 + ic2 and h = h1 + ih2, we have

czh = c1h1 − c2h2 + i(c2h1 + c1h2) (1.6)

and

Lzh =

(
uxh1 + uyh2
vxh1 + vyh2

)
, (1.7)

so we see that (1.1) is satisfied and necessarily ux = vy and uy = −vx.
We say that f is holomorphic in U if it is C1 and satisfies the Cauchy-Riemann equations:

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
. (1.8)

Defining the differential operators

∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
,

the Cauchy-Riemann equations are equivalent to
∂

∂z̄
f = 0, where f = u + iv. If f is holo-

morphic, then f is complex differentiable at any z ∈ U , and we have

cz =
∂

∂z
f. (1.9)

5



Definition 1.1. We say that f is complex analytic in U if for each z0 ∈ U , there exists a
power series expansion

f(z) =
∞∑
k=0

ak(z − z0)
k, (1.10)

which converges absolutely and uniformly in a disc ∆(z0, ϵ) around z0, for some ϵ > 0.

We want to show the equivalence of holomorphicity and complex analyticity. For this,
we need the following; see [GH78, page 3].

Proposition 1.2 (Cauchy-Pompieu Formula). Let Ω ⊂ C be a bounded domain in C with
C1 boundary. For z ∈ Ω and f ∈ C1(Ω), we have

f(z) =
1

2πi

∫
∂Ω

f(w)dw

w − z
+

1

2πi

∫
Ω

∂f(w)

∂w̄

dw ∧ dw̄
w − z

, (1.11)

where the boundary has the counterclockwise orientation.

Proof. The 1-form

η =
1

2πi

f(w)dw

w − z
, (1.12)

satisfies

dη =
1

2πi

∂f

∂w̄

dw̄ ∧ dw
w − z

. (1.13)

Apply Stokes’ Theorem to the annular domain Ω \∆(z, ϵ), to get∫
∂(Ω\∆(z,ϵ))

η =

∫
Ω\∆(z,ϵ)

dη. (1.14)

The left hand side of (1.14) is ∫
∂Ω

η −
∫
∂∆(z,ϵ)

η. (1.15)

If dη ∈ L1(Ω), then the right hand side of (1.14) is∫
Ω

dη −
∫
∆(z,ϵ)

dη. (1.16)

Write w = z + reiθ, we estimate∣∣∣ ∫
∆(z,ϵ)

dη
∣∣∣ ≤ ∫

∆(z,ϵ)

|dη| ≤ C

∫
∆(z,ϵ)

∣∣∣dw̄ ∧ dw
w − z

∣∣∣ ≤ C

∫ ϵ

0

∫ 2π

0

dr ∧ dθ < C ′ϵ, (1.17)
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so dη is obviously in L1(Ω), and taking the limit as ϵ→ 0 then shows that∫
Ω

dη =

∫
∂Ω

η − lim
ϵ→0

∫
∂∆(z,ϵ)

η. (1.18)

With w = z + ϵeiθ, we compute∫
∂∆(z,ϵ)

η =
1

2πi

∫ 2π

0

f(z + ϵeiθ))ϵieiθdθ

ϵeiθ
=

1

2π

∫ 2π

0

f(z + ϵeiθ)dθ. (1.19)

Using the mean value theorem, we also have that∣∣∣f(z)− 1

2π

∫ 2π

0

f(z + ϵeiθ)dθ
∣∣∣ ≤ 1

2π

∫ 2π

0

|f(z + ϵeiθ)− f(z)|dθ ≤ Cϵ, (1.20)

which shows that

lim
ϵ→0

∫
∂∆(z,ϵ)

η = f(z), (1.21)

and we are done.

A consequence is the equivalence between holomorphic and analytic functions; see [GH78,
page 4].

Proposition 1.3. Let U be an open set in C. Then f is holomorphic in U if and only if f
is complex analytic in U .

Proof. If f is holomorphic in U the Cauchy-Pompieu formula in a small disc ∆ = ∆(z0, ϵ)
yields for z ∈ ∆,

f(z) =
1

2πi

∫
∂∆

f(w)dw

w − z
. (1.22)

Then expand

1

w − z
=

1

w − z0 + z0 − z
=

1

w − z0

1

1− z−z0
w−z0

(1.23)

=
1

w − z0

∞∑
k=0

(
z − z0
w − z0

)k

, (1.24)

with the sum converging absolutely and uniformly in any smaller disc. So the above yields
the power series expansion

f(z) =
∞∑
k=0

(
1

2πi

∫
∂∆

f(w)dw

(w − z0)k+1

)
(z − z0)

k, (1.25)

which also converges absolutely and uniformly in any smaller disc.
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For the converse, if f has a power series expansion, then each term in the power series
satisfies the Cauchy integral formula without solid integral. So then f does also by uniform
convergence. So we have

∂

∂z
f(z) =

∂

∂z

(
1

2πi

∫
∂∆

f(w)dw

w − z

)
=

1

2πi

∫
∂∆

f(w)

(
∂

∂z

1

w − z

)
dw = 0. (1.26)

For more details, see [GH78, page 4].

Definition 1.4. We wil let Ω ⊂ C be a bounded domain with C1 boundary. If u is holo-
morphic in an open set Ω, then we write u ∈ O(Ω).

2 Lecture 2

2.1 Some basic results in one complex variable

First, let’s recall the basic result about differentiating under an integral.

Proposition 2.1. Let

f(z) =

∫
Ω

a(z, w)dw ∧ dw. (2.1)

(Note this notation does not mean that f is holomorphic in z or that a is holomorphic as a
function of 2 variables!). Assume that

1. a(z, w) ∈ L1(Ω), in the w variable.

2. ∂a
∂z

and ∂a
∂z

exist for all z, for almost every w ∈ Ω.

3.
∣∣∂a
∂z

∣∣+ ∣∣∂a
∂z

∣∣ ≤ h(w), where h ∈ L1(Ω).

Then

∂f

∂z
=

∫
Ω

∂

∂z

(
a(z, w)

)
dw ∧ dw (2.2)

∂f

∂z
=

∫
Ω

∂

∂z

(
a(z, w)

)
dw ∧ dw. (2.3)

Proof. Recall that

∂f

∂z
=

1

2

( ∂
∂x

− i
∂

∂y

)
(Ref + iImf). (2.4)

The real part of the left hand side of (2.2) is

Re
(∂f
∂z

)
=

1

2

(∂Ref
∂x

+
∂Imf

∂y

)
(2.5)
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The real part of the right hand side of (2.2) is∫
Ω

1

2

(∂Re(a(x+ iy, w))

∂x
+
∂Im(a(x+ iy, w))

∂y

)
dw ∧ dw. (2.6)

Therefore we can consider real-valued functions, and prove for partials with respect to the
real variables x and y. We have that

∂f

∂x
(x, y) = lim

δ→0

f(x+ δ, y)− f(x, y)

δ
(2.7)

For δ ̸= 0, consider

f(x+ δ, y)− f(x, y)

δ
=

∫
Ω

a(x+ δ + iy, w)− a(x+ iy, w)

δ
dw ∧ dw. (2.8)

By the mean value theorem, given δ > 0, there exists x′ on the line segment from (x, y) to
(x+ δ, y) such that

a(x+ δ + iy, w)− a(x+ iy, w) =
∂a

∂x
(x′ + iy, w)δ, (2.9)

so ∣∣∣a(x+ δ + iy, w)− a(x+ iy, w)

δ

∣∣∣ ≤ ∣∣∣∂a
∂x

(x′ + iy, w)
∣∣∣

≤
∣∣∣∂a
∂z

(x′ + iy, w)
∣∣∣+ ∣∣∣∂a

∂z
(x′ + iy, w)

∣∣∣ ≤ |h(w)|.
(2.10)

We can do this for any sequence δn → 0, so the result follows from Lebesgue’s dominated
convergence theorem. The proof for the other derivative (2.3) is similar.

We next go through several corollaries of the Cauchy-Pompieu formula; see [Hör90, Chap-
ter 1] for more details.

Corollary 2.2. (Interior derivative estimates.) Let K ⊂ Ω be a compact subset. Then there
exist constant Ck, depending only upon K and Ω such that

sup
z∈K

∣∣∣( ∂
∂z

)k
u(z)

∣∣∣ ≤ Ck∥u∥L1(Ω), (2.11)

for all u ∈ O(Ω).
(Cauchy’s estimate in a disc.) In the case that u ∈ O(∆(z0, r0)), then there exists Ck,

depending only upon k such that for any r < r0, we have∣∣∣( ∂
∂z

)k
u(z0)

∣∣∣ ≤ k!

rk
∥u∥C0(∂∆(z0,r)), (2.12)

Proof. Choose a ψ ∈ C∞
0 (Ω) (compact support) such that ψ ≡ 1 in a neighborhood of K. If

u ∈ O(Ω), then

∂

∂z
(ψu) = u

∂

∂z
ψ. (2.13)
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Now we apply (1.11) to ψu in Ω to get

ψ(z)u(z) =
1

2πi

∫
Ω

u(w)
∂ψ(w)

∂w

dw ∧ dw̄
w − z

, (2.14)

Now consider

a(z, w) = u(w)
∂ψ(w)

∂w

1

w − z
, (2.15)

If z ∈ K, then |w− z| > δ > 0, since the support of ∂ψ/∂w is at a positive distance from K.
So using Proposition 2.1, we can differentiate under the integral as many times as we like,
and obtain ( ∂

∂z

)k
(ψu(z)) =

1

2πi

∫
Ω

u(w)
∂ψ(w)

∂w

( ∂
∂z

)k( 1

w − z

)
dw ∧ dw̄ (2.16)

If z ∈ K, then ψu is equal to u in a neighborhood of z, so (2.11) follows.
Next, from (1.25), we have a power series expansion

u(z0) =
∞∑
k=0

ak(z − z0)
k, ak =

1

2πi

∫
∂∆

u(w)dw

(w − z0)k+1
. (2.17)

Since ak =
u(k)(z0)

k!
, this clearly implies (2.12).

Corollary 2.3 (Liouville). A bounded entire function on C is constant.

Proof. Let u ∈ O(C). Choose z0 ∈ C, then for any r > 0, by (2.12), we have

|u′(z0)| ≤ Cr−1, (2.18)

which implies that u′(z0) = 0, therefore u is constant.

Exercise 2.4. The fundamental theorem of algebra follows from this: If a polynomial P (z)
has no zeroes, then 1/P (z) would be a bounded entire function, and therefore constant.
Details are left as an exercise.

Corollary 2.5. If un ∈ O(Ω) and un → u converges uniformly to u in the C0 norm as
n→ ∞ on compact subsets, then u ∈ O(Ω).

Proof. Let K ⊂ Ω, be a compact subset. Then given ϵ > 0, there exist N such that

sup
z∈K

|um(z)− un(z)| < ϵ, (2.19)

for m,n ≥ N . The difference um − un ∈ O(Ω). Corollary 2.2 implies that

sup
z∈K

∣∣∣ ∂
∂z

(um − un)(z)
∣∣∣ ≤ Cϵ. (2.20)
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This says that ∂un/∂z converges uniformly on K. But ∂un/∂z = 0, so the real partial
derivatives ∂un/∂x and ∂un/∂y converge uniformly. It is an elementary result that if a
sequence of functions converges uniformly, and the derivatives converge uniformly, then the
limit of the derivatives is the derivative of the limit. This implies that u ∈ C1 and

∂u

∂z
= lim

n→∞

∂un
∂z

= 0. (2.21)

Corollary 2.6 (Montel’s Theorem). If un ∈ O(Ω) and |un| is uniformly bounded on every
compact subset K ⊂ Ω, then some subsequence unj

converges uniformly on compact subsets
to a limit u ∈ O(Ω).

Proof. Corollary 2.2 yields a uniform bound on derivatives of un on any compact subset.
By Arzela-Ascoli Theorem, some subsequence converges to a limit u uniformly on compact
subsets. Then the previous corollary yields that u ∈ O(Ω).

Corollary 2.7 (The maximum principle). If f ∈ O(Ω), Ω is connected, and there exists a
z0 ∈ Ω such that |f(z)| ≤ |f(z0)| for all z ∈ Ω, then u is constant.

Proof. The set M ≡ {z ∈ Ω | |f(z)| = |f(z0)|} is closed by continuity. Take any z′ ∈ Ω such
that |f(z′)| = |f(z0)|. Then for any ϵ > 0 such that ∆(z′, ϵ) ⊂ Ω, (1.11) is

f(z′) =
1

2πi

∫
∂∆(z′,ϵ)

f(w)

w − z
dw. (2.22)

Writing w = z0 + ϵeiθ, this is

f(z′) =
1

2π

∫ 2π

0

f(z + ϵeiθ)dθ (2.23)

which implies that |f(z′)| = |f(z + ϵeiθ)| for all θ. Letting ϵ vary, we see that the set M is
also open, and since Ω is connected, M ≡ Ω. Therefore |f | is constant in Ω, and writing
f = u+ iv, we have

u2 + v2 = constant. (2.24)

Differentiating this yields

2uux + 2vvx = 0 = 2uuy + 2vvy. (2.25)

Using the Cauchy-Riemann equations gives

2uux − 2vuy = 0 = 2uuy + 2vux, (2.26)

This implies that

2u2ux − 2uvuy = 0 = 2uvuy + 2v2ux, (2.27)

and we get that

(u2 + v2)ux = 0, (2.28)

which implies that ux = 0, so u is constant. Then f is constant.
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Corollary 2.8 (Riemann’s removable singularity theorem). If u ∈ O(∆∗(z0, r)) where
∆∗(z0, r) = ∆(z0, r) \ {z0}, satisfies

u(z) = o(|z − z0|−1), as z → z0 (2.29)

Then u extends to a holomorphic function on ∆(z0, r).

Proof. Consider the function

v(z) =

{
(z − z0)

2u(z) z ∈ ∆∗(z0, r)

0 z = z0
(2.30)

We have

lim
z→z0

v(z)− v(z0)

z − z0
= lim

z→z0
(z − z0)u(z) = 0 (2.31)

by assumption, so v(z) ∈ O(∆(z0, r)) and therefore admits a power series expansion

v(z) =
∞∑
k=2

ck(z − z0)
k, (2.32)

since v(z0) = v′(z0) = 0. Then

u(z) =
∞∑
k=0

ck+2(z − z0)
k (2.33)

is the required extension.

3 Lecture 3

3.1 The Schwarz Lemma

Lemma 3.1 (Schwarz Lemma). Let u ∈ O(∆1(0)), and assume that u(0) = 0 and |u| ≤ 1.
Then |u′(0)| ≤ 1 and |u(z)| ≤ |z| for every z ∈ ∆1(0). Equality holds at some z0 if and only
if u(z) = c · z where c ∈ C satisfies |c| = 1.

Proof. Consdier v(z) = u(z)
z
. Then v ∈ O(∆1(0)) and v(0) = u′(0). Given z ∈ ∆1(0), choose

r > 0 such that |z| < r < 1. Then v is analytic in ∆r(0), and the maximum principle yields
that

|v(z)| ≤ sup
|w|=r

|v(w)| = sup
|w|=r

u(w)

w
≤ 1/r, (3.1)

Letting r → 1, we are done. The inequality being equality at some interior point implies
that v is a constant function with |v| = 1, equivalently u(z) = c · z.

12



Exercise 3.2. This is very useful, for example it can be used to show that any holomorphic
automorphism of the unit disc must be of the form

Ψ(z) = eiθ
z + c

1 + c̄z
, (3.2)

where θ ∈ R and c ∈ C satisfies |c| < 1. The proof is to compose with a mapping of the
above form to normalize so that Ψ(0) = 0, and then apply the Schwarz Lemma. Details left
as an exercise.

3.2 Meromorphic functions

Definition 3.3. For a domain Ω ⊂ C, we say that f ∈ M(Ω), or f is meromorphic in Ω, if
there is an open covering Uj of Ω such that f |Uj

=
gj
hj
, where gj and hj are in O(Uj) and hj

is not identically zero.

Note this is equivalent to saying that f has a Laurent series expansion near any z0 ∈ Ω
with only finitely many negative terms. That is we have

f(z) =
∞∑

k=−m

ak(z − z0)
k. (3.3)

If some coefficient ak ̸= 0 for k < 0, then z0 is called a pole. Note that the set of poles will be
some discrete subset {wj} of Ω. The finite sum of the negative terms is called the principal
part of f at z0. The order of f ∈ M(Ω) at z0 ∈ Ω is the least integer n ∈ Z such that the
coefficient an ̸= 0 in (3.3).

Example 3.4. The function e1/z is holomorphic on C∗ = C\{0}, but it is not meromorphic
on C. It has an essential singularity at the origin.

We will next consider a more general situation of functions which are holomorphic in an
annulus A(z0; r1, r2) = ∆(z0, r2) \∆(z0, r1) with 0 < r1 < r2.

Proposition 3.5. If f is holomorphic in a neighborhood of an annulus A(z0; r1, r2) with
0 < r1 < r2, then f admits a expansion

f(z) =
∞∑

k=−∞

ak(z − z0)
k. (3.4)

which converges uniformly on compact subsets of A(z0; r1, r2). Furthermore the coefficient
ak is given by

ak =
1

2πi

∫
∂∆(z0,r)

f(w)

(w − z0)k+1
dw (3.5)

for any r1 ≤ r ≤ r2. In particular, the expansion (3.4) is uniquely determined by f .
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Proof. Since f is assumed to be holomorphic in a neighborhood of the annulus, the Cauchy-
Pompieu formula yields for z ∈ A(z0; r1, r2),

f(z) =
1

2πi

∫
∂∆(z0,r2)

f(w)dw

w − z
− 1

2πi

∫
∂∆(z0,r1)

f(w)dw

w − z
. (3.6)

If |z − z0| < |w − z0| expand

1

w − z
=

1

w − z0 + z0 − z
=

1

w − z0

1

1− z−z0
w−z0

(3.7)

=
1

w − z0

∞∑
k=0

(
z − z0
w − z0

)k

, (3.8)

and if |z − z0| > |w − z0|,

1

w − z
=

1

w − z0 + z0 − z
=

−1

z − z0

1

1− w−z0
z−z0

(3.9)

=
−1

z − z0

∞∑
k=0

(
w − z0
z − z0

)k

, (3.10)

Substituting these expansions into (3.6), we formally obtain

f(z) =
1

2πi

∫
∂∆(z0,r2)

f(w)
1

w − z0

∞∑
k=0

(
z − z0
w − z0

)k

dw (3.11)

+
1

2πi

∫
∂∆(z0,r1)

f(w)
1

z − z0

∞∑
k=0

(
w − z0
z − z0

)k

dw (3.12)

If z ∈ A(z0; r1, r2) and |w − z0| = r2, then |z − z0| < r2 = |w − z0|, so (3.7) is valid. If
|w − z0| = r1, then |z − z0| > r1 = |w − z0|, so (3.9) is valid. Both series convergenge
uniformly on compact subsets of A(z0; r1, r2), so we have that

f(z) =
1

2πi

∞∑
k=0

(∫
∂∆(z0,r2)

f(w)

(w − z0)k+1
dw

)
(z − z0)

k (3.13)

+
1

2πi

∞∑
k=0

(∫
∂∆(z0,r1)

f(w)(w − z0)
kdw

)
(z − z0)

−(k+1). (3.14)

Note that, for any k ∈ Z, the function f(w)(w − z0)
k is holomorphic in a neighborhood of

the annulus, so by Stokes’ Theorem we have∫
∂∆(z0,r2)

f(w)(w − z0)
kdw −

∫
∂∆(z0,r1)

f(w)(w − z0)
kdw

=

∫
A(z0;r1,r2)

d
(
f(w)(w − z0)

kdw
)
= 0.

(3.15)
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So the integral ∫
∂∆(z0,r)

f(w)(w − z0)
kdw (3.16)

is independent of r, and we have

f(z) =
∞∑

k=−∞

(
1

2πi

∫
∂∆(z0,r)

f(w)

(w − z0)k+1
dw

)
(z − z0)

k. (3.17)

Remark 3.6. If f is holomorphic in a punctured disc ∆∗(z0, r), then it is holomorphic in an
annulus A(z0, r/2, r), so we also obtain an infinite Laurent series expansion at any isolated
singularity.

Definition 3.7. If f =
∑∞

k=−∞ ak(z − z0)
k, then the residue of f at z0 is

Resz0(f) = a−1. (3.18)

Corollary 3.8 (The Residue Theorem). Assume that f is holomorphic in Ω \ {z1, . . . , zm}.
Then ∫

∂Ω

f(z)dz = 2πi
m∑
j=1

Reszj(f) (3.19)

Proof. Since f is holomorphic in the complement (in Ω) of a union of balls around zj, by
Stokes’s theorem (like in (3.15) above), we see that∫

∂Ω

f(z)dz =
m∑
j=1

∫
∂∆(zj ,ϵ)

f(z)dz, (3.20)

for some ϵ > 0 (this is also known as Cauchy’s Theorem). By Proposition 3.5,∫
∂∆(zj ,ϵ)

f(z)dz =

∫
∂∆(zj ,ϵ)

∞∑
k=−∞

ak(z − zj)
kdz =

∞∑
k=−∞

ak

∫
∂∆(zj ,ϵ)

(z − z0)
kdz, (3.21)

since the series converges uniformly on ∂∆∗(zj, ϵ). However, letting z = zj + reiθ, we see
that ∫

∂∆(zj ,ϵ)

(z − zj)
kdz =

{
2πi k = −1

0 k ̸= −1
, (3.22)

and we are done.

Corollary 3.9 ( The argument principle). If f ∈ M(Ω) with no poles on ∂Ω, then∫
∂∆(z0,r)

zq
f ′(z)

f(z)
dz =

d∑
j=1

mjz
q
j (3.23)

where zj are the zeros and poles of f , with mj is the order of f at zj.
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Proof. Let zj be any zero or pole of f . Then we can write f(z) = (z − zj)
mjg(z) where g(z)

is holomorphic at zj and non-zero in a neighborhood of zj. Then

f ′(z)

f(z)
=

m

z − z0
+
g′(z)

g(z)
. (3.24)

So the result follows from the residue theorem.

4 Lecture 4

4.1 The ∂-equation in domains in C
Our goal is to prove the following result.

Theorem 4.1. If Ω ⊂ C is any bounded domain, and g ∈ C∞(Ω), then there exists g ∈
C∞(Ω) with ∂

∂z
f = g.

If we want to solve ∂
∂z
f = g, it is natural to guess that

f(z) =
1

2πi

∫
Ω

g(w)dw ∧ dw̄
w − z

, (4.1)

is a solution. However, letting a(z, w) = g(w)/(w − z), we have

∂a(z, w)

∂z
= g(w)

−1

(w − z)2
, (4.2)

so the assumptions of Proposition 2.1 are NOT satisfied, so we cannot directly differentiate
under the integral sign! Another problem is that g is only assumed to be in C∞(Ω), so it is
not in L1(Ω) and (4.1) is not necessarily defined. We first give a preliminary result, with a
stronger assumption on g.

Proposition 4.2. If g ∈ C1(Ω) then the function

f(z) =
1

2πi

∫
Ω

g(w)dw ∧ dw̄
w − z

, (4.3)

satisfies f ∈ C1(Ω) and ∂f/∂z = g in Ω.

Proof. Since g is assumed to be in C1(Ω), the integral in (4.3) is well-defined. To show that
∂f/∂z = g in Ω, we will fix any point z0 ∈ Ω, and show that ∂f/∂z(z0) = g(z0). Choose
a C∞ cutoff function ψ ∈ C∞

0 (Ω) such that ψ = 1 on ∆(z0, r) ⊂ Ω, where r is sufficiently
small. We then write f = f1 + f2, where

f1(z) =
1

2πi

∫
Ω

ψ(w)g(w)dw ∧ dw̄
w − z

(4.4)

f2(z) =
1

2πi

∫
Ω

(1− ψ(w))g(w)dw ∧ dw̄
w − z

. (4.5)
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For z in a small neighborhood of z0, the integrand in f2 does not have a singularity. We can
therefore differentiate under the integral sign to see that ∂f2/∂z(z0) = 0. So we just need to
prove that ∂f1/∂z = g at z0. Since ψ has compact support, we can extend ψg to all of C,
and write

f1(z) =
1

2πi

∫
C

ψ(w)g(w)dw ∧ dw̄
w − z

(4.6)

=
1

2πi

∫
C

ψ(ξ + z)g(ξ + z)dξ ∧ dξ̄
ξ

, (4.7)

where we used the change of variables w = ξ + z. Note that

∂(ψ(ξ + z)g(ξ + z))

∂z
=
∂(ψ(ξ + z)g(ξ + z))

∂ξ
(4.8)

∂(ψ(ξ + z)g(ξ + z))

∂z
=
∂(ψ(ξ + z)g(ξ + z))

∂ξ̄
. (4.9)

This shows that the z and z partials of the integrand are uniformly in L1, so we can differ-
entiate under the integral sign, to obtain

∂f1(z)

∂z
=

1

2πi

∫
C

∂(ψ(ξ + z)g(ξ + z))

∂ξ̄

dξ ∧ dξ̄
ξ

(4.10)

=
1

2πi

∫
C

∂(ψ(w)g(w))

∂w

dw ∧ dw
w − z

. (4.11)

Now apply the Cachy-Pompieu formula in a very large ball in C, to conclude the right hand
side is equal to ψ(z)g(z) which is g(z) if z ∈ ∆(z0, r).

Remark 4.3. With a little more work, the assumptions can be weakened to g being bounded
and continuous on Ω; see [HL84, Theorem 1.1.3], but the derivative is interpreted as a
distributional derivative.

This result does not directly help us in proving Theorem 5.3. But notice that in the
proof, we also proved the following result.

Proposition 4.4. If g ∈ C∞
c (Ω), then there exists f ∈ C∞(C) such that ∂f/∂z = g.

Proof. Above, we proved that there is a solution f ∈ C1(C), but the same argument allows
us to differentiate f1 infinitely many times, provided g is infinitely differentiable.

Remark 4.5. In general, we cannot expect that f has compact support. Take g ∈ C∞
c (C)

with
∫
C gdz ∧ dz ̸= 0 and let f be any solution of ∂f/∂z = g. By Stokes’ Theorem,

0 ̸=
∫
C
gdz ∧ dz =

∫
C

∂f

∂z
dz ∧ dz = −

∫
C
d(fdz) = 0, (4.12)

if f has compact support, which is a contradiction.

Now we can prove a special case of Theorem 5.3.
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Proposition 4.6. Theorem 5.3 is true for Ω = ∆(z, r) is a disc in C, and Ω = ∆∗(z, r) a
punctured disc, and for Ω = A(z; r1, r2) an annulus.

Proof. We first consider the case of a disc. Take a sequence 0 < r1 < r2 < · · · < r
such that limj→∞ ri = r. Let 0 ≤ ψk ∈ C∞

0 (∆(z, rk+1)) and ψk ≡ 1 on ∆(z, rk). Then
gk = ψkg ∈ C∞

0 (∆(z, rk+1), and by Proposition 4.4, we can find fk ∈ C∞(C) such that
∂fk = gk, which is equal to g in ∆(z, rk).

Now there is no reason that the sequence fk will converge to a limit, so we need to modify
as follows. We claim that we can choose fk so that

sup
z′∈∆(z,rk−1)

|fk+1(z
′)− fk(z

′)| ≤ 2−k. (4.13)

Given f2, the difference f3 − f2 is holomorphic in ∆(z, r1). So there exists a polynomial P3

such that

sup
z′∈∆(z,r1)

|f3(z′)− f2(z
′)− P3(z

′)| ≤ 2−2. (4.14)

So we redefine f3 to be f3 − P3. We then proceed by induction. Given fk, the difference
fk+1 − fk is holomorphic in ∆(z, rk−1), so we can find a polynomial Pk+1 such that

sup
z′∈∆(z,rk−1)

|fk+1(z
′)− fk(z

′)− Pk+1(z
′)| ≤ 2−k, (4.15)

and we redefine fk+1 to be fk+1 − Pk+1.
The sequence of functions fk will be a Cauchy sequence in any disc ∆(z, r′), when r′ < r.

So there exists a uniform limit f . Fixing any m, then f − fm is then a uniform limit of
holomorphic functions in ∆(z, rm−1), so is holomorphic by Corollary 2.5, and the convergence
is in C1 of any compact subset. So we can differentiate to show that

∂fm/∂z → ∂f/∂z = g, (4.16)

and the proof is finished.
The case of a punctured disc or annulus is similar, but using truncated Laurent series ex-

pansions instead of polynomials which was proved above in Proposition 3.5 and Remark 3.6.

5 Lecture 5

5.1 Runge’s Theorem

To handle the case of an arbitrary domain Ω ⊂ C, we need some machinery.

Theorem 5.1 (Runge’s approximation Theorem, first version). Let K ⊂ C be a compact
subset, and f ∈ O(U) for some open set U with K ⊂ U . Given any ϵ > 0, there exists a
rational function fϵ with

sup
z∈K

|f(z)− fϵ(z)| < ϵ, (5.1)

and such that poles of fϵ are contained in C \K.
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Proof. The proof is from [Sar07, Theorem IX.15], we just give an outline. From elementary
arguments, there exists a simple contour γ with image in U \K such that K ⊂ Int(γ) ⊂ U .
I.e., γ separates K from the complement of U . Note that K might have several components,
and U \K might be disconnected, in which case γ will be disconnected. Since the countour
is simple, by Cauchy’s Integral formula, we have

f(z) =
1

2πi

∫
γ

f(w)

w − z
dw (5.2)

for any z ∈ K. Note that this works for piecewise smooth paths because Stokes’ Theorem
holds for a domain with piecewise smooth boundary. By dividing the plane into a sufficiently
fine grid, we can assume that γ is piecewise smooth and γ = γ1 + · · · γn, with each γj a line
segment parallel to one of the coordinate axes. Consider each term

fk(z) =
1

2πi

∫
γk

f(w)

w − z
dw. (5.3)

We can approximate this arbitrarily closely with a Riemann sum Rk, which will be of the
form

c1
w1 − z

+ · · ·+ cl
wl − z

, (5.4)

where the wj are points on γk. Doing this for every γj, the proof is complete.

In this result, the poles of fϵ will be quite close to K, and still in Ω. The full version of
Runge’s Theorem allows us to move the poles to specified points in C\K, in particular they
can be moved outside of Ω.

Theorem 5.2 (Runge’s approximation Theorem, second version). Let K ⊂ C be a compact
subset, and f ∈ O(U) for some open set U with K ⊂ U . Let S ⊂ C \K which contains at
least one point from each connected component of C \ K. Given any ϵ > 0, there exists a
rational function fϵ with

sup
z∈K

|f(z)− fϵ(z)| < ϵ, (5.5)

and such that poles of fϵ are contained in S. If C \ K is connected, the rational functions
can be taken to be polynomials.

Proof. The proof is from [Sar07, Theorem IX.17]. In the proof of Theorem 5.1, each term in
the approximation was of the form c/(w − z), where w ∈ γ. Now choose a picewise linear
path α from w to any point w0 in the same connected component of C \K. Choose points
wi on α so that

|wi−1 − wi| < dist(γ,K). (5.6)

We show that any rational Rj−1 function with a pole only at wj−1 may be uniformly ap-
proximated on K by a rational function Rj with a poles only at wj. But this follows from
consdering the Laurent series expansion of Rj−1 centered at wj: Rj−1 is holomorphic in the
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region U = C \ ∆(wj, |wj − wj−1|), so the Laurent series of Rj−1 centered at wj converges
uniformly on compact subsets of U . Then we can approximate Rj−1 by a rational function
with a pole only at wj, uniformly on K, since K is a compact subset of U , which follows
from (5.6).

If C \ K is connected, by the above argument, we can move the pole of the rational
function Rj to a single point z0 so that K ⊂ ∆(0, |z0|). The Talyor series of Rj centered at
any point z ∈ K converges uniformly on K, so we can approximate by the partial sums of
this Taylor series.

Now we can prove the general result:

Theorem 5.3. If Ω ⊂ C is any domain, and g ∈ C∞(Ω), then there exists f ∈ C∞(Ω) with
∂
∂z
f = g.

Proof. We choose a sequence of compact sets K1 ⊂ K2 ⊂ K3 ⊂ · · · , so that Kj ⊂ IntKj+1

and ∪Kj = Ω. Note that C\Ω ⊂ C\Kj, and we can assume that for large j, each component
of C \Kj contains a component of C \Ω. Let 0 ≤ ψj ∈ C∞

0 (Kj+1) and ψk ≡ 1 on Kj. Then
gj = ψjg ∈ C∞

0 (Kj+1), and by Proposition 4.4, we can find fj ∈ C∞(C) such that ∂fj = gj.
We claim that we can choose fj ∈ C∞(Ω) so that

sup
z∈Kj−1

|fj+1(z)− fj(z)| ≤ 2−j. (5.7)

We proceed by induction. Given fj, the difference fj+1 − fj is holomorphic in

U ≡ IntKj ⊃ K = Kj−1. (5.8)

We have C \Ω ⊂ C \Kj, so by Theorem 5.2, there exists a rational function Rj+1 such that
it poles are in C \ Ω and such that

sup
z∈Kj−1

|fj+1(z)− fj(z)−Rj+1(z)| ≤ 2−j, (5.9)

and we redefine fj+1 to be fj+1 − Pj−1.
The sequence of functions fj will be a Cauchy sequence in any subset Km for fixed m.

So there exists a limit f , with uniform convergence on compact subsets. Fixing any m,
then f − fm is then a uniform limit of holomorphic functions in Km−1, so is holomorphic by
Corollary 2.5, and the convergence is in C1 of any compact subset. So we can differentiate
to show that

∂fm/∂z → ∂f/∂z = g, (5.10)

and the proof is finished.

20



6 Lecture 6

The above solution of the inhomogeneous Cauchy-Riemann equations has many corollaries,
we next give a few applications. The first is Mittag-Leffler’s Theorem.

Theorem 6.1 (Mittag-Leffler). Let Ω be a domain in C and {wj} a discrete subset of Ω.
Let Pj be any principal sum at wj. Then there exists a meromorphic function h ∈ M(Ω)
such that the principal part of h at wj is Pj and there are no other poles in Ω.

Proof. Let ψj be a cutoff function supported in a small neighborhood of wj which doesn’t
contain any other points in the discrete subset. Consider g =

∑
j ψjPj. Then ∂g/∂z̄ ∈

C∞(Ω). By Theorem 5.3, there exists a solution f ∈ C∞(Ω) of ∂f/∂z = ∂g/∂z̄. Then
h = g − f satisfies ∂h/∂z = 0, and the principal part of h at wj is Pj.

6.1 Logarithm of a function

We next want to answer the question of when is it possible to take to logarithm of a nowhere-
zero holomorphic function.

Definition 6.2. Let U be a domain in C. If f ∈ O(U) is nowhere-zero, then we write
f ∈ O∗(U).

First, we consider a disc.

Proposition 6.3. If f ∈ O∗(∆(z0, r)) then there exists F ∈ O(∆(z0, r)) such that eF = f .
Such a solution is unique up to adding an integer multiple of 2πi.

Proof. Given any z ∈ ∆(z0, r), we define

F (z) =

∫
γ

f ′(w)

f(w)
dw, (6.1)

where γ is the straight line path from z0 to z. Consider a square with corners at z0 and
z, such that γ is the diagonal. Then 2 sides of the square and the diagonal form a closed
triangle. By Cauchy’s Theorem, the integral is the same if we integrate along the edges. Then
the fundamental theorem of calculus shows that F is differentiable, and F ′(z) = f ′(z)/f(z).
Then consider the function G(z) = fe−F . We compute

G′(z) = f ′(z)e−F − fe−F (z)F ′(z) = 0, (6.2)

so G is constant. By adding the appropriate constant to F , we can therefore assume G(z) ≡
1, which is f = eF .

Assume that eF1 = f = eF2 . Then

fF ′
1 = eF1F ′

1 = eF2F ′
2 = fF ′

2, (6.3)

and since f is nowhere vanishing, F ′
1 = F ′

2, so F1 and F2 differ by a constant, which must be
an integer multiple of 2πi.
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Definition 6.4. We say that a domain U is simply connected if every simple closed curve
in U bounds a disc in U .

Notice that the above proof works for any simply-connected domain. However, we will
next prove this in a different way.

Definition 6.5. Let U ∈ C be a domain. We say that U has H1(U ;Z) = 0 if any countable
locally finite covering of U by discs Ui = ∆(zj, rj) has the following property. For any nij ∈ Z
satisfying nij = −nji, and njk − nik + nij = 0 whenever Ui ∩ Uj ∩ Uk ̸= ∅ then there exists
ni ∈ Z such that nij = nj − ni whenever Ui ∩ Uj ̸= ∅.

Remark 6.6. This definition is in fact equivalent to assuming that U is simply-connected,
but this fact needs some tools from algebraic topology which we will not discuss right now.

Proposition 6.7. Let U ⊂ C be a domain satisfying H1(U ;Z) = 0 If f ∈ O∗(U) then there
exists F ∈ O(U) such that eF = f .

Proof. Take a covering as in Definition 6.5. Then we view f as a collection of functions
fi ∈ O∗(Ui), with fi = fj on Ui ∩ Uj. Each Ui is a disc, so by the above, there exists
gi ∈ O(Ui) with fi = egi on Ui. We have fi

fj
= egi−gj = 1 on Ui ∩ Uj, so there exists nij ∈ Z

such that gi − gj = 2π
√
−1nij there. By the assumption that H1(U ;Z) = 0, there exists

ni ∈ Z such that nij = ni − nj whenever Ui ∩ Uj ̸= ∅. We have gi − gj = 2π
√
−1(ni − nj)

on Ui ∩ Uj. Therefore g′i = gi − 2π
√
−1ni satisfies g

′
i = g′j on Ui ∩ Uj so defines a function

F ∈ O(U) satisfying f = eF .

Remark 6.8. The function z in nowhere zero in any punctured disc ∆∗(0, r). If z = eF for
F ∈ O(∆∗), then F ′ = 1/z there (that is, F is a primitive for 1/z). But if γ is S1(r/2),
then

∫
γ
F ′(z)dz = 0 from the fundamental theorem of calculus, but

∫
γ
(1/z) = 2π

√
−1, a

contradiction.

Remark 6.9. Secretly, we are using the long exact sequence in cohomology associated to
the exponential sheaf sequence

0 → 2π
√
−1 · Z → OU

exp−→ O∗
U → 1, (6.4)

where OU is the sheaf of germs of holomorphic functions on U , and similarly for O∗
U . This

gives the exact sequence

0 → H0(U ;Z) → H0(U,OU) → H0(U,O∗
U) → H1(U ;Z). (6.5)

If U is connected, then H0(U ;Z) ≃ Z. However, the 0th cohomology group of any sheaf is
the space of global sections, so we have the exact sequence

0 → Z → O(U) → O∗(U) → H1(U ;Z). (6.6)

Thus if H1(U ;Z) = 0, then the third arrow is surjective.
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7 Lecture 7

7.1 Weierstrass Theorem

We give more applications of the solution of the inhomogeneous Cauchy-Riemann equations.
References for this section are [Hör90, Chapter 1] and [Eps91, Section 1.6].

Definition 7.1. Let U ⊂ C be a domain. We say that U has H2(U ;Z) = 0 if any countable
locally finite covering of U by discs Ui = ∆(zj, rj) has the following property. For any nijk ∈ Z
satisfying nijk = −njik = −nikj and njkl−nikl+nijl−nijk = 0 whenever Ui∩Uj∩Uk∩Ul ̸= ∅,
then there exists nij ∈ Z satisfying nij = −nji such that nijk = njk − nik + nij whenever
Ui ∩ Uj ∩ Uk ̸= ∅.

Theorem 7.2 (Weierstrass). Let U be a domain in C with H2(U ;Z) = 0, {wj} a discrete
subset of U , and nj ∈ Z. Then there exists a meromorphic function f ∈ M(U) with the
order of f at wj equal to nj and no other poles or zeroes.

Proof. We cover U by discs Ui = ∆(zi, ri) such that each wi is contained in exactly one of
these discs. Define the function fi = (z − wj)

nj if wj ∈ Ui, and let fi = 1 if Ui doesn’t
contain any of the discrete points. On Ui ∩ Uj, let fij = fi/fj. Then fij ∈ O∗(Ui ∩ Uj)
is a non-vanishing holomorphic function. Since Ui ∩ Uj is simply-connected, we can define
gij = log fij. Note that gij ∈ O(Ui ∩ Uj) is only defined up to adding an integer multiple of
2πi. Since

fik =
fi
fk

=
fi
fj

fj
fk

= fijfjk, (7.1)

the gij satisfy on triple intersections Ui ∩ Uj ∩ Uk

gij − gik + gjk = 2πinijk, (7.2)

where nijk ∈ Z. The nijk satisfy the condition on intersections Ui ∩ Uj ∩ Uk ∩ Ul,

njkl − nikl + nijl − nijk = 0. (7.3)

By the assumption that H2(U ;Z) = 0, there exists integers nij such that

nijk = njk − nik + nij, (7.4)

whenever Ui ∩ Uj ∩ Uk ̸= ∅. Then g′ij = gij − 2πinij, satisfy

g′ij − g′ik + g′jk = 0. (7.5)

Choose a partition of unity ψi subordinate to Ui, and define

hi =
∑
j

g′ijψj, (7.6)
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which satisfies hi ∈ C∞(Ui). On Ui ∩ Uj, we have

hi − hj =
∑
k

(g′ik − g′jk)ψk =
∑
k

g′ijψk = g′ij. (7.7)

We then have that

∂

∂z
(hi − hj) =

∂

∂z
g′ij = 0, (7.8)

So we can define h ∈ C∞(U) by letting

h|Ui
=
∂hi
∂z

(7.9)

By Theorem 5.3, we can solve the equation ∂f/∂z = h for f ∈ C∞(U). Then we redefine
h′i = hi − f . These now satisfy h′i ∈ O(Ui), and h

′
i − h′j = g′ij.

So going back to the above, we define f ′
i = e−h′

ifi. On intersections, we now have

f ′
i

f ′
j

=
e−h′

ifi

e−h′
jfj

= e−h′
i+h′

j
fi
fj

= e−gij′
fi
fj

= e−gij
fi
fj

= 1, (7.10)

so the f ′
i patch together to define f ∈ M(U). Since we only multiplied the fi by a non-zero

holomorphic function, the order of f at wj is equal to nj, and there are no other zeros or
poles of f in U .

Remark 7.3. Note that any domain in C is necessarily a non-compact 2-manifold, it will
follow by Poincarè duality H2

sing(U ;Z) = 0. This is equivalent to the vanishing of the

Čech cohomology group Ȟ2(U ;Z) = 0, which implies that the condition in Definition 7.1 is
always satisfied for any domain U ⊂ C. So the assumption that H2(U ;Z) = 0 in actually
superfluous. In contrast, if we consider a compact Riemann surface Σ, then H2(Σ;Z) ≃ Z,
and Weierstrass’ Theorem will not necessarily hold.

Corollary 7.4. If f ∈ M(U), then there exists g, h ∈ O(U) such that f = g/h in all of U .

Proof. If f has poles of order nj at wj, then by the Weierstrass Theorem, there exists a
holomorphic function h ∈ O(U) which has a zero of order nj at wj. Then g = hf has no
poles so g ∈ O(U).

Corollary 7.5. If U is any domain in C, then there exists u ∈ O(U) such U cannot be
extended to any larger domain.

Proof. Take a discrete subset wj with closure containing the boundary of Ω. By the Weier-
strass Theorem, there exists u ∈ O(U) which has zeroes at the wj, but is not identically
zero. This function cannot be extended holomorphically in a neighborhood of any bound-
ary point. This is because any holomorphic function f whose zero set has a limit point in
a domain must be identically zero. (Proof: let the limit point be z0, then we can factor
f = (z − z0)

kg(z), where g(z0) ̸= 0, so the zeros of a any holomorphic function are isolated;
this is also known as the Identity Theorem.)
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Remark 7.6. The power series

F (z) =
∞∑
j=0

z2
j

(7.11)

converge on compact subsets to a holomorphic function on the unit disc, which cannot be
extended past any boundary point. See [GK06, Chapter 9] and the more general Hadamard
gap theorem. However, this is proved by ad hoc methods and not really related to the above
proof.

8 Lecture 8

8.1 Holomorphic line bundles on domains in C
Let U = {Ui}i∈I be a countable locally finite open covering of a domain U ⊂ C by discs. For
i, j ∈ I, let fij ∈ O∗(Ui ∩ Uj) satisfy fji = f−1

ij , and

fik = fij · fjk (8.1)

on Ui ∩Uj ∩Uk. We call (8.1) the cocycle condition, and write that fij ∈ Z1(U,O∗
U). We call

the collection {fij, i, j ∈ I} a holomorphic line bundle with respect to the open covering U.
A collection fi ∈ O(Ui) for i ∈ I is called a section of the line bundle if fijfj = fi on Ui∩Uj.
The trivial line bundle is fij = 1 on all Ui∩Uj. Note that there is a multiplicative structure:
the product of fij and f

′
ij is simply fijf

′
ij, which clearly satisfies the cocyle condition. Define

C0(U,O∗
U) to be the collection of fi ∈ O∗(Ui), which we call the space of 0-cocycles with

respect to U. Define δ : C0 → Z1 by δ{fi} = fi/fj on Ui ∩ Uj. Then we define H1(U,O∗
U)

as Z1/δ(C0). We call this the set of equivalence classes of holomorphic line bundles on U ,
with respect to the open covering U. Note that two line bundles fij and f ′

ij are equivalent
if and only if there exists fi ∈ O∗(Ui) such that fijfj = f ′

ijfi. In particular, a line bundle is
equivalent to the trivial line bundle if and only if there exists fi ∈ O∗(Ui) such that fijfj = fi,
equivalently, if and only if there exists a nowhere vanishing section.

What we have proved above can be restated as follows.

Proposition 8.1. If U ⊂ C is a domain and U is a countable locally finite covering of U
by discs, then any holomorphic line bundle is equivalent to a trivial holomorphic line bundle
(everything with respect to the open covering U).

Proof. We simply review the above proof of the Weierstrass Theorem. In that proof, we
first constructed fij ∈ O∗(Ui ∩ Uj) satisfying the cocycle condition. Now we are just given
fij ∈ Z1(U,O∗

U). Then we choose gij = log fij in O(Ui ∩ Uj). The gij satisfy on triple
intersections Ui ∩ Uj ∩ Uk

gij − gik + gjk = 2πinijk, (8.2)

where nijk ∈ Z. We then used the assumption H2(U ;Z) = 0 to find nij satisfying

nijk = njk − nik + nij, (8.3)
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whenever Ui ∩ Uj ∩ Uk ̸= ∅. Then g′ij = gij − 2π
√
−1nij satisfy

g′ij − g′ik + g′jk = 0. (8.4)

Then, using the partition of unity argument, we found h′i ∈ O(Ui) with g
′
ij = h′i−h′j. Define

fi = eh
′
i . Exponentiation of this yields

eg
′
ij = egij−2π

√
−1nij = egij = fij = eh

′
i−h′

j =
eh

′
i

eh
′
j
≡ fi
fj
, (8.5)

and we are done since the collection {fi} are a nowhere vanishing section of the line bundle.

Remark 8.2. Similar to above, we can define Z1(U,OU) to be the collection of g′ij ∈ O(Ui∩
Uj) satisfying g

′
ij = −g′ji, and

g′ij − g′ik + g′jk = 0 (8.6)

on triple intersections Ui∩Uj∩Uk. Note this is an additive group, as opposed to multiplicative
in the case of line bundles. Define C0(U,OU) to be the collection of h′i ∈ O(Ui) and δ : C

0 →
Z1 by δ{h′i} = h′j −h′i. Then we can define H1(U,OU) = Z1/δ(C0). The argument involving
a partition of unity proved that H1(U,OU) = 0, which relied on Theorem 5.3, the solvability
of the inhomogeneous Cauchy-Riemann equation in C∞(U). This is a special case of a
general result about the equivalence of Čech and Dolbeault cohomology.

Remark 8.3. We want to remove the dependence of the above on the open covering, we will
do this later. The proof of the Weierstrass Theorem (using the partition of unity argument),
yields the vanishing of the sheaf cohomology group H1(U,OU) = 0. The long exact sequence
in cohomology associated to the exponential sheaf sequence

0 → 2π
√
−1 · Z → OU

exp−→ O∗
U → 1, (8.7)

yields

0 = H1(U,OU) → H1(U,O∗
U) → H2(U ;Z) = 0, (8.8)

from which it follows that H1(U,O∗
U) = 0. In other words, any holomorphic line bundle on

U is (equivalent to) a trivial bundle. This will not be true in general for domains in Cn for
n > 1: as an example, consider a product of punctured discs, which has H2(∆∗×∆∗;Z) ≃ Z.
This will also not be true for a compact Riemann surface Σ, which satisfies H2(Σ;Z) = Z.

9 Lecture 9

9.1 Power series in several variables

We review some basic facts about power series in several variables. Some good references for
this material are [FG02, Chapter 1], [JP08, Chapter 1], or [KP02, Chapter 2.1], We write
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a point z = (z1, . . . , zn). The open polydisc with polyradius r = (r1, . . . , rn) about a point
z0 = (z01 , . . . , z

0
n) is the set

∆(z0, r) = {z | |zj − z0j | < rj, j = 1 . . . n}. (9.1)

We will let α = (α1, . . . , αn) ∈ Zn
+ denote a multi-index, where Z+ denotes the non-negative

integers. Define

zα = zα1
1 · · · zαn

n (9.2)

|z|α = |z1|α1 · · · |zn|αn (9.3)

α! = α1! · · ·αn! (9.4)

|α| = α1 + · · ·+ αn. (9.5)

Definition 9.1. The series
∑

α∈Zn
+
aα(z − z0)

α converges at z if some rearrangement con-

verges, that is, give some bijection ϕ : Z+ → (Z+)
n, the series

∞∑
j=0

aϕ(j)(z − z0)
ϕ(j) (9.6)

converges. The domain of convergence of the power series is the interior of the set of points
of convergence.

In 1 variable we know that domains of convergence are discs. Regions of convergence in
several variable can be more complicated.

Example 9.2. The domain of convergence of the series
∑∞

k=0 z
kwk is {(z, w) | |zw| < 1}.

Example 9.3 (Boas). The series
∑∞

n=1 z
nwn! converges in the 3 sets

U1 = {(z, w) | |w| < 1}, U2 = {(0, w)}, U3 = {(z, w) | |z| < 1 and |w| = 1}. (9.7)

Only U1 is an open set; the sets U2 and U3 are 1 dimensional, and are not domains. The
domain of convergence is U1.

Lemma 9.4 (Abel). If
∑

α aαz
α (centered at z = 0) converges at the point z′ then it con-

verges uniformly and absolutely for any point z of the form zj = ρjz
′
j where |ρj| < 1. Fur-

thermore, a point p belongs to the domain of convergence of the power series
∑

α aαz
α if and

only if there exists a neighborhood U of p, a constant C, and r < 1 such that |aαzα| ≤ Cr|α|

for all z ∈ U .

Proof. Since the series converges at the point z′, the terms must be bounded, so there exists
a constant C so that |aα||z′|α ≤ C. Let ρ = max{|ρ1|, . . . , |ρn|} < 1, and consider any point
z = (z1, . . . , zn) so that |zj| < ρ|z′j|. We then have

|aα||z|α ≤ |aα|ρ|α||z′|α ≤ Cρ|α|. (9.8)
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So given an integer N > 0, we have

∑
|α|≤N

|aα||z|α =
N∑
j=0

∑
|α|=j

|aα||z|α

≤
N∑
j=0

∑
|α|=j

Cρj

(9.9)

How many multi-indices of length j are there? This is counting the number of non-negative
integer solutions of

α1 + · · ·+ αn = j. (9.10)

To see this, let α′
i = αi+1, then we are interested in the number of positive integer solutions

to

α′
1 + · · ·+ α′

n = j + n. (9.11)

So we have a total of j + n integers, dividing this up into n integers is the same as putting
n− 1 partitions somewhere in the spaces between them, so the number is(

j + n− 1

n− 1

)
. (9.12)

Continuing with the above calculation,

∑
|α|≤N

|aα||z|α ≤ C
N∑
j=0

(
j + n− 1

n− 1

)
ρj

= C
N∑
j=0

(j + n− 1)!

j!(n− 1)!
ρj

=
C

(n− 1)!

N∑
j=0

(j + n− 1)(j + n− 2) · · · (j + 1)ρj

≤ Cn

N∑
j=0

jnρj.

(9.13)

Applying the ratio test, we have

lim
j→∞

(j + 1)nρj+1

jnρj
= lim

j→∞

(
j + 1

j

)n

ρ = ρ, (9.14)

so the series converges provided ρ < 1.
If p belongs to the domain of convergence, then by definition the series converges in a

neighborhood of p. Then by the first part it converges in some polydisc around the origin
containing z, and we follow the first part of the proof.
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Definition 9.5. We say that f is complex analytic in U if for each z0 ∈ U , there exists a
power series expansion

f(z) =
∑
α∈Zn

+

aα(z − z0)
α (9.15)

which converges absolutely and uniformly in a polydisc ∆(z0, ϵ̂) around z0, for some positive
polyradius ϵ̂.

9.2 Cauchy’s formula in several complex variables

Basic reference are [GH78, Hör90, Nog16].

Definition 9.6. We say that f is holomorphic in U if it is C1(U) and satisfies the Cauchy-
Riemann equations,

∂f

∂zj
= 0, j = 1 · · ·n. (9.16)

Proposition 9.7. Let U be an open set in C. Then f is holomorphic in U if and only if f
is complex analytic in U .

Proof. Consider n = 2, the higher-dimensional case is similar. We assume that U =
∆(0, r1)×∆(0, r2) is a polydisc, and f ∈ C1(U). If f is holomorphic in U , then for fixed z1,
the slice f(z1, z2) is a 1-variable holomorphic function for z2 ∈ ∆(0, r2). This holds similarly
for the other variable, so the Cauchy-Pompieu formula applied twice yields

f(z1, z2) =
1

2πi

∫
|w2|=r2

f(z1, w2)dw

w2 − z2

=

(
1

2πi

)2 ∫
|w2|=r2

∫
|w1|=r1

f(w1, w2)dw

(w1 − z1)(w2 − z2)
.

(9.17)

For any (z01 , z
0
2) ∈ U , we expand

1

(w1 − z1)(w2 − z2)
=

1

w2 − z2

1

w1 − z01 + z01 − z1
=

1

w2 − z2

1

w1 − z01

1

1− z1−z01
w1−z01

(9.18)

=
1

w2 − z2

1

w1 − z01

∞∑
k=0

(
z1 − z01
w1 − z01

)k

(9.19)

=
1

(w1 − z01)(w2 − z02)

∞∑
l=0

(
z2 − z02
w2 − z02

)l ∞∑
k=0

(
z1 − z01
w1 − z01

)k

(9.20)

=
∞∑
k=0

∞∑
l=0

(z1 − z01)
k(z2 − z02)

l

(w1 − z01)
k+1(w2 − z02)

l+1
. (9.21)
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We next show that we are justified in the last step. Let (z01 , z
0
2) ∈ ∆(0, r′1) × ∆(0, r′2) with

r′1 < r1 and r′2 < r2. Then we have |w1 − z01 | > r1 − r′1, and |w2 − z02 | > r2 − r′2. For
|z1 − z01 | < (r1 − r′1)/2 and |z2 − z02 | < (r2 − r′2)/2, we then have

|akl| =
∣∣∣ (z1 − z01)

k(z2 − z02)
l

(w1 − z01)
k+1(w2 − z02)

l+1

∣∣∣ ≤ 1

(r1 − r′1)(r2 − r′2)
2−k2−l, (9.22)

so the sum converges absolutely and uniformly in any smaller polydisc by Lemma 9.4. In-
terchanging the integration and summation in (9.17) then yields a power series expansion
for f .

The converse is similar to the 1-variable case. If f has a power series expansion, then
each term in the power series satisfies the Cauchy integral formula (9.17). So then f does
also by uniform convergence. Then we can differentiate under the integral to see that f is
holomorphic. For more details, see [GH78, page 6].

Remark 9.8. Note that the integral in (9.17) is just over a 2-dimensional torus contained
in the boundary of the polydisc. The topological boundary of the polydisc is 3-dimensional,
but it is not a manifold, it is ∂(∆×∆) = S1 ×∆ ∪∆× S1, and these 2 sets intersect along
the torus. The higher dimensional case is similar: the integral is over a real n-dimensional
torus contained in the boundary of the polydisc.

Similar to the 1 variable case, we have the following corollaries.

Corollary 9.9. If f holomorphic in Ω, then f is infinitely differentiable in Ω, and for any
z0 ∈ Ω, f admits a power series expansion

f =
∑
α∈Zn

+

aα(z − z0)
α, (9.23)

with

aα =
1

α!

∂|α|f(z0)

∂zα

=

(
1

2πi

)n ∫
|wn|=rn

· · ·
∫
|w1|=r1

f(w1, · · · , wn)dw1 · · · dwn

(w1 − z01)
α1+1 · · · (wn − z0n)

αn+1
,

(9.24)

for any r such that the polydisc ∆(z0, r) ⊂ Ω.

Corollary 9.10 (The maximum principle). Let Ω ⊂ Cn be connected, and f ∈ O(Ω)∩C0(Ω).
Then |f | does not assume its maximum at an interior point unless f is constant.

Proof. We can assume that Ω = ∆(0, r) = ∆1 × · · · × ∆n is a polydisc centered at the
origin, and that |f | attains a maximum at the center point. The one variable function z1 7→
f(z1, 0, · · · , 0) is constant by the maximum principle in one variable, that is f(z1, 0, · · · , 0) =
f(0, · · · , 0). Then, for any fixed z1, the one variable function z2 7→ f(z1, z2, 0, · · · , 0) is
constant, so

f(z1, z2, 0, · · · , 0) = f(z1, 0, · · · , 0) = f(0, · · · , 0). (9.25)

Iterating this argument shows that f is constant.
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Corollary 9.11. Let K ⊂ Ω be a compact subset. Then there exist constants C|α|, depending
only upon K and Ω such that

sup
z∈K

∣∣∣∂αf(z)
∂zα

∣∣∣ ≤ C|α| sup
z∈Ω

|f(z)|. (9.26)

for all u ∈ O(Ω).

Proof. Again, we just consider the case of 2 dimensions, the higher dimensional case is
similar. Fix (z01 , z

0
2) ∈ Ω, and let ∆(z0, (r1, r2)) ⊂ Ω be a polydisc. Then for (z1, z2) ∈

∆(z0, (r′1, r
′
2)) with r

′
1 < r1 and r′2 < r2, we have

f(z1, z2) =
∞∑

k,l=0

akl(z1 − z01)
k(z2 − z02)

l, (9.27)

where

akl =

(
1

2πi

)2 ∫
|w2|=r2

∫
|w1|=r1

f(w1, w2)dw

(w1 − z01)
k+1(w2 − z02)

l+1
. (9.28)

We then get Cauchy’s inequalities∣∣∣ ∂k+lf

∂zk1∂z
l
2

(z01 , z
0
2)
∣∣∣ = k!l!|akl| ≤

k!l!r1r2
(r1 − r′1)

k(r2 − r′2)
l

sup
w=(w1,w2),|w1|=r1,|w2|=r2

|f(w)|. (9.29)

Since the distance of K to ∂Ω is positive, the claim follows.

The following corollaries are proved exactly as before.

Corollary 9.12. If un ∈ O(Ω) and un → u converges uniformly to u in the C0 norm as
n→ ∞ on compact subsets, then u ∈ O(Ω).

Corollary 9.13. If un ∈ O(Ω) and |un| is uniformly bounded on every compact subset K ⊂
Ω, then some subsequence unj

converges uniformly on compact subsets to a limit u ∈ O(Ω).

10 Lecture 10

10.1 Hartogs’ Theorem

Consider the polydisc ∆(0, r) = {z ∈ Cn ||zj| < r, j = 1, . . . , n}, and for 0 < r′ < r, let

A(r′, r) = ∆(r) \∆(r′).

Theorem 10.1 (Hartogs). Let n > 1, and 0 < r′ < r. If f ∈ O(A(r′, r)), then there exists
a holomorphic function F ∈ O(∆(r)) with F = f on A(r′, r).
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Proof. Write a point in Cn as (z, w), where z ∈ Cn−1. We then have(
∆n−1(0, r)×∆1(0, r)

)
\
(
∆n−1(0, r′)×∆1(0, r′)

)
= An−1(r′, r)×∆1(0, r) ∪∆n−1(0, r)× A1(r′, r).

(10.1)

Then for each z ∈ ∆n−1(0, r′), the cross section of An(r′, r) is a 1-dimensional annulus
A1(r′, r). However if z ∈ An−1(r′, r), then the cross section is a disc ∆1(0, r). Let’s write
down the expression

F (z, zn) =
1

2π
√
−1

∫
|w|=r

f(z, w)dw

w − zn
(10.2)

For r′ < |z| < r and |zn| < r this equals to f , by Cauchy’s Theorem. This expression clearly
defines a holomorphic function in all of ∆(r). The function F agrees with f whenever
r′ < |z| < r. By the identity principle, F = f in A(r′, r), so is the required extension of
f .

In particular, while non-removable isolated singularities exist when n = 1, isolated sin-
gularities are always removable if n > 1! We also have the following corollary.

Corollary 10.2. Let n > 1. If Ω ⊂ Cn is a domain and f ∈ O(Ω) then the zero set of f ,
Zf ≡ {z ∈ Ω | f(z) = 0} does not contain any isolated points.

To prove the corollary, note that 1/f would be a holomorphic function with an isolated
singularity, which doesn’t exist.

The next result will show that zero sets of holomorphic functions are large, they are
always complex (n− 1)-dimensional in a very precise sense.

10.2 Weierstrass Preparation Theorem

For n = 1, we know that zeros of a non-constant holomorphic function are isolated. We
want to investigate the structure of zero sets of holomorphic function in Cn. So consider
f(z1, . . . , zn) ∈ O(U), where U is a neighborhood of the origin, and assume that f(0, . . . , 0) =
0. Consider a complex line through the origin

Lz = {c(z1, . . . , zn) |c ∈ C}. (10.3)

If we restrict f |L, we get a 1 variable holomorphic function. If this restricted function were to
vanish identically for all complex lines through the origin, then f itself would be identically
zero. So if f is not identically zero, there exists a least one line on which f is not identically
zero. By a rotation, we may assume that this in the nth coordinate line. I.e., for fixed
(z1, . . . , zn−1), we look at the holomorphic function of one variable w 7→ f(z1, . . . , zn−1, w).
By assumption f(0, . . . , 0, w) is not identically zero, so there is a unique minimal d such
that f(0, . . . , 0, w) = wdh, where h does not vanish at 0. Then there exists r > 0 and
δ > 0 such that |f(0, . . . , 0, w)| ≥ δ for |w| = r. By continuity, there exists ϵ > 0 so that
|f(z1, . . . , zn−1, w)| ≥ δ/2 for |w| = r and |(z1, . . . , zn)| < ϵ. We next recall the argument
principle.
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Corollary 10.3 ( The argument principle). If f ∈ M(Ω) with no poles on ∂Ω, then∫
∂∆(z0,r)

wq f
′(w)

f(w)
dw =

d∑
j=1

mjz
q
j (10.4)

where wj are the zeros and poles of f , with mj is the order of f at wj.

To simplify notation, let z = (z1, . . . , zn−1) ∈ Cn−1. First of all, we apply the argument
principle to the function w 7→ f(z, w), with q = 0 to get that∫

|w|=r

∂f/∂w(z, w)

f(z, w)
dw =

∑
j

mj, (10.5)

where mj is the multiplicity of f at the zeros of the function w 7→ (z, w) inside |w| < r and
|z| < ϵ. This is equal to d for z = 0. Since it is a continuous integer valued function, the
function w 7→ f(z, w) also has d zeroes, counted with multiplicity for |w| < r and |z| < ϵ.
We let b1(z), · · · bd(z) denote the zeros of f(z, w) for z ∈ Cn−1 fixed. The problem is that
these function cannot necessarily be chosen smoothly, because there is no canonical ordering
of these zeros. We define

g(z, w) = (w − b1(z)) · · · (w − bd(z)) (10.6)

Obviously, the zero set of g is exactly the same as the zero set of f . However, this is not
obviously holomorphic due to the ordering problem. However, we may write

g(z, w) = wd − σ1(b(z))w
d−1 + σ2(b(z))w

d−2 + · · ·+ (−1)dσd(b(z)) (10.7)

where the σi are the ith elementary symmetric function, i.e.,

σ1(b1, . . . , bd) = b1 + · · ·+ bd (10.8)

σ2(b1, . . . , bd) =
∑
i ̸=j

bibj (10.9)

... (10.10)

σd(b1, . . . , bd) = b1 · · · bd. (10.11)

We have the following lemma.

Lemma 10.4. There exists polynomials Pj with rational coefficients so that the elementary
symmetric function σi = Pi(F1, · · · , Fi), where

Fq(b) = bq1 + · · ·+ bqd. (10.12)

for 1 ≤ i ≤ d.

Proof. Obviously σ1 = P1. For σ2, we have

σ2 =
1

2
(F 2

1 − F2). (10.13)
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For σ3, we have

σ3 =
1

6
F 3
1 − 1

2
F2F1 +

1

3
F3. (10.14)

Will leave the proof of the general case as an exercise (Hint: use a induction argument, or
ask Newton).

However, if we apply the argument principle again for q > 0, we will get

Fq(b(z)) = b1(z)
q + · · ·+ bd(z)

q =

∫
|w|=r

wq(∂f/∂w)(z, w)

f(z, w)
dw (10.15)

Thus we see that the power sums Fq(z) = b1(z)
q+ · · ·+ bd(z)q are analytic functions of z, for

|z| < ϵ. By the lemma, the elementary symmetric functions are analytic there, which proves
that the function g(z, w) defined above is analytic.

Now we consider the function

h(z, w) =
f(z, w)

g(z, w)
, (10.16)

which is analytic away from the zero set of g. By construction, for each fixed z with |z| < ϵ,
g(z, w) has exactly the same zeros as f(z, w). So the 1 variable function w 7→ h(z, w) is
bounded, and thus has a removable singularity at near any zero of g(z, w), so h extends to
a non-zero holomorphic function for |w| < r. But then the Cauchy integral formula

h(z, w) =
1

2π
√
−1

∫
|u|=r

h(z, u)du

u− w
(10.17)

shows that h is continuously differentiable and holomorphic in all of the variables zj. So we
have proved

Theorem 10.5 (Weierstrass Preparation Theorem). Let f(z, w) be an analytic function
which vanishes at the origin, but does not vanish identically on the w-axis. Then there exists
a unique Weierstrass polynomial of the form

g(z, w) = wd + a1(z)w
d−1 + · · ·+ ad(z), (10.18)

with aj(z) analytic with aj(0) = 0, such that f = g · h with h(0) ̸= 0.

This gives us a very nice description of the zero set of holomorphic functions.

Corollary 10.6. If f is holomorphic, then locally Zf admits a projection to a (n − 1)
dimension polydisc ∆n−1, which represents Zf as a d-fold cover of ∆n−1 , which is branched
over the zero locus of a holomorphic function D ∈ O(∆n−1).

Proof. This was proved above, we just need to note that the set where w 7→ f(z, w) has
multiple roots is given by the vanishing of the discriminant D , which is a polynomial in the
roots.
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We also can prove another removable singularity theorem which allows for a much larger
singular set.

Theorem 10.7 (Riemann Extension Theorem). Let f be holomorphic in Ω, and let Zf

denote the zero set of f . Let g be holomorphic in Ω \ Zf and bounded. Then g extends to a
holomorphic function G ∈ O(Ω).

Proof. This is clearly local, so we can assume that f is a Weierstrass polynomial in a small
polydisc. Recall above, we chose r, ϵ > 0 so that for |z| < ϵ and |w| = r, f has no zeros, so
g is holomorphic there. Also, for |z| < ϵ, w 7→ f(z, w) only has finite many zeroes which are
isolated. Since g is bounded, for |z| < ϵ, the 1 variable function w 7→ g(z, w) has removable
singularities. So we can extend to G(z, w). By the Cauchy integral formula, we have

G(z, w) =
1

2π
√
−1

∫
|u|=r

g(z, u)du

u− w
(10.19)

is continuous differentiable and holomorphic in the z variables, so is the required extension
of g.

11 Lecture 11

11.1 Complex differential forms

Using the coordinates

(z1, . . . , zn) = (x1 + iy1, . . . , xn + iyn), (11.1)

recall the definitions

∂

∂zj
≡ 1

2

( ∂

∂xj
− i

∂

∂yj

)
(11.2)

∂

∂z̄j
≡ 1

2

( ∂

∂xj
+ i

∂

∂yj

)
, (11.3)

which are differential operators on complex-valued functions. We define

TR = spanR{∂/∂x1, . . . , ∂/∂xn, ∂/∂y1, . . . ∂/∂yn} (11.4)

which is a real 2n-dimensional vector space, and define vector spaces

T 1,0 = spanC{∂/∂zj, j = 1 . . . n} (11.5)

T 0,1 = spanC{∂/∂z̄j, j = 1 . . . n} (11.6)

TC = T 1,0 ⊕ T 0,1, (11.7)

which are complex vector spaces of complex dimension n, n, and 2n, respectively. Note that
TC = TR ⊗ C. Next define

Λ1
R = Hom(TR,R), (11.8)

35



to be the dual vector space to TR. We can write

Λ1
R = span{dx1, . . . , dxn, dy1, . . . , dyn}, (11.9)

where the above is the dual basis to ∂/∂x1, . . . , ∂/∂yn. Next, define

Λ1,0 = Hom(T 1,0,C) (11.10)

Λ0,1 = Hom(T 0,1,C) (11.11)

Λ1
C = Λ1,0 ⊕ Λ0,1. (11.12)

Similarly, we have Λ1
C = Λ1

R ⊗ C. Then we can write

Λ1,0 = span{dzj, j = 1 . . . n} (11.13)

Λ0,1 = span{dz̄j, j = 1 . . . n}, (11.14)

where dzj is the dual basis to ∂/∂zj and dzj is the dual basis to ∂/∂zj, that is,

dzj(∂/∂zk) = dz̄j(∂/∂z̄k) = δjk,

dzj(∂/∂z̄k) = dz̄j(∂/∂zk) = 0.
(11.15)

Define Λk
C to be the vector space

Λk
C = span{dzi1 ∧ · · · ∧ dzip ∧ dzj1 ∧ · · · ∧ dzjq | i1 < · · · < ip, j1 < · · · < jq, p+ q = k}

(11.16)

We can then extend this notation to all indices by

dzi1 ∧ dzi2 = −dzi2 ∧ dzi1 (11.17)

dzi1 ∧ dzi2 = −dzi2 ∧ dzi1 (11.18)

dzi ∧ dzj = −dzj ∧ dzi. (11.19)

This extends to a product called the wedge product:

∧ : Λk1
C ⊕ Λk2

C → Λk1+k2
C (11.20)

which is bilinear, associative, and satisfies

α ∧ β = (−1)pqβ ∧ α, α ∈ Λp
C, β ∈ Λq

C. (11.21)

Remark 11.1. Notice we can do a similar construction and define Λk
R which will satisfy

Λk
C = Λk

R ⊗ C.

We define Λp,q ⊂ Λp+q
C to be the span of forms which can be written as the wedge product

of exactly p elements in Λ1,0 and exactly q elements in Λ0,1. We have that

Λk
C =

⊕
p+q=k

Λp,q. (11.22)
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Noting that

dimC(Λ
p,q) =

(
n

p

)
·
(
n

q

)
, (11.23)

we have (
2n

k

)
=
∑

p+q=k

(
n

p

)
·
(
n

q

)
. (11.24)

Next, suppose we are given a domain U ⊂ Cn. Let

C∞
C (U) = {f : U → C | f is smooth}. (11.25)

Ek
C(U) = C∞

C (U)⊗ Λk
C (11.26)

Ep,q(U) = C∞
C (U)⊗ Λp,q. (11.27)

So we have that

Ek
C =

⊕
p+q=k

Ep,q. (11.28)

If α ∈ Ep,q(U), then we can write

α =
∑
I,J

αI,Jdz
I ∧ dzJ , (11.29)

where I and J are multi-indices of length p and q, respectively, and αI,J : U → C are smooth
complex-valued functions.

The wedge product extends to

∧ : Ek1
C ⊕ Ek2

C → Ek1+k2
C (11.30)

which is bilinear, associative, and satisfies

α ∧ β = (−1)pqβ ∧ α, α ∈ Ep
C, β ∈ Eq

C. (11.31)

Remark 11.2. We can do a similar construction and define C∞
R (U) and Ek

R, which will
satisfy Ek

C = Ek
R ⊗ C.

11.2 The operators ∂ and ∂ in Cn

We first define the exterior derivative operator

dR : Ek
R → Ωk+1

R (11.32)

by the following. For f ∈ Ek
R = C∞

R (U), define

df =
∑
i

∂f

∂xi
dxi +

∑
j

∂f

∂jj
dyj. (11.33)

Then we extend to any differential forms of any degree by

d(fIJdx
I ∧ dyJ) = (dfIJ) ∧ dxI ∧ dyJ . (11.34)
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Proposition 11.3. The operator dR satisfies

d2 = 0 (11.35)

d(α ∧ β) = (dα) ∧ β + (−1)deg(α)α ∧ dβ. (11.36)

Proof. We leave this as an exercise.

By complexification, this operator extends to

dC : Ek
C → Ek+1

C (11.37)

The following is a key proposition.

Proposition 11.4. We have

d(Ep,q) ⊂ Ep+1,q ⊕ Ep,q+1. (11.38)

Proof. We simply check on functions that the following formula holds

df =
∑
k

∂f

∂zk
dzk +

∑
k

∂f

∂zk
dzk. (11.39)

If α ∈ Ep,q(U), then

α =
∑

|I|=p,|J |=q

αI,Jdz
I ∧ dzJ , (11.40)

so applying d to (11.40), we obtain

dα =
∑
I,J

(∑
k

∂αI,J

∂zk
dzk +

∑
k

∂αI,J

∂zk
dzk
)
∧ dzI ∧ dzJ , (11.41)

and we are done.

We can therefore define operators

∂ : Ek
C → Ek+1

C (11.42)

∂ : Ek
C → Ek+1

C (11.43)

by

∂α =
∑
I,J,k

∂αI,J

∂zk
dzk ∧ dzI ∧ dzJ (11.44)

∂α =
∑
I,J,k

∂αI,J

∂zk
dzk ∧ dzI ∧ dzJ . (11.45)

Using (17.1) and we have

∂|Ep,q = ΠΛp+1,qd (11.46)

∂|Ep,q = ΠΛp,q+1d. (11.47)
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Corollary 11.5. We have d = ∂ + ∂ for operators

∂ : Ep,q → Ep+1,q (11.48)

∂ : Ep,q → Ep,q+1, (11.49)

which satisfy

∂2 = 0, ∂
2
= 0, ∂∂ + ∂∂ = 0. (11.50)

Proof. The equation d2 = 0 implies that

0 = (∂ + ∂)(∂ + ∂) = ∂2 + ∂∂ + ∂∂ + ∂
2
. (11.51)

If we plug in a form of type (p, q) the first term is of type (p+ 2, q), the middle terms are of
type (p + 1, q + 1), and the last term is of type (p, q + 2). Since (17.1) is a direct sum, the
claim follows.

12 Lecture 12

12.1 De Rham cohomology

We can make the following definition since d2 = 0.

Definition 12.1. Let U ⊂ Rn be a domain. For 0 ≤ k ≤ n, the kth de Rham cohomology
group is

Hk
dR(U) =

{α ∈ Ek(U)|dα = 0}
d(Ek(U))

, (12.1)

Let f : U → V be a smooth mapping, where U and V are open subset of Euclidean
spaces Rn and Rm, respectively. Then we can define the pullback of differential forms

f ∗ : Ek(V ) → Ek(U) (12.2)

by

f ∗( ∑
|I|=k

αIdy
I
)
=
∑
|I|=k

(αI ◦ f)d(yI ◦ f) (12.3)

Exercise 12.2. If f : U → V is smooth, then

dU ◦ f ∗ = f ∗ ◦ dV (12.4)

and if g : V → W is smooth, then

(g ◦ f)∗ = f ∗ ◦ g∗. (12.5)

The de Rham cohomology groups enjoy the following functorality properties.
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Proposition 12.3. Let U ⊂ Rm, V ⊂ Rn,W ⊂ Rl be domains. Let f : U → V be a smooth
mapping. Then there are induced mappings

f ∗ : Hk
dR(V ) → Hk

dR(U). (12.6)

If g : V → W is smooth then so is g ◦ f : U → W and

(g ◦ f)∗ = f ∗ ◦ g∗ : Hk
dR(W ) → Hk

dR(U). (12.7)

In particular, if f is a diffeomorphism (one-to-one, onto, with smooth inverse), then the de
Rham cohomologies of U and V are isomorphic.

Proof. We show that f ∗ induces a well-defined mapping on cohomology f ∗ : Hk
dR(V ) →

Hk
dR(U) by the following. If [αk] ∈ Hk

dR(V ) is represented by a form αk, such that dV α
k = 0,

then we have

dUf
∗αk = f ∗dV α

k = f ∗0 = 0, (12.8)

so we can define f ∗[αk] = [f ∗αk], that is, map to the cohomology class of the pullback of any
representative form. To see that this is well-defined,

f ∗(αk + dV β
k−1) = f ∗αk + f ∗dV β

k−1 = f ∗αk + dUf
∗βk−1, (12.9)

so we have

[f ∗(αk + dV β
k−1)] = [f ∗αk + dUf

∗βk−1] = [f ∗αk]. (12.10)

The next part follows since

(g ◦ f)∗ = f ∗ ◦ g∗ (12.11)

holds on the level of forms. Finally, if f is a diffeomorphism, then f−1 exists and is smooth,
so we have

f ◦ f−1 = idV , f−1 ◦ f = idU , (12.12)

and the induced mappings on cohomology satisfy

f ∗ ◦ (f−1)∗ = idHk
dR(U), (f−1)∗ ◦ f ∗ = idHk

dR(V ), (12.13)

12.2 Dolbeault cohomology

We can make the following definition since ∂
2
= 0.

Definition 12.4. Let U ⊂ Cn be a domain. For 0 ≤ p, q ≤ n, the (p, q) Dolbeault cohomol-
ogy group is

Hp,q

∂
(U) =

{α ∈ Ep,q(U)|∂α = 0}
∂(Ep,q−1(U))

. (12.14)

40



Next we define holomorphic mappings.

Definition 12.5. Let f : U → V be a C1 mapping, where U and V are open subset
of complex Euclidean spaces Cn and Cm, respectively. Then f is holomorphic if writing
f = (f 1, . . . , fm), then f j : U → C is holomorphic for j = 1, . . . ,m.

Proposition 12.6. If f : U → V is holomorphic, then f ∗ preserves the (p, q)-type decom-
position differential forms, i.e.,

f ∗ : Ep,q(V ) → Ep,q(U). (12.15)

Proof. To see this, let αp,q ∈ Ep,q(V ), of the form

αp,q =
∑

|I|=p,|J |=q

αIJdz
I ∧ dzJ , (12.16)

Then by definition

f ∗αp,q =
∑

|I|=p,|J |=q

(αIJ ◦ f)d(zI ◦ f) ∧ d(zJ ◦ f). (12.17)

But

d(zj ◦ f) = (∂ + ∂)(zj ◦ f) = ∂(zj ◦ f), (12.18)

since zj ◦ f is holomorphic, so this is a form of type (1, 0) on U . Similarly,

d(zj ◦ f) = (∂ + ∂)(zj ◦ f) = ∂(zj ◦ f), (12.19)

since zj ◦ f is anti-holomorphic, so this is a form of type (0, 1) on U , and we are done.

The Dolbeault cohomology groups enjoy the following functorality properties.

Proposition 12.7. Let U ⊂ Cm, V ⊂ Cn,W ⊂ Cl be domains. Let f : U → V be holomor-
phic. Then there are induced mappings

f ∗ : Hp,q(V ) → Hp,q(U). (12.20)

If g : V → W is holomorphic, then so is g ◦ f : U → W and

(g ◦ f)∗ = f ∗ ◦ g∗ : Hp,q(W ) → Hp,q(U). (12.21)

In particular, if f is a biholomorphism (one-to-one, onto, with holomorphic inverse), then
the Dolbeault cohomologies of U and V are isomorphic.

Proof. We know that the exterior derivative commutes with pullback,

dU ◦ f ∗ = f ∗ ◦ dV . (12.22)
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This is equivalent to

(∂U + ∂U) ◦ f ∗ = f ∗ ◦ (∂V + ∂V ) (12.23)

If we plug in αp,q ∈ Ωp,q(V ), we have 2 equations

∂U ◦ f ∗αp,q = f ∗ ◦ ∂V αp,q (12.24)

∂U ◦ f ∗αp,q = f ∗ ◦ ∂V αp,q (12.25)

The second equation implies that f ∗ induces a well-defined mapping on cohomology f ∗ :
Hp,q(V ) → Hp,q(U) by the following. If [αp,q] ∈ Hp,q(V ) is represented by a form αp,q, such
that ∂V α

p,q = 0, then we have

∂Uf
∗αp,q = f ∗∂V α

p,q = f ∗0 = 0, (12.26)

so we can define f ∗[αp,q] = [f ∗αp,q], that is, map to the cohomology class of the pullback of
any representative form. To see that this is well-defined,

f ∗(αp,q + ∂V β
p,q−1) = f ∗αp,q + f ∗∂V β

p,q−1 = f ∗αp,q + ∂Uf
∗βp,q−1, (12.27)

so we have

[f ∗(αp,q + ∂V β
p,q−1)] = [f ∗αp,q + ∂Uf

∗βp,q−1] = [f ∗αp,q]. (12.28)

The next part follows since

(g ◦ f)∗ = f ∗ ◦ g∗ (12.29)

holds on the level of forms. Finally, if f is a biholomorphism, then f−1 exists and is holo-
morphic, so we have

f ◦ f−1 = idV , f−1 ◦ f = idU , (12.30)

and the induced mappings on cohomology satisfy

f ∗ ◦ (f−1)∗ = idHp,q(U), (f−1)∗ ◦ f ∗ = idHp,q(V ), (12.31)

Definition 12.8. A form α ∈ Ep,0(U) is holomorphic if ∂α = 0, and we write that α ∈ Ωp(U).

Remark 12.9. We only talk about forms of type (p, 0) being holomorphic, we never call a
(p, q)-form holomorphic if q > 0. Also, we have (trivially)

Ωp(U) = Hp,0(U) = {α ∈ Ep,0(U) | ∂α = 0}. (12.32)

Proposition 12.10. A p-form α ∈ Ep,0(U) is holomorphic if and only if it can be written
as

α =
∑
|I|=p

αIdz
I , (12.33)

where the αI : U → C are holomorphic functions.
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Proof. We have

∂α =
∑

|I|=p,k

∂αI

∂zk
dzk ∧ dzI . (12.34)

So ∂α = 0 if and only if the αI are holomorphic.

Remark 12.11. So for U ⊂ Cn a domain, dimCH
p,0(U) = ∞ is always infinite-dimensional

for 0 ≤ p ≤ n, in particular because any polynomial function in the z-variables is holomor-
phic.

Example 12.12. Let’s review the case of a domain U ⊂ C. First, H0,0

∂
(U) = O(U).

Theorem 5.3 shows that H0,1

∂
(U) = {0}. The space H1,0

∂
(U) consists of holomorphic 1-forms,

but since n = 1, any holomorphic 1-form is of the form f(z)dz, where f ∈ O(U). So
H1,0

∂
(U) ∼= O(U). Finally,

H1,1

∂
(U) =

Ker ∂ : Ω1,1 → Ω1,2

Image ∂ : Ω1,0 → Ω1,1
=

gdz ∧ dz
(∂f/∂z)dz ∧ dz

= {0}, (12.35)

which also follows from Theorem 5.3.

13 Lecture 13

13.1 Jacobians

Let f : Cn → Cm. Let the coordinates on Cn be given by

{z1, . . . zn} = {x1 + iy1, . . . , xn + iyn}, (13.1)

and coordinates on Cm given by

{w1, . . . wm} = {u1 + iv1, . . . , um + ivm} (13.2)

Write

TR(Cn) = span{∂/∂x1, . . . ∂/∂xn, ∂/∂y1, . . . ∂/∂yn}, (13.3)

TR(Cm) = span{∂/∂u1, . . . ∂/∂um, ∂/∂v1, . . . ∂/∂vm}. (13.4)

Then the real Jacobian of

f = (f 1, . . . f 2m) = (u1 ◦ f, u2 ◦ f, . . . , v2m ◦ f). (13.5)

in this basis is given by

JRf =


∂f1

∂x1 . . . ∂f1

∂yn

... . . .
...

∂f2m

∂x1 . . . ∂f2m

∂yn

 (13.6)
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We define

J0,Cn =

(
0 −In
In 0

)
. (13.7)

Note that J2
0,Cn = −Id. We have the following characterization of holomorphic mappings.

Proposition 13.1. A C1 mapping f : Cn → Cm is holomorphic if and only if

f∗ ◦ J0,Cn = J0,Cm ◦ f∗. (13.8)

That is, the differential of f commutes with J0.

Proof. First, we consider m = n = 1. We compute(
∂f1
∂x1

∂f1
∂y1

∂f2
∂x1

∂f2
∂y1

)(
0 −1
1 0

)
=

(
0 −1
1 0

)( ∂f1
∂x1

∂f1
∂y1

∂f2
∂x1

∂f2
∂y1

)
, (13.9)

says that (
∂f1
∂y1

− ∂f1
∂x1

∂f2
∂y1

− ∂f2
∂x1

)
=

(
− ∂f2

∂x1 − ∂f2
∂y1

∂f1
∂x1

∂f1
∂y1

)
, (13.10)

which is exactly the Cauchy-Riemann equations. The argument in general is similar, and is
left as an exercise.

For any differentiable f , the mapping f∗ : TR(Cn) → TR(Cm) extends to a mapping

f∗ : TC(Cn) → TC(Cm). (13.11)

Consider the bases

TC(Cn) = span{∂/∂z1, . . . ∂/∂zn, ∂/∂z1, . . . ∂/∂zn}, (13.12)

TR(Cm) = span{∂/∂w1, . . . ∂/∂wm, ∂/∂w1, . . . ∂/∂wm}. (13.13)

The matrix of f∗ with respect to these bases is the complex Jacobian, and is given by

JCf =



∂f1

∂z1
· · · ∂f1

∂zn
∂f1

∂z1
· · · ∂f1

∂zn

... · · · ...
... · · · ...

∂fm

∂z1
· · · ∂fm

∂zn
∂fm

∂z1
· · · ∂fm

∂zn

∂f
1

∂z1
· · · ∂f

1

∂zn
∂f

1

∂z1
· · · ∂f

1

∂zn

... · · · ...
... · · · ...

∂f
m

∂z1
· · · ∂f

m

∂zn
∂f

m

∂z1
. . . ∂f

m

∂zn
,


(13.14)

where (f 1, . . . , fm) = f now denotes the complex components of f . This is equivalent to
saying that

df j =
∑
k

∂f j

∂zk
dzk +

∑
k

∂f 1

∂zk
dzk. (13.15)
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Notice that (13.14) is of the form

JCf =

(
A B
B A

)
(13.16)

which is equivalent to the condition that the complex mapping is the complexification of a
real mapping.

What we have done here is to embed

HomR(R2n,R2m) ⊂ HomC(C2n,C2m), (13.17)

where C-linear means with respect to i (not J0), via(
A B
C D

)
7→ 1

2

(
A+D + i(C −B) A−D + i(B + C)
A−D − i(B + C) A+D − i(C −B)

)
. (13.18)

Notice that if f is holomorphic, the condition that f∗ commutes with J0 says that the real
Jacobian must have the form

(f∗)R =

(
A −B
B A

)
. (13.19)

This corresponds to the embeddings

HomC(Cn,Cm) ⊂ HomR(R2n,R2m) ⊂ HomC(C2n,C2m), (13.20)

where the left C-linear is with respect to J0, via

A+ iB 7→
(
A −B
B A

)
7→
(
A+ iB 0

0 A− iB

)
. (13.21)

Note that since the latter embedding is just a change of basis, if m = n, then

det(JR) = det(A+ iB) det(A− iB) = | det(A+ iB)|2 ≥ 0, (13.22)

which implies that holomorphic maps are orientation-preserving. Note also that f is holo-
morphic if and only if

f∗(T
1,0) ⊂ T 1,0. (13.23)

13.2 Holomorphic inverse function theorem

Proposition 13.2 (Holomorphic inverse function theorem). Let f : U → V be holomorphic
where U and V are open subsets of Cn. Let z0 ∈ U satisfy

det
(∂f j

∂zk

)
(z0) ̸= 0. (13.24)

Then there exists neighborhoods U ′ of z0 and V ′ of f(z0) such that f : U ′ → V ′ is a biholo-
morphism.
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Proof. By the above, since f is holomorphic, we have

det(JR,z0) =
∣∣∣ det(∂f j

∂zk

)
(z0)

∣∣∣2 ̸= 0. (13.25)

By the (real) smooth inverse function theorem, there exists a smooth inverse f−1 : V ′ → U ′,
for some neighborhoods. We need to check that f−1 is holomorphic. For this, we differentiate
the equation z = f−1(f(z)) using the complex chain rule to get

0 =
∂

∂zj
f−1 ◦ f(z) = ∂f−1

∂wk

∂fk

∂zj
+
∂f−1

∂wk

∂f̄k

∂zj
=
∂f−1

∂wk

(∂fk

∂zj

)
(13.26)

The latter matrix has non-zero determinant in a neighborhood of z0, from which we conclude
that f−1 is holomorphic.

Corollary 13.3. Let f : U → C be holomorphic, and w ∈ C be a complex regular value.
That is,

∇Cf =
( ∂f
∂z1

, . . . ,
∂f

∂zn

)
(z) ̸= 0 (13.27)

for all z ∈ f−1(w). Then f−1(w) is a complex submanifold of U of complex codimension 1.
That is, near any point z ∈ f−1(w), there exists a neighborhood U ′ of z and a holomorphic
mapping Ψ : V ′ → U ′, where V ′ is a neighbohood of the origin in Cn, such that

f ◦Ψ = zn (13.28)

and therefore (f ◦Ψ)−1(w) is locally a hyperplane.

Proof. This is an application of the inverse function theorem, the proof is left as an exercise.

Exercise 13.4. Let f : C2 → C be given by

f(z1, z2) = z21 + z32 + z1z2. (13.29)

Determine the set of w ∈ C such that f−1(w) is a submanifold.

Exercise 13.5. Generalize Corollary 13.3 to the case of holomorphic f : U → Cm for m > 1.

13.3 Anti-holomorphic mappings

Notice that if f is anti-holomorphic, which is the condition that f∗ anti-commutes with J0,
then the real Jacobian must have the form

(f∗)R =

(
A B
B −A

)
. (13.30)

This corresponds to the embeddings

HomC(C
n,Cm) ⊂ HomR(R2n,R2m) ⊂ HomC(C2n,C2m) (13.31)
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via

A+ iB 7→
(
A B
B −A

)
7→
(

0 A+ iB
A− iB 0

)
. (13.32)

We see that f is anti-holomorphic if and only if

f∗(T
1,0) ⊂ T 0,1. (13.33)

For an arbitary mapping, not necessarily holomorphic or anti-holomorphic, we can de-
compose f∗ = fC

∗ + fA
∗ , where

fC
∗ =

1

2
(f∗ − J0f∗J0) (13.34)

fA
∗ =

1

2
(f∗ + J0f∗J0) , (13.35)

and fC
∗ is holomorphic, while fA

∗ is anti-holomorphic. In block matrix form, this just says
that (

A B
C D

)
=

1

2

(
A+D B − C
C −B A+D

)
+

1

2

(
A−D B + C
B + C D − A

)
. (13.36)

13.4 Almost complex structures

Recall that

TR(Cn) = span{∂/∂x1, . . . ∂/∂xn, ∂/∂y1, . . . ∂/∂yn}, (13.37)

Above, we defined

J0 : TR(Cn) → TR(Cn) (13.38)

by

J0,Cn =

(
0 −In
In 0

)
, (13.39)

which satisfies J2
0,Cn = −Id. This mapping is called an almost complex structure. Using this

mapping, we have some nice descriptions of the various spaces we previously introduced.
Upon complexification, we have the decomposition.

TR(Cn)⊗ C = TC(Cn) = T 1,0 ⊕ T 0,1. (13.40)

We extend J0 to a mapping

J0 : TC(Cn) → TC(Cn) (13.41)

by complex linearity. Using J0, we can describe the above decomposition as follows:
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Proposition 13.6. We have

T 1,0 = span{∂/∂zj, j = 1 . . . n} = {X − iJ0X,X ∈ TpR2n} (13.42)

is the i-eigenspace of J0 and

T 0,1 = span{∂/∂z̄j, j = 1 . . . n} = {X + iJ0X,X ∈ TpR2n} (13.43)

is the −i-eigenspace of J0.

Proof. We leave as an easy exercise.

Next, recall that

Λ1
R = Hom(TR,R) = span{dx1, . . . , dxn, dy1, . . . , dyn}, (13.44)

is the dual vector space to TR. Upon complexification, we have a decomposition

Λ1
C = Λ1,0 ⊕ Λ0,1. (13.45)

The map J0 also induces an endomorphism of 1-forms

JT
0 : Λ1

R → Λ1
R (13.46)

by

JT
0 (ω)(v1) = ω(J0v1).

Since the components of this map in a dual basis are given by the transpose, we have

JT
0 (dxj) = −dyj, JT

0 (dyj) = +dxj,

that is

JT
0,Cn =

(
0 In

−In 0

)
, (13.47)

which satisfies (JT
0 )

2 = −Id. We extend JT
0 to a mapping

JT
0 : Λ1

C → Λ1
C (13.48)

by complex linearity. Using JT
0 , we can describe the above decomposition as follows.

Proposition 13.7. We have

Λ1,0 = Hom(T 1,0,C) = span{dzj, j = 1 . . . n} = {α− iJT
0 α, α ∈ Λ1

R(R2n)} (13.49)

is the i-eigenspace of JT
0 , and

Λ0,1 = Hom(T 0,1,C) = span{dz̄j, j = 1 . . . n} = {α + iJT
0 α, α ∈ Λ1

R(R2n)} (13.50)

is the −i-eigenspace of JT
0 .
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Proof. This is left as an exercise.

We also defined

Λk
C = Λk

R ⊗ C (13.51)

and proved that there is a decomposition

Λk
C = Λk ⊗ C =

⊕
p+q=k

Λp,q, (13.52)

with

dimC(Λ
p,q) =

(
n

p

)
·
(
n

q

)
. (13.53)

Finally, we can define

JT
0 : Λk ⊗ C → Λk ⊗ C (13.54)

by letting

JT
0 (α) = ip−qα, (13.55)

for α ∈ Λp,q, p+ q = k.
In general, JT

0 is not an almost complex structure on the space Λk
C for k > 1. Also, note

that if α ∈ Λp,p, then α is J-invariant.

14 Lecture 14

14.1 The ∂-equation for (0, 1)-forms and Hartogs’ Theorem

A reference for this section is [HL84, Section 1.2]. For n ≥ 2, and g ∈ E0,1(U), the equation
∂f = g is not always solvable. This follows from (17.14): applying ∂ yields a compatibility
condition ∂g = 0. The following is in sharp contrast to the case n = 1.

Proposition 14.1. Let n ≥ 2 and g ∈ E0,1
0 (Cn) (compact support) have C∞ regularity and

satisfy ∂g = 0. Then there exists a smooth f ∈ C∞
0 (Cn) (also having compact support) with

∂f = g. Furthermore, f ≡ 0 on the unbounded component of Cn \ supp(g).

Proof. We write g =
∑n

j=1 gjdz
j. Define

f(z1, . . . , zn) =
1

2πi

∫
C

g1(w, z2, . . . , zn)

w − z1
dw ∧ dw. (14.1)

The integral is defined since g1 has compact support. Make the change of variable ξ = w−z1,
and we can write f as

f(z1, . . . , zn) =
1

2πi

∫
C

g1(ξ + z1, z2, . . . , zn)

ξ
dξ ∧ dξ̄. (14.2)
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This shows that we can differentiate under the integral sign to conclude that f has C∞

regularity. Furthermore,

∂f(z1, . . . , zn)

∂z1
=

1

2πi

∫
C

∂g1(ξ + z1, z2, . . . , zn)

∂z1
1

ξ
dξ ∧ dξ̄

=
1

2πi

∫
C

∂g1(ξ + z1, z2, . . . , zn)

∂ξ̄

1

ξ
dξ ∧ dξ̄

=
1

2πi

∫
C

∂g1(w, z2, . . . , zn)

∂w

1

w − z1
dw ∧ dw = g1(z1, . . . , zn),

(14.3)

by the Cauchy-Pompieu formula applied to a large ball containing the support of g. The
condition that ∂g = 0 means that

0 =
n∑

j=1

n∑
k=1

∂gj
∂zk

dzk ∧ dzj, (14.4)

so

∂gj
∂zk

=
∂gk
∂zj

(14.5)

for all 1 ≤ j, k ≤ n. Then differentiating (14.2) for j ≥ 2, we obtain

∂f(z1, . . . , zn)

∂zj
=

1

2πi

∫
C

∂g1(ξ + z1, z2, . . . , zn)

∂zj
1

ξ
dξ ∧ dξ̄

=
1

2πi

∫
C

∂gj(ξ + z1, z2, . . . , zn)

∂z1
1

ξ
dξ ∧ dξ̄

=
1

2πi

∫
C

∂gj(w, z2, . . . , zn)

∂w

1

w − z1
dw ∧ dw = gj(z1, . . . , zn).

(14.6)

So the equation ∂f = g is satisfied everywhere. Finally, since g has compact support,
it follows that f is holomorphic on the complement of a large ball Br(0) containing the
support of g. But (14.1) shows that f vanishes when max{|z2|, . . . , |zn|} > r for some r
sufficiently large. Therefore f is a holomorphic function on Cn \ Br(0) which vanishes on
the open subset V = {max{|z2|, . . . , |zn|} > r}. By unique continuation, f ≡ 0 on the
unbounded component of Cn \ supp(g).

Theorem 14.2 (Hartogs). Let n ≥ 2, U a domain, and K ⊂ U a compact subset of U such
that U \K is connected. Then if u ∈ O(U \K), there exists ũ ∈ O(U) with ũ|U\K = u.

Proof. Let 0 ≤ χ ∈ C∞
0 (U) and χ ≡ 1 on K. Define g = ∂(χ · u) = ∂((χ− 1) · u). Since

∂(χu) = u∂(χ) + χ∂(u) = u∂(χ) + 0, (14.7)

we see that g extends smoothly to U , that is, g ∈ E0,1
0 (U), and ∂g = 0. By Proposition 14.1,

there exists f ∈ C∞
0 (Cn) with ∂f = g. So then we let ũ = (1− χ)u+ f . This satisfies

∂f̃ = −g + ∂(f) = 0, (14.8)
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so ũ ∈ O(U). Let V denote the unbounded component of the complement of the support of
χ. Since supp(g) ⊂ supp(χ), from Proposition 14.1, we have that f ≡ 0 in V , so ũ = u in
U ∩ V . But since U \K is connected and V ∩ (U \K) ̸= ∅, we have ũ = u in U \K from
unique continuation.

Example 14.3. This gives another proof that point singularities are removable for n ≥ 2.
Also, polydics are removable: if u is holomorphic on ∆ \∆′, where ∆′ ⊂ ∆ then u extends
to a holomorphic function on ∆. We also see that the same is true for balls Br1(0) ⊂ Br2(0)
with r1 < r2.

14.2 Dolbeault cohomology of a polydisc

Some references for this section are [GH78, Section 0.2] or [Nog16, Section 3.6].

Proposition 14.4. If U = ∆(r) is polydisc (with some radii allowed to be infinite), and
ω ∈ Ep,q(U) satisfies ∂ω = 0 for q ≥ 1, then given any polyradius s < r, there exists
η ∈ Ep,q−1(∆(r)) with ∂η = ω satisfied in ∆(s).

Proof. Step 1: reduce to case of E0,q. If ω ∈ Ep,q(U),

ω =
∑

|I|=p,|J |=q

ωIJdz
I ∧ dzJ . (14.9)

Define

ωI =
∑
|J |=q

ωIJdz
J . (14.10)

Then ωI ∈ E0,q, and ∂ωI = 0. If ωI = ∂ηI , then

∂(dzI ∧ ηI) = (−1)pdzI ∧ ∂ηI = (−1)pdzI ∧ ωI , (14.11)

so

∂(
∑
|I|=p

dzI ∧ ηI) = (−1)p
∑
|I|=p

dzI ∧ ωI = (−1)p
∑
|I|=p

∑
|J |=q

ωIJdz
I ∧ dzJ , (14.12)

and we are done with Step 1.
Step 2. Given s < r, if ω ∈ E0,q(∆(r)) and ∂ω = 0 in ∆(r), then there exists η ∈

E0,q−1(∆(r)) with ∂η = ω satisfied in ∆(s). Choose cutoff functions 0 ≤ χj(t) ≤ 1 so that

χi(t) =

{
1 t ≤ sj

0 t ≥ rj
. (14.13)

We begin with q = 1. Note that ω ∈ E0,1(∆(r)), but it does not have compact support, so
we proceed differently than in the proof of Proposition 14.1. Write

ω =
∑
k

ωkdz
k, (14.14)
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and define

η1(z
1, . . . , zn) =

1

2πi

∫
|wj |≤rj

χ1(w1)ωj(w
1, z2, . . . , zn)

w1 − z1
dw1 ∧ dw1. (14.15)

Then ∂η1/∂z
1 = χ1ω1, and we have

∂η1 =
∑
l

∂η1
∂zl

dzl = χ1ω1dz
1 +

∑
j>1

∂η1
∂zj

dzj. (14.16)

That is, we have solved the dz1-term, modulo terms involving dzj for j > 1 (we have not
even used the fact that ∂ω = 0 yet!) Next, we consider the case

ω =
∑
k>1

ωkdz
k, (14.17)

Since ∂ω = 0, this tells us that ∂ω2/∂z
1 = 0. Next, we define

η2(z
1, . . . , zn) =

1

2πi

∫
|w2|≤r2

χ2(w2)ω2(z
1, w2, z3, . . . , zn)

w2 − z2
dw2 ∧ dw2. (14.18)

Then ∂η2/∂z
2 = χ2ω2 and ∂η2/∂z

1 = 0, so we have

∂η2 =
∑
l

∂η2
∂zj

dzj = χ2ω2dz
2 +

∑
j>2

∂η2
∂zj

dzj. (14.19)

Assume that we can solve all the terms involving dzk for k ≤ l, and

ω =
∑
k>l

ωkdz
k. (14.20)

Since ∂ω = 0, this tells us that ∂ωl+1/∂z
j = 0 for j ≤ l. Then we define

ηl+1(z
1, . . . , zn) =

1

2πi

∫
|wl+1|≤rl+1

χl+1(wl+1)ωl+1(z
1, . . . , wl+1, . . . , zn)

wl+1 − zl+1
dwl+1 ∧ dwl+1.

(14.21)

Then ∂ηl+1/∂z
l+1 = χl+1ωl+1 and ∂ηl+1/∂z

j = 0 for j ≤ l, so we have

∂ηl+1 =
∑
j>l

∂ηl+1

∂zj
dzj = χl+1ωl+1dz

l+1 +
∑
j>l+1

∂ηl+1

∂zj
dzj. (14.22)

By induction, we are done with the case of q = 1.
Next, consider the case of q = 2. Then

ω =
∑
1≤k<l

ωkldz
k ∧ dzl =

∑
1<l

ω1ldz
1 ∧ dzl +

∑
1<k<l

ωkldz
k ∧ dzl. (14.23)
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Define η =
∑

1<k η1kdz
k, where

η1k(z
1, . . . , zn) =

1

2πi

∫
|w1|≤r1

χ1(w
1)ω1k(w

1, z2, . . . , zn)

w1 − z1
dw1 ∧ dw1. (14.24)

Then η1k solves ∂η1k/∂z
1 = χ1ω1k. So then

∂η =
∑
1<k

∂η1k
∂zl

dzl ∧ dzk =
∑
1<k

χ1ω1kdz
1 ∧ dzk +R (14.25)

where R doesn’t include any dz1-s. So we have solved the terms in ω involving dz1-s. We
next assume that ω is of the form

ω =
∑
1<k<l

ωkldz
k ∧ dzl =

∑
2<l

ω2ldz
2 ∧ dzl +

∑
2<k<l

ωkldz
k ∧ dzl. (14.26)

Let η =
∑

2<k η2kdz
k where

η2k =
1

2πi

∫
|w2|≤r2

χ2(w
2)ω2k(z

1, w2, z3, . . . zn)

w2 − z2
dw2 ∧ dw2. (14.27)

Then ∂η2k/∂z
2 = χ2ω2k. Furthermore, since ∂ω = 0, ∂η2k/∂z

1 = 0. So then

∂η =
∑
2<k

∂(η2kdz
k) =

∑
2<k

∑
2≤l

∂η2k
∂zl

dzl ∧ dzk =
∑
2<k

χ2ω2kdz
2 ∧ dzk +R, (14.28)

where R only has terms dzk ∧ dzl for k, l ≥ 3. So we have solved as the term in ω having
dz1-s or dz2-s. By a similar induction argument as in the q = 1 case, we can solve all terms
in this manner. The case of q > 2 is similar, and details left as an exercise.

We next upgrade this to have no shrinkage.

Theorem 14.5. If U = ∆(r) is polydisc (with some radii allowed to be infinite), then
Hp,q

∂
(U) = {0} for q ≥ 1.

Proof. Choose a monotone increasing sequence of polyradii r1 < r2 < . . . with limj→∞ rj = r.
Given ω ∈ E0,q(∆(r), by Step 2, we can find ηj ∈ E0,q−1(∆(r)) with ∂ηj = ω on ∆(rj). We do
not know that the sequence ηj will converge. However, ∂(ηj+1 − ηj) = 0 in ∆(rj). If q ≥ 2,
then by Step 2, we can find βj+1 ∈ E0,q−2(∆(rj)) solving ∂(βj+1) = ηj+1 − ηj in ∆(rj−1). We
then consider the sequence η′j+1 = ηj+1 − ∂(βj+1). Then η

′
j+1 ∈ E0,q−2(∆(rj) and

∂(η′j+1) = ∂ηj+1 − ∂
2
(βj+1) = ω (14.29)

in ∆(rj−1), and this new sequence now obviously converges to a solution η ∈ E0,q(∆(r) with
∂η = ω in ∆(r).

If q = 1, then we prove exactly like we did in the case of n = 1, by approximating the
difference ηj+1 − ηj by a polynomial Pj+1 to obtain a sequence so that

sup
z∈K

|ηj+1(z)− ηj(z)| < 2−j, (14.30)

and we obtain a sequence converging on compact subsets to a solution.
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Remark 14.6. Using Laurent series instead of polynomials, a similar proof works to prove
that Theorem 14.5 also holds for products ∆∗(r1) × · · · × ∆∗(rk) × ∆(rk+1) × · · ·∆(rk+l),
that is, we can allow punctured 1-dimensional disks. With a lot more work, one can also
show that Theorem 14.5 holds for Ω1 × · · · × Ωn with Ωj ⊂ C are domains. Note the result
is NOT true for a punctured polydisc ∆(0, r) \ {0} for n ≥ 2, but we cannot prove that yet.

Remark 14.7. Theorem 14.5 also holds for a ball B(0, r) ⊂ Cn. However, this is difficult
to prove directly. One could use the Bochner-Martinelli kernel instead of the Cauchy kernel
to prove Proposition 14.4. Then one would also need to prove that the B(0, r) is a Runge
domain, that is, O(B(0, r)) can be approximated by holomorphic polynomials uniformly
on compact subsets. However, it seems actually easier to prove this more generally for
any pseudoconvex domain (using Hörmander’s L2 methods), and then show that B(0, r) is
pseudoconvex.

15 Lecture 15

15.1 Almost complex manifolds

Definition 15.1. An almost complex manifold is a real manifold with an endomorphism
J : TM → TM satisfying J2 = −Id.

The following lemma shows that we can always take J to be standard at any point.

Lemma 15.2. Let J : R2n → R2n be a linear mapping satisfying J2 = −Id. Then there
exists an invertible matrix A such that A−1JA = JEuc.

Proof. For X ∈ R2n, define

(a+ ib)X = aX + bJX. (15.1)

Then R2n becomes an n-dimensional complex vector space. Let X1, . . . , Xn be a complex
basis. Then X1, JX1, . . . , Xn, JXn is a basis of R2n as a real vector space, and J is obviously
standard in this basis.

Remark 15.3. The Newlander-Nirenberg Theorem deals with the following question: when
can we make J standard in a neighborhood of a point? As we will see shortly, this cannot
possibly be true for an arbitrary almost complex structure; there is an integrability condition
which must be satisfied.

All of the linear algebra we discussed above in Cn can be done on an almost complex
manifold (M,J). We can decompose

TM ⊗ C = T 1,0 ⊕ T 0,1, (15.2)

where

T 1,0 = {X − iJX,X ∈ TpM} (15.3)
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is the i-eigenspace of J and

T 0,1 = {X + iJX,X ∈ TpM} (15.4)

is the −i-eigenspace of J .
The map J also induces an endomorphism of 1-forms by

JT (ω)(v1) = ω(Jv1).

We then have

T ∗ ⊗ C = Λ1,0 ⊕ Λ0,1, (15.5)

where

Λ1,0 = {α− iJTα, α ∈ T ∗
pM} (15.6)

is the i-eigenspace of JT , and

Λ0,1 = {α + iJTα, α ∈ T ∗
pM} (15.7)

is the −i-eigenspace of JT .
Next, we can define Λp,q ⊂ Λp+q ⊗C to be the span of forms which can be written as the

wedge product of exactly p elements in Λ1,0 and exactly q elements in Λ0,1. We have that

Λk ⊗ C =
⊕

p+q=k

Λp,q (15.8)

decomposes as a direct sum.

Remark 15.4. This gives a necessary topological obstruction for existence of an almost
complex structure: the bundle of complex k-forms must decompose into to a direct sum of
subbundles as in (15.8).

We can extend J : Λk ⊗ C → Λk ⊗ C by letting

Jα = ip−qα, (15.9)

for α ∈ Λp,q, p+ q = k. Note we can also extend J to k-forms by

Jα(X1, . . . , Xk) = α(JX1, . . . , JXk). (15.10)

Exercise 15.5. Check that these two definitions of J on k-forms agree.

Definition 15.6. A triple (M,J, g) where J is an almost complex structure, and g is a
Riemannian metric is almost Hermitian if

g(X, Y ) = g(JX, JY ) (15.11)

for all X, Y ∈ TM . We also say that g is compatible with J .
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Proposition 15.7. Given a linear J with J2 = −Id on R2n, and a positive definite inner
product g on R2n which is compatible with J , there exist elements {X1, . . . Xn} in R2n so that

{X1, JX1, . . . , Xn, JXn} (15.12)

is an ONB for R2n with respect to g.

Proof. We use induction on the dimension. First we note that if X is any unit vector, then
JX is also unit, and

g(X, JX) = g(JX, J2X) = −g(X, JX), (15.13)

so X and JX are orthonormal. This handles n = 1. In general, start with any X1, and let
W be the orthogonal complement of span{X1, JX1}. We claim that J : W → W . To see
this, let X ∈ W so that g(X,X1) = 0, and g(X, JX1) = 0. Using J-invariance of g, we see
that g(JX, JX1) = 0 and g(JX,X1) = 0, which says that JX ∈ W . Then use induction
since W is of dimension 2n− 2.

Definition 15.8. To an almost Hermitian structure (M,J, g) we associate a 2-form

ω(X, Y ) = g(JX, Y ) (15.14)

called the Kähler form or fundamental 2-form.

This is indeed a 2-form since

ω(Y,X) = g(JY,X) = g(J2Y, JX) = −g(JX, Y ) = −ω(X, Y ). (15.15)

Furthermore, since

ω(JX, JY ) = ω(X, Y ), (15.16)

this form is a real form of type (1, 1). That is, ω ∈ Γ(Λ1,1
R ), where Λ1,1

R ⊂ Λ1,1 is the real
subspace of elements satisfying ω = ω.

In Euclidean space (R2n, J0, gEuc), the fundamental 2-form is

ωEuc =
i

2

n∑
j=1

dzj ∧ dzj. (15.17)

We note the following formula for the volume form:(
i

2

)n

dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn = dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn (15.18)

Note that this defines an orientation on Cn, which we will refer to as the natural orientation.
Note also that

ωn
Euc = n! · dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn. (15.19)
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Proposition 15.9. If (M,J) is almost complex, then dim(M) is even and M is orientable.

Proof. If M is of real dimension m, and admits an almost complex structure, then

(det(J))2 = det(J2) = det(−I) = (−1)m, (15.20)

which implies that m is even. We will henceforth write m = 2n. Next, let g be any
Riemannian metric on M . Then define

h(X, Y ) = g(X, Y ) + g(JX, JY ). (15.21)

Then h(JX, JY ) = h(X, Y ) is J-invariant, so (M,J, h) is almost Hermitian. We then
consider the fundamental 2-form

ω(X, Y ) = h(JX, Y ). (15.22)

This is a form of type (1, 1), so ωn ∈ Λn,n
R

∼= Λ2n
R is a top degree 2n-form. It is nowhere-

vanishing since at any point x ∈M by Proposition 15.7 we can assume that both Jx = JEuc

and gx = gEuc, so ω
n(x) ̸= 0 by (15.19). Therefore, ω gives a globally defined orientation on

M .

Example 15.10. For example, RPn does not admit any almost complex structure, since it
is non-orientable for n even.

Definition 15.11. A smooth mapping between f : M → N between almost complex man-
ifolds (M,JM) and (N, JN) is pseudo-holomorphic if

f∗ ◦ JM = JN ◦ f∗ (15.23)

We have a useful characterization of pseudo-holomorphic mappings.

Proposition 15.12. A mapping f : M → N between almost complex manifolds (M,JM)
and (N, JN) is pseudo-holomorphic if and only if

f∗(T
1,0(M)) ⊂ T 1,0(N), (15.24)

if and only if

f ∗(Λ1,0(N)) ⊂ Λ1,0(M). (15.25)

16 Lecture 16

16.1 Complex manifolds

We next define a complex manifold.

Definition 16.1. A complex manifold of dimension n is a smooth manifold of real dimension
2n with a collection of coordinate charts (Uα, ϕα) covering M , such that ϕα : Uα → Cn and
with overlap maps ϕα ◦ ϕ−1

β : ϕβ(Uα ∩ Uβ) → ϕα(Uα ∩ Uβ) satisfying the Cauchy-Riemann
equations.
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Example 16.2. Since holomorphic mappings are orientation-preserving by (13.22), any
complex manifold is necessarily orientable. For example, RPn does not admit any complex
structure. Note that we knew from Example 15.10 above that there is no almost complex
structure.

Complex manifolds have a uniquely determined compatible almost complex structure on
the tangent bundle:

Proposition 16.3. In any coordinate chart, define Jα : TMUα → TMUα by

J(X) = (ϕα)
−1
∗ ◦ J0 ◦ (ϕα)∗X. (16.1)

Then Jα = Jβ on Uα ∩ Uβ and therefore gives a globally defined almost complex structure
J : TM → TM satisfying J2 = −Id.

Proof. On overlaps, the equation

(ϕα)
−1
∗ ◦ J0 ◦ (ϕα)∗ = (ϕβ)

−1
∗ ◦ J0 ◦ (ϕβ)∗ (16.2)

can be rewritten as

J0 ◦ (ϕα)∗ ◦ (ϕβ)
−1
∗ = (ϕα)∗ ◦ (ϕβ)

−1
∗ ◦ J0. (16.3)

Using the chain rule this is

J0 ◦ (ϕα ◦ ϕ−1
β )∗ = (ϕα ◦ ϕ−1

β )∗ ◦ J0, (16.4)

which is exactly the condition that the overlap maps satisfy the Cauchy-Riemann equations.
Obviously,

J2 = (ϕα)
−1
∗ ◦ J0 ◦ (ϕα)∗ ◦ (ϕα)

−1
∗ ◦ J0 ◦ (ϕα)∗

= (ϕα)
−1
∗ ◦ J2

0 ◦ (ϕα)∗

= (ϕα)
−1
∗ ◦ (−Id) ◦ (ϕα)∗ = −Id.

The next proposition follows from the above discussion on Cauchy-Riemann equations.

Proposition 16.4. If (M,JM) and (N, JN) are complex manifolds, then f : M → N is
pseudo-holomorphic if and only if is a holomorphic mapping in local holomorphic coordinate
systems.

Definition 16.5. An almost complex structure J is said to be a complex structure if J is
induced from a collection of holomorphic coordinates on M .

Proposition 16.6. An almost complex structure J is a complex structure if and only if
for any x ∈ M , there is a neighborhood U of x and a pseudo-holomorphic mapping ϕ :
(U, J) → (Cn, J0) which has non-vanishing Jacobian at x. Equivalently, there exist n pseudo-
holomorphic functions f j : U → C, j = 1 . . . n, with linearly independent differentials at x.
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Proof. By the inverse function theorem, ϕ gives a coordinate system in a possible smaller
neighborhood of of x. The overlap mappings are pseudo-holomorphic mappings with respect
to J0, so they satisfy the Cauchy-Riemann equations, and are therefore holomorphic. The
components of ϕ are functions f j, j = 1 . . . n with linearly independent differentials, and
conversely, ϕ = (f 1, . . . , fn) is a local coordinate system.

Proposition 16.7. A real 2-dimensional manifold admits an almost complex structure if
and only if it is oriented.

Proof. We have already proved the forward direction. Let M2 be any oriented surface, and
choose any Riemannian metric g on M . Then ∗ : Λ1 → Λ1 satisfies ∗2 = −Id, and using
the metric to identify Λ1 ∼= TM , we obtain an endomorphism J : TM → TM satisfying
J2 = −Id, which is an almost complex structure.

Remark 16.8. In this case, any such J is necessarily a complex structure. This is equivalent
to the problem of existence of isothermal coordinates, we will prove this soon.

16.2 The Nijenhuis tensor

When does an almost complex structure arise from a true complex structure? To answer
this question, we define the following tensor associated to an almost complex structure.

Proposition 16.9. The Nijenhuis tensor of an almost complex structure defined by

N(X, Y ) = 2{[JX, JY ]− [X, Y ]− J [X, JY ]− J [JX, Y ]} (16.5)

is in Γ(T ∗M ⊗ T ∗M ⊗ TM) and satisfies

N(Y,X) = −N(X, Y ), (16.6)

N(JX, JY ) = −N(X, Y ), (16.7)

N(X, JY ) = N(JX, Y ) = −J(N(X, Y )). (16.8)

Proof. Given a function f :M → R, we compute

N(fX, Y ) = 2{[J(fX), JY ]− [fX, Y ]− J [fX, JY ]− J [J(fX), Y ]}
= 2{[fJX, JY ]− [fX, Y ]− J [fX, JY ]− J [fJX, Y ]}
= 2{f [JX, JY ]− (JY (f))JX − f [X, Y ] + (Y f)X

− J(f [X, JY ]− (JY (f))X)− J(f [JX, Y ]− (Y f)JX)}
= fN(X, Y ) + 2{−(JY (f))JX + (Y f)X + (JY (f))JX + (Y f)J2X}.

Since J2 = −I, the last 4 terms vanish. A similar computation proves that N(X, fY ) =
fN(X, Y ). Consequently, N is a tensor. The skew-symmetry in X and Y (16.6) is obvious,
and (16.7) follows easily using J2 = −Id. For (16.8)

N(X, JY ) = −N(JX, J2Y ) = N(JX, Y ), (16.9)
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and

N(X, JY ) = 2{[JX, J2Y ]− [X, JY ]− J [X, J2Y ]− J [JX, JY ]}
= 2{−[JX, Y ]− [X, JY ] + J [X, Y ]− J [JX, JY ]}
= 2J{J [JX, Y ] + J [X, JY ] + [X, Y ]− [JX, JY ]}
= −2J{N(X, Y )}.

(16.10)

Proposition 16.10. For a C1 almost complex structure J ,

NJ ∈ Γ
({(

Λ2,0 ⊗ T 0,1)⊕
(
Λ0,2 ⊗ T 1,0

)}
R

)
. (16.11)

Consequently, if dim(M) = 2n, then the Nijenhuis tensor has n2(n − 1) independent real
components. In particular, if n = 1, then NJ ≡ 0.

Proof. If we complexify, just using (16.6), we have

NJ ∈ Γ((Λ2 ⊗ TM)⊗ C))

= Γ
((

Λ2,0 ⊕ Λ0,2 ⊕ Λ1,1
)
⊗
(
T 1,0 ⊕ T 0,1)

)
.

(16.12)

But (16.7) says that the Λ1,1 component vanishes. So we have

NJ ∈ Γ
((

Λ2,0 ⊕ Λ0,2
)
⊗
(
T 1,0 ⊕ T 0,1)

)
. (16.13)

Using (16.8), for X ′, Y ′ ∈ Γ(TM), we have

NJ(X
′ − iJX ′, Y ′ − iJY ′)

= NJ(X
′, Y ′)−NJ(JX

′, JY ′)− iNJ(JX
′, Y ′)− iNJ(X

′, JY ′)

= NJ(X
′, Y ′) +NJ(X

′, Y ′) + iJNJ(X
′, Y ′) + iJNJ(X

′, Y ′)

= 2NJ(X
′, Y ′) + 2iJNJ(X

′, Y ′),

(16.14)

which lies in T 0,1. This shows that the Λ2,0 ⊗ T 1,0 component vanishes, so the Λ0,2 ⊗ T 0,1

component also vanishes, and (16.11) follows since NJ is a real tensor.

We have the following local formula for the Nijenhuis tensor.

Proposition 16.11. In local coordinates, the Nijenhuis tensor is given by

N i
jk = 2

2n∑
h=1

(Jh
j ∂hJ

i
k − Jh

k ∂hJ
i
j − J i

h∂jJ
h
k + J i

h∂kJ
h
j ) (16.15)

Proof. We compute

1

2
N(∂j, ∂k) = [J∂j, J∂k]− [∂j, ∂k]− J [∂j, J∂k]− J [J∂j, ∂k]

= [J l
j∂l, J

m
k ∂m]− [∂j, ∂k]− J [∂j, J

l
k∂l]− J [J l

j∂l, ∂k]

= I + II + III + IV.
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The first term is

I = J l
j∂l(J

m
k ∂m)− Jm

k ∂m(J
l
j∂l)

= J l
j(∂lJ

m
k )∂m + J l

jJ
m
k ∂l∂m − Jm

k (∂mJ
l
j)∂l − Jm

k J
l
j∂m∂l

= J l
j(∂lJ

m
k )∂m − Jm

k (∂mJ
l
j)∂l.

The second term is obviously zero. The third term is

III = −J(∂j(J l
k)∂l) = −∂j(J l

k)J
m
l ∂m. (16.16)

Finally, the fourth term is

III = ∂k(J
l
j)J

m
l ∂m. (16.17)

Combining these, we are done.

Definition 16.12. If J is an almost complex structure of class C1 satisfying NJ ≡ 0, then
we say that J is integrable.

Corollary 16.13. If (M,J) arises from a complex structure, then J is integrable.

Proof. In local holomorphic coordinates J = J0 is a constant tensor, and N(J) = 0 follows
from Proposition 16.11.

Next, we have an alternative characterization of the vanishing of the Nijenhuis tensor.

Proposition 16.14. For an almost complex structure J the Nijenhius tensor N(J) = 0 if
and only if for any 2 vector fields X, Y ∈ Γ(T 1,0), their Lie bracket [X, Y ] ∈ Γ(T 1,0).

Proof. To see this, if X and Y are both sections of T 1,0 then we can write X = X ′ − iJX ′

and Y = Y ′ − iJY ′ for real vector fields X ′ and Y ′. The commutator is

[X ′ − iJX ′, Y ′ − iJY ′] = [X ′, Y ′]− [JX ′, JY ′]− i([X ′, JY ′] + [JX ′, Y ′]). (16.18)

But this is also a (1, 0) vector field if and only if

[X ′, JY ′] + [JX ′, Y ′] = J [X ′, Y ′]− J [JX ′, JY ′], (16.19)

applying J , and moving everything to the left hand side, this says that

[JX ′, JY ′]− [X ′, Y ′]− J [X ′, JY ′]− J [JX ′, Y ′] = 0, (16.20)

which is exactly the vanishing of the Nijenhuis tensor.
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17 Lecture 17

17.1 The operators ∂ and ∂ for an integrable almost complex
structure

Recall that on any almost complex manifold (M,J), we can define Λp,q ⊂ Λp+q ⊗ C to be
the span of forms which can be written as the wedge product of exactly p elements in Λ1,0

and exactly q elements in Λ0,1. We have that

Λk ⊗ C =
⊕

p+q=k

Λp,q. (17.1)

We define Ek, Ek
C, Ep,q to be the space of smooth sections of Λk,Λk ⊗ C,Λp,q, respectively.

The real operator d : Ek
R → Ek+1

R , extends to an operator

d : Ek
C → Ek+1

C (17.2)

by complexification.

Proposition 17.1. For a C1 almost complex structure J

d(Ep,q) ⊂ Ep+2,q−1 ⊕ Ep+1,q ⊕ Ep,q+1 ⊕ Ep−1,q+2, (17.3)

and NJ = 0 if and only if

d(Ep,q) ⊂ Ep+1,q ⊕ Ep,q+1. (17.4)

if and only if

d(E1,0) ⊂ E2,0 ⊕ E1,1 (17.5)

if and only if

d(E0,1) ⊂ E1,1 ⊕ E0,2 (17.6)

Proof. Let α ∈ Ep,q, and write p+ q = r. Then we have the basic formula

dα(X0, . . . , Xr) =
∑

(−1)jXjα(X0, . . . , X̂j, . . . , Xr)

+
∑
i<j

(−1)i+jα([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xr).
(17.7)

This is easily seen to vanish if more than p + 2 of the Xj are of type (1, 0) or if more than
q + 2 are of type (0, 1), and (17.3) follows.

Next, assume that (17.6) is satisfied. Let α ∈ E0,1, then

dα(X, Y ) = X(α(Y ))− Y (α(X))− α([X, Y ]) (17.8)

then implies that if bothX and Y are in T 1,0 then so is their bracket [X, Y ]. Proposition 16.14
implies that N(J) ≡ 0. Conversely, if N(J) ≡ 0, then we can reverse the steps in this
argument to obtain (17.6). Equation (17.5) is just the conjugate of (17.6).

Recall that if α ∈ Ek and β ∈ E l then

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ. (17.9)

The formula (17.4) then follows from this.
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If NJ = 0, we can therefore define operators

∂ : Ek
C → Ek+1

C (17.10)

∂ : Ek
C → Ek+1

C (17.11)

using (17.1) and

∂|Ep,q = ΠΛp+1,qd (17.12)

∂|Ep,q = ΠΛp,q+1d. (17.13)

Corollary 17.2. For a C1 almost complex structure J with NJ = 0, d = ∂+∂ which satisfy

∂2 = 0, ∂
2
= 0, ∂∂ + ∂∂ = 0. (17.14)

Proof. The equation d2 = 0 implies that

0 = (∂ + ∂)(∂ + ∂) = ∂2 + ∂∂ + ∂∂ + ∂
2
. (17.15)

If we plug in a form of type (p, q) the first term is of type (p+ 2, q), the middle terms are of
type (p + 1, q + 1), and the last term is of type (p, q + 2). Since (17.1) is a direct sum, the
claim follows.

Remark 17.3. If we assume that (M,J) arises from a complex structure, then we can just
define these operators in local holomorphic coordinates like we did in Cn (and the prove that
they define global operators). The point of the above is that we only assumed integrability,
and did not use any local holomorphic coordinates.

17.2 Real form of the equations

Recall that for n = 1, any almost complex structure J satisfies NJ = 0, so there is no
integrability condition. Let’s look at various forms of the equations.

We just look in an open set in real coordinates (x, y), and then we have

J =

(
a(x, y) b(x, y)
c(x, y) d(x, y)

)
. (17.16)

The only condition is

−I = J2 =

(
a2 + bc b(a+ d)
c(a+ d) bc+ d2

)
(17.17)

If we assume that J is not too far from J0, then b ∼ −1 and c ∼ 1, so we must have

a+ d = 0, a2 + bc = −1. (17.18)

Note that since b ∼ −1, we can solve c = −(1+ a2)/b, but we won’t need to do this now. So
we just consider

J =

(
a(x, y) b(x, y)
c(x, y) −a(x, y)

)
. (17.19)
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We want to find a pseudo-holomorphic mapping

ϕ : (U, J) → (C, J0) (17.20)

which has non-vanishing Jacobian at 0. So we want to solve

ϕ∗ ◦ J = J0 ◦ ϕ∗ (17.21)

If we write

ϕ(x, y) =

(
u(x, y)
v(x, y)

)
, (17.22)

then the pseudoholomorphic condition is(
ux uy
vx vy

)(
a b
c −a

)
=

(
0 −1
1 0

)(
ux uy
vx vy

)
(17.23)

which yields the 4 equations

aux + cuy = −vx bux − auy = −vy
avx + cvy = ux bvx − avy = uy

. (17.24)

This looks like 4 first-order equations for 2 unknown functions, so one wouldn’t expect a
solution. However, the first two equations imply the second two:

avx + cvy = a(−aux − cuy) + c(−bux + auy) = (−a2 − bc)ux = ux, (17.25)

and

bvx − avy = b(−aux − cuy) + a(bux − auy) = (−bc− a2)uy = uy, (17.26)

using the condition that a2 + bc = −1.

Example 17.4. Let’s now do an example. Consider

J =

(
2x −1

1 + 4x2 −2x

)
. (17.27)

We have

J2 =

(
2x −1

1 + 4x2 −2x

)(
2x −1

1 + 4x2 −2x

)
=

(
−1 0
0 −1

)
, (17.28)

so this is indeed an almost complex structure.

From (17.24), the pseudoholomorphic equations are

2xux + (1 + 4x2)uy = −vx (17.29)

−ux − 2xuy = −vy. (17.30)

If a sufficiently smooth solution exists, then we have vxy = vyx, which yields

(2xux + (1 + 4x2)uy)y = −(ux + 2xuy)x (17.31)

This can be rewritten as

uxx + 4xuxy + (1 + 4x2)uyy + 2uy = 0. (17.32)
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Remark 17.5. This is a nice equation, because it looks like

∆0u+ lower order terms. (17.33)

We will return to this viewpoint later.

For now, we just notice that, by inspection, u = x is obviously a solution. We then return
to the pseudoholomorphic equations, and find that

vx = −2x, vy = 1, (17.34)

so we can choose v = −x2 + y. So our solution is ϕ = (u, v) = (x, y − x2). The Jacobian
at the origin is clearly non-degenerate, so we have found a holomorphic coordinate system.
Note that the mapping ϕ : R2 → C is defined everywhere. It is injective: if we have
(x1, y1 − x21) = (x2, y2 − x22) then the first component says that x1 = x2 and the second
component then implies that y1 = y2. It is also surjective: given any (u, v) ∈ C, we let
x2 = u, and then we need to solve y − u2 = v, which obviously has a solution y = −u2 + v.
Thus we have found that

ϕ : (R2, J) → (C, J0) (17.35)

is a global biholomorphism! Note that any function of the form f(x, y) = h(x + i(y − x2)),
where h is a holomorphic function with respect to J0, is then holomorphic for J , for example

f(x, y) = ex(cos(y − x2) + i sin(y − x2)). (17.36)

18 Lecture 18

18.1 The Beltrami equation

In the basis {∂/∂x, ∂/∂y} we have J of the form

J =

(
a(x, y) b(x, y)
c(x, y) −a(x, y)

)
(18.1)

satisfying a2 + bc = −1. Using (13.18) to change to the complex basis {∂/∂z, ∂/∂z}, then
we have

J =
1

2

(
i(c− b) 2a+ i(b+ c)

2a− i(b+ c) −i(c− b)

)
(18.2)

For a complex valued function w, the equation ∂Jw = 0 is ΠΛ0,1dw = 0, which is

0 = dw + iJdw = wzdz + wzdz + iJ(wzdz + wzdz)

= wzdz + wzdz + iwzJdz + iwzJdz.
(18.3)
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Note that we need to use J : Λ1 → Λ1 here, which is the transpose matrix of the above J .
So we have

0 = wzdz + wzdz +
i

2
wz(i(c− b)dz + (2a+ i(b+ c))dz) +

i

2
wz((2a− i(b+ c))dz − i(c− b)dz)

=
(
wz +

1

2
(b− c)wz +

1

2
(2ai+ b+ c)wz

)
dz +

(
wz +

1

2
(2ai− b− c)wz +

1

2
(c− b)wz

)
dz.

(18.4)

Let’s look only at the second equation which is(
1 +

1

2
(c− b)

)
wz = −1

2
(2ai− b− c)wz. (18.5)

If b − c ̸= 2, which is certainly the case if J is close to J0, then the leading coefficient is
non-zero, and we can divide to get

wz = −2ai− b− c

2 + c− b
wz (18.6)

Note that the first equation is(
1 +

1

2
(b− c)

)
wz = −1

2
(2ai+ b+ c)wz. (18.7)

If 2ai− b− c ̸= 0, then we can divide to get

wz = − 2 + b− c

2ai+ b+ c
wz. (18.8)

I claim these are the same equation. For this, we would need

2ai− b− c

2 + c− b
=

2 + b− c

2ai+ b+ c
, (18.9)

which yields

(2ai− b− c)(2ai+ b+ c) = (2 + c− b)(2 + b− c), (18.10)

which is

−4a2 − (b+ c)2 = 4− (c− b)2. (18.11)

Expanding this out

−4a2 − b2 − 2bc− c2 = 4− c2 + 2bc− b2, (18.12)

which is true since a2 + bc = −1!

Definition 18.1. The equation

wz + µ(z, z)wz = 0 (18.13)

is called the Beltrami equation.
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18.2 Method of characteristics

This is a general method for solving linear PDE by solving nonlinear ODEs, we just explain
for the Beltrami equation. Let’s solve the nonlinear ODE

∂z

∂s
= µ(z, s), z(0) = w. (18.14)

A solution exists locally provided that µ(z, s) is a holomorphic function of 2 complex vari-
ables, or equivalently, µ(x, y) is real analytic. The solution will depend on the independent
variable s and the initial conditions w, call the solution Φ(s, w), and we write

z = Φ(s, w). (18.15)

By the implicit function theorem, we can write w = w(z, s) in a neighborhood of (s, w) =
(0, 0), provided that ∂Φ

∂w
|0,0 ̸= 0. But this is

∂Φ

∂w

∣∣∣
0,0

= lim
h→0

Φ(0, h)− Φ(0, 0)

h
= 1. (18.16)

So we have

z = Φ(s, w(z, s)). (18.17)

Taking the partial derivative of (18.17) with respect to z yields

1 =
∂Φ

∂w

∂w

∂z
. (18.18)

Taking the partial derivative of (18.17) with respect to s yields

0 =
∂Φ

∂s
+
∂Φ

∂w

∂w

∂s
, (18.19)

which is

0 = µ(z, s) +
(∂w
∂z

)−1∂w

∂s
, (18.20)

which is the Beltrami equation upon letting s = z.
Let’s return to Example (17.4), and solve using this method. Recall

J =

(
2x −1

1 + 4x2 −2x

)
=

(
a b
c −a

)
. (18.21)

So we need to solve the Beltrami equation with

µ =
2ai− b− c

2 + c− b
=

4xi+ 1− 1− 4x2

2 + 1 + 4x2 + 1
=
xi− x2

1 + x2
= − x

i+ x
. (18.22)

Since x = (z + z)/2, we have

µ(z, z) = − z + z

2i+ z + z
. (18.23)
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Let’s solve the ODE

dz

ds
= µ(z, s), z(0) = w. (18.24)

For our example, this is

dz

ds
= − z + s

2i+ z + s
. (18.25)

To solve this, let’s make a change of variables p = z + s. Then

dp

ds
− 1 = − p

2i+ p
, (18.26)

which gives

dp

ds
= 1− p

2i+ p
=

2i

2i+ p
, (18.27)

or

(2i+ p)dp = 2ids, (18.28)

which integrates to

2ip+
1

2
p2 = 2is+ C, (18.29)

which is

2i(z + s) +
1

2
(z + s)2 = 2is+ C. (18.30)

Our initial conditions are z(0) = w, so we get

2i(z + s) +
1

2
(z + s)2 = 2is+ 2iw +

1

2
w2. (18.31)

This is

w2 + 4iw − 4iz − (z + s)2 = 0 (18.32)

Using the quadratic formula and letting s = z yields

w = −2i+
√

−4 + 4iz + (z + z)2, (18.33)

and we take the branch of the square root satisfying
√
−4 = 2i. Note that this does not

agree with the above method, but this is because the initial conditions are different. The
above solution satisfies w(z, 0) = z, but the solution found in the previous section was

w = z − ix2 = z − i

4
(z + z)2, (18.34)

which satisfies w(z, 0) = z − i
4
z2.
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19 Lecture 19

19.1 Equivalence of J and µ

The following proposition gives another way to think about almost complex structures for
n = 1.

Proposition 19.1. If J is defined in an open set U which induces the standard orientation
on U , then there exists a unique complex valued function µ : U → B(0, 1) ⊂ C so that

T 0,1
J = {v + µv | v ∈ T 0,1

J0
} ⊂ TCU. (19.1)

Explicitly, if

J =

(
a b
c −a

)
, (19.2)

with a2 + bc = −1, then

µ =
2ai− b− c

2 + c− b
. (19.3)

Conversely, given a function µ : U → B(0, 1) ⊂ C, writing µ = f + ig, there is a uniquely
determined almost complex structure J given by

J =
1

1− f 2 − g2

(
2g −(1 + f)2 − g2

g2 + (1− f)2 −2g

)
(19.4)

which has T 0,1
J given by the above.

Proof. Given any such J , then we have previously defined

T 0,1
J = {X ∈ TCU | JX = −iX} = {X ′ + iJX ′ | X ∈ TRU}. (19.5)

We next claim that the projection π : T 0,1
J → T 0,1

J0
is a complex linear isomorphism. These

are two 1-dimensional complex subspaces of the 2-dimensional space TU ⊗ C, so there is a
complex linear projection mapping, which is given by

X ′ + iJX ′ 7→ X ′ + iJX ′ + iJ0(X
′ + iJX ′) = (X ′ − J0JX

′) + i(J + J0)X
′. (19.6)

Since both spaces are 1-dimensional, and π is complex linear, it is an isomorphism provided
it is not the zero map. Obviously, from (19.6), if J ̸= −J0 then it is not the zero mapping.
We may therefore write T 0,1

J as a graph over T 0,1
J0

. To do this, we compute like last time:
using (13.18) to change to the complex basis {∂/∂z, ∂/∂z}, then we have

J =
1

2

(
i(c− b) 2a+ i(b+ c)

2a− i(b+ c) −i(c− b)

)
. (19.7)
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Then a basis for the 1-dimensional space T 0,1
J is given by

∂

∂z
+ iJ

( ∂
∂z

)
=

∂

∂z
+
i

2

(
i(b− c)

∂

∂z
+ (2a+ i(b+ c))

∂

∂z

)
(19.8)

=
(
1 +

c− b

2

) ∂
∂z

+
1

2
(2ai− b− c)

∂

∂z
. (19.9)

From this, we find that

µ =
2ai− b− c

2 + c− b
, (19.10)

as claimed. Using a2 + bc = −1, we compute

|µ|2 = 4(−1− bc) + (b+ c)2

(2 + c− b)2
=

2 + b− c

−2 + b− c
. (19.11)

To show that |µ| < 1, we use the orientation condition. Notice that the condition bc =
−1− a2 says that bc < 0, so there are 2 components to the set of almost complex structures,
determined by the sign of b: if b < 0, then this is the component inducing the standard
orientation. In this case, we have

2 + b− c

−2 + b− c
< 1 (19.12)

is equivalent to

2 + b− c > −2 + b− c, (19.13)

which is obviously true.
Next, given any such function µ, we define

T 0,1
µ = span

{ ∂

∂z
+ µ

∂

∂z

}
. (19.14)

Define

T 1,0
µ = span

{ ∂

∂z
+ µ

∂

∂z

}
. (19.15)

We claim that T 1,0
µ ∩ T 0,1

µ = {0}. To see this, if the intersection was non-zero, then there
would exist α ∈ C so that

∂

∂z
+ µ

∂

∂z
= α

( ∂
∂z

+ µ
∂

∂z

)
. (19.16)

This clearly implies that α = µ and then |µ|2 = 1. But we have assumed that |µ| < 1, so
the claim follows. To find the corresponding almost complex structure J , we must have

∂

∂z
+ µ

∂

∂z
= X ′ + iJX ′, (19.17)
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for some real tangent vector X ′. We then write the real and imaginary parts of the left hand
side:

∂

∂z
+ µ

∂

∂z
=

1

2

( ∂
∂x

+ i
∂

∂y

)
+ (f + ig)

1

2

( ∂
∂x

− i
∂

∂y

)
=

1

2

(
(1 + f)

∂

∂x
+ g

∂

∂y

)
+
i

2

(
g
∂

∂x
+ (1− f)

∂

∂y

)
.

(19.18)

So we must have

J
(
(1 + f)

∂

∂x
+ g

∂

∂y

)
= g

∂

∂x
+ (1− f)

∂

∂y
, (19.19)

and since J2 = −Id,

J
(
g
∂

∂x
+ (1− f)

∂

∂y

)
= −

(
(1 + f)

∂

∂x
+ g

∂

∂y

)
. (19.20)

A simple change of basis computation shows that

J =
1

1− f 2 − g2

(
2g −(1 + f)2 − g2

g2 + (1− f)2 −2g

)
. (19.21)

This gives another way to understand the Beltrami equation. Given µ : U → C with
|µ| < 1, then since

T 0,1
µ = span

{ ∂

∂z
+ µ

∂

∂z

}
, (19.22)

a function w : U → C is holomorphic if and only if( ∂
∂z

+ µ
∂

∂z

)
w = 0, (19.23)

or

wz + µwz = 0, (19.24)

which is exactly the Beltrami equation. We can just completely forget about the matrix
version of J , and parametrize almost complex structures by a single function µ : U → B(0, 1).

Remark 19.2. This proposition also shows us that the regularity of J : U → GL(2,R) is
the same as the regularity of µ : U → B(0, 1). That is, J is Ck,α, C∞, Cω if and only if µ is
also.

Remark 19.3. The complex structures inducing the reversed orientation correspond to
|µ| > 1 together with the point at infinity, which corresponds to the complex structure −J0.
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19.2 Another example

This example will be crucial in proving convergence in the analytic case, and is called a
Cauchy majorant.

Proposition 19.4. For ρ > 0, let

µ∗ = C
( 1

1− (z + z)ρ−1
− 1
)
= C

z + z

ρ− z − z
. (19.25)

which is analytic in the polydisc P (ρ/2) = {(z, z) | |z| < ρ/2, |z| < ρ/2}. Then there is a
solution w∗ of the Beltrami equation w∗

z + µ∗(z, z)w∗
z = 0 satisfying w∗(z, 0) = z, and which

is analytic in the polydisc P (ρ′) for some ρ′ > 0.

Proof. We first observe that

1

1− (z + z)ρ−1
− 1 =

∞∑
k=1

(z + z

ρ

)k
. (19.26)

which converges uniformly on compact subsets in P (ρ/2) since

|z + z| ≤ |z|+ |z| < ρ/2 + ρ/2 = ρ. (19.27)

First, if C = 0, then the solution is w(z, z) = z. So we assume that C ̸= 0. To find the
solution w∗, we use the method of characteristics from the previous lecture. First, solve the
ODE

dz

ds
= µ∗(z, s) (19.28)

with initial condition z(0) = w. So we need to solve the ODE

dz

ds
= C

z + s

ρ− z − s
, z(0) = w. (19.29)

Letting p = z + s, and the equation becomes

dp

ds
= 1 +

Cp

ρ− p
=
ρ+ (C − 1)p

ρ− p
, p(0) = w. (19.30)

This is separable, so we rewrite as

ρ− p

ρ+ (C − 1)p
· dp = ds (19.31)

If C = 1, then we have

(ρ− p)dp = ρds (19.32)

Integrating yields

−1

2
p2 + ρp = ρs+ C1. (19.33)
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Plugging in the initial conditions p(0) = z(0) = w gives

−1

2
p2 + ρp = ρs− 1

2
w2 + ρw. (19.34)

Using p = z + s and substituting s = z, we can rewrite this as

w2 − 2ρw − (z + z)2 + 2ρ(z + z)− 2ρz = 0. (19.35)

Using the quadratic formula, we obtain the analytic solution

w = ρ±
√
ρ2 + (z + z)2 − 2ρz, (19.36)

which is clearly analytic in a sufficiently small polydisc. To finish, we choose the branch of
the square root so that

w(z, 0) = ρ±
√
ρ2 + z2 − 2ρz = ρ±

√
(z − ρ)2 = ρ+ z − ρ = z. (19.37)

Next, if C ̸= 1, then we can write

ρ− p

ρ+ (C − 1)p
=

1

C − 1

(
− 1 +

Cρ

ρ+ (C − 1)p

)
. (19.38)

So the equation is (
− 1 +

Cρ

ρ+ (C − 1)p

)
dp = (C − 1)ds. (19.39)

Integrating yields

−p+ Cρ

C − 1
log(ρ+ (C − 1)p) = (C − 1)s+ C1. (19.40)

Plugging in the initial conditions gives

−p+ Cρ

C − 1
log(ρ+ (C − 1)p) = (C − 1)s− w +

Cρ

C − 1
log(ρ+ (C − 1)w). (19.41)

In terms of z = p− s, this is

−z + Cρ

C − 1
log(ρ+ (C − 1)(z + s)) = Cs− w +

Cρ

C − 1
log(ρ+ (C − 1)w). (19.42)

Rewrite this as

w − Cρ

C − 1
log(ρ+ (C − 1)w) = z + Cs− Cρ

C − 1
log(ρ+ (C − 1)(z + s)). (19.43)

Note that near (z, s) = (0, 0), the right hand side is an analytic function of the variables
(z, s). If we let

f(w) = w − Cρ

C − 1
log(ρ+ (C − 1)w), (19.44)
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then f is analytic near w = 0. Also,

f ′(0) = 1− C ̸= 0, (19.45)

since C ̸= 1 by assumption. By Proposition 13.2 (the holomorphic inverse function theorem),
f−1 exists and is analytic in some neighborhood of f(0) = 0. So then we have

w = f−1
(
z + Cs− Cρ

C − 1
log(ρ+ (C − 1)(z + s))

)
(19.46)

is analytic. Setting s = z̄, we have

w = f−1
(
z + Cz − Cρ

C − 1
log(ρ+ (C − 1)(z + z))

)
(19.47)

which is analytic. Note also that

w(z, 0) = f−1
(
z − Cρ

C − 1
log(ρ+ (C − 1)z)

)
= f−1(f(z)) = z, (19.48)

so the correct initial conditions are indeed satisfied.

20 Lecture 20

20.1 The Beltrami equation: analytic case

To make the signs work out nicely, we consider instead the equation

wz = µ(z, z)wz, w(z, 0) = z. (20.1)

Note this is equivalent to our original Beltrami equation by letting z 7→ −z, with µ(z, z) 7→
−µ(z,−z). This transformation does not change the initial condition of w(z, 0) = z. As-
suming µ is analytic, we have a convergent power series expansion

µ(z, z) =
∑
j,k

µjk̄z
jzk =

∞∑
l=0

∑
j+k=l

µjk̄z
jzk =

∞∑
l=0

µl. (20.2)

Using Lemma 15.2, we can make the ACS standard at the origin, which implies that µ0 = 0,
that is, µ has no constant term. We also write

w =
∑
j,k

wjk̄z
jzk =

∞∑
l=0

∑
j+k=l

wjk̄z
jzk =

∞∑
l=0

wl. (20.3)

We want to find a holomorphic coordinate system, so we make the assumption that w0 = 0
and w1 = z.

We then have

wz =
∞∑
l=2

∂zwl (20.4)

wz = 1 +
∞∑
l=2

∂zwl. (20.5)
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We then want to solve

wz =
∞∑
l=2

∂zwl = µwz =
( ∞∑

l=1

µl

)(
1 +

∞∑
k=2

∂zwk

)
=
( ∞∑

l=1

µl

)
+

∞∑
l=2

∑
j+k=l,j≥1,k≥2

µj∂zwk.

(20.6)

We then find the recursion relation

∂zwl+1 = µl +
∑

j+k=l+1,j≥1,k≥2

µj∂zwk. (20.7)

Note that in the sum on the right hand side, we must have k ≤ l, so this in indeed a recursion
relation, provided that we can solve for wl+1.

Fixing l, the right hand side is just a homogeneous polynomial of degree l in the variables
z and z. In general, if fl =

∑
j+k=l,j≥0,k≥0 hjk̄z

jzk, then

Fl+1 =
∑

j+k=l,j≥0,k≥0

1

k + 1
hjk̄z

jzk+1 (20.8)

is a homogeneous polynomial of degree l + 1, which satisfies ∂zF = f .

Remark 20.1. Notice that our “inverse” of the ∂-operator on homogeneous polynomials of
degree l does not contain any terms proportional to zl+1. Our inverse operator is unique with
this condition. If we had not imposed this condition, one could have chosen wl = l!zl+O(z),
in which case our series would definitely not converge! Also, if we view our series as a power
series in 2 complex variables, then formally w(z, 0) = z exactly because of this choice of
inverse to ∂.

Proposition 20.2. The coefficients wjk̄ for j+ k = l are a polynomial of degree l− 1 in the
µpq̄ for p+ q < l with all coefficients non-negative rational numbers.

Proof. Let us examine the first few steps of the iteration. We have w00 = 1, w10 = 1, and
w01̄ = 0. The term w2 is determined by

∂zw2 = µ1 = µ10̄z + µ01̄z, (20.9)

so

w2 = µ10̄zz +
1

2
µ01̄z

2, (20.10)

so

w20̄ = 0, w11̄ = µ10̄, w02̄ =
1

2
µ01̄. (20.11)

To illustrate, let’s do one more step. The term w3 is determined by

∂zw3 = µ2 + µ1∂zw2 = µ20̄z
2 + µ11̄zz + µ02̄z

2 + (µ10̄z + µ01̄z)(µ10̄z)

= µ20̄z
2 + (µ11̄ + µ2

10̄)zz + (µ02̄ + µ01̄µ10̄)z
2.

(20.12)
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so

w3 = µ20̄z
2z +

1

2
(µ11̄ + µ2

10̄)zz
2 +

1

3
(µ02̄ + µ01̄µ10̄)z

3. (20.13)

so

w30̄ = 0, w20̄ = µ20̄, w12̄ =
1

2
(µ11̄ + µ2

10̄), w03̄ =
1

3
(µ02̄ + µ01̄µ10̄), (20.14)

and the claim is evidently true.
To do the general case, we prove by induction: assume the claim is true up to for 0, . . . , l,

and we prove for l + 1. Recall that

∂zwl+1 = µl +
∑

j+k=l+1,j≥1,k≥2

µj∂zwk. (20.15)

By induction, the coefficients of wk for k ≤ l are polynomials with non-negative coefficients
in the µpq̄ with p+ q̄ < k < l, so that ∂zwk is also of this form. Then since

µj =
∑
k+l=j

µkl̄z
kzl, (20.16)

any term µj∂zwk is also a polynomial in the µkl̄ with non-negative coefficients.
To get wl+1, recall that if fl =

∑
j+k=l,j≥0,k≥0 hjkz

jzk, then

Fl+1 =
∑

j+k=l,j≥0,k≥0

1

k + 1
hjkz

jzk+1 (20.17)

is a homogeneous polynomial of degree l+1, which satisfies ∂zF = f . Clearly, this preserves
non-negativity of the coefficients, and we are done.

Theorem 20.3. If µ(z, z) is analytic in the closed polydisc |z| ≤ ρ, |z| ≤ ρ, there there exists
a unique solution of the Beltrami equation

wz = µ(z, z)wz (20.18)

which is analytic in the polydisc |z| < ρ′, |z| < ρ′ for some ρ′ > 0, and satisfies the Cauchy
data

w(z, 0) = z. (20.19)

Proof. By assumption, the series

µ =
∑
j,k

µjk̄z
jzk (20.20)

converges for any point in the polydisc

P (ρ) = {(z, z) | |z| < ρ, |z| < ρ}, (20.21)
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with uniform convergence in the polydisc P (ρ′), for any ρ′ < ρ. So for any (z, z) ∈ P (ρ′),
there exists a constant C > 0 so that

|µjk̄z
jzk| < C (no summation). (20.22)

Choosing (z, z) = (ρ′, ρ′), this implies that

|µjk̄| < C(ρ′)−j−k. (20.23)

To simplify notation, let’s call ρ′ by ρ. Then we define

µ∗ = C
( 1

1− (z + z)ρ−1
− 1
)
= C

z + z

ρ− z − z
, (20.24)

which is analytic in the polydisc P (ρ) = {(z, z) | |z| < ρ, |z| < ρ}. We have

µ∗ = C
∑
j≥1

(z + z)jρ−j = C
∑

(k,l) ̸=(0,0)

ρ−k−l (k + l)!

k!l!
zkzl. (20.25)

Since the multinomial coefficients are at least 1, we therefore have

|µjk̄| ≤ Cρ−j−k ≤ (j + k)!

j!k!
ρ−j−k = µ∗

jk̄. (20.26)

Recall from Proposition 19.4 that there is a solution w∗ of the Beltrami equation for µ∗

satisfying w(z, 0) = z which is analytic in P (ρ′) for some ρ′ > 0. Write the power series
expansion for w∗ as

w∗(z, z) =
∑

(j,k)̸=(0,0)

w∗
jk̄z

jzk. (20.27)

Recall that our formal power series solves

wjk̄ = Pjk̄(µ∗∗̄), (20.28)

where Pjk̄ is a polynomial with positive coefficients depending only upon µpq̄ for p+q < j+k.
Since w∗ is an analytic solution of the Beltrami equation with µ∗, we must also have

w∗
jk̄ = Pjk̄(µ

∗
∗∗̄), (20.29)

where Pjk̄ is the same polynomial since µ∗(0, 0) = 0 and w∗(z, 0) = z. We then estimate

|wjk̄| = |Pjk̄(µ∗∗̄)| ≤ Pjk̄(|µ∗∗̄|) ≤ Pjk̄(µ
∗
∗∗̄) = w∗

jk̄. (20.30)

The inequalities hold since Pjk̄ is a polynomial with real non-negative coefficients, and using
(20.26). This shows that our power series is majorized by the power series of w∗, which implies
that the power series for w also converges in the open polydisc P (ρ′), by the comparison
test.

This finishes the proof in the analytic case. Soon we will discuss a method to reduce the
finite regularity to the analytic case, due to Malgrange.
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21 Lecture 21

We will next discuss an alternate approach to this problem using elliptic theory, which only
works for n = 1.

21.1 Reduction to an elliptic equation

Theorem 21.1. If (M2, J) is a real 2-dimensional almost complex manifold with J of class
C1,α, then J is a complex 1-manifold. That is, near any point x ∈ M , there exists a neigh-
borhood U and a holomorphic coordinate system f : U → C.

The proof will be given over the next couple of lectures. To begin, given any point x in
M , by Proposition 16.6, we need to find a function f : U → C where U is a neighborhood
of x satisfying ∂Jf = 0 in U , and ∂Jf(x) ̸= 0. This equation is

0 = ∂Jf = df + iJTdf. (21.1)

Let us write f = u+ iv, where u and v are real-valued. Then we need

0 = du+ idv + iJT (du+ idv) = (du− JTdv) + i(dv + JTdu). (21.2)

Note that applying JT to du = JTdv, results in dv = −JTdu, so if we solve the single
equation

du = JTdv, (21.3)

then f = u+ iv will be pseudo-holomorphic. Note that

∂f = (du+ JTdv) + i(dv − JTdu) = 2(JTdv + idv), (21.4)

so if dv(x) ̸= 0, then ∂f(x) ̸= 0. To solve (21.3), we apply the exterior derivative d to get

dJTdv = 0. (21.5)

If v solves (21.5), then JTdv is closed, and by the Poincaré Lemma, we can solve JTdv = du
in any simply-connected neighborhood U of x. To summarize, we have reduced the problem
to finding a simply-connected neighborhood U of x, and a function v : U → R with dv(x) ̸= 0
solving the equation dJTdv = 0.

Let us write out the above equation (21.5) locally. With respect to the basis {∂x, ∂y}, we
have

J =

(
a b
c −a

)
(21.6)

With respect to the dual basis {dx, dy}, we have

JT =

(
a c
b −a

)
(21.7)
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So the equation is

dJTdv = d

(
a c
b −a

)(
vx
vy

)
= d
(
(avx + cvy)dx+ (bvx − avy)dy

)
(21.8)

=
(
(avx + cvy)y − (bvx − avy)x

)
dy ∧ dx. (21.9)

So the equation is equivalent to

(avx + cvy)y − (bvx − avy)x = 0 (21.10)

Let us write this as

vxx + vyy + (avx + (c− 1)vy)y − ((b+ 1)vx − avy)x = 0 (21.11)

If J = J0 + o(1) as z → 0, then we see that our equation is a perturbation of the Laplacian,
and we might hope to use perturbation methods to solve.

21.2 Inverse function theorem

The following is a version of the inverse function theorem for linear operators.

Lemma 21.2. Let F : B1 → B2 be a bounded linear mapping between two Banach spaces
such that F (x) = L (x)+Q(x), where L and Q are both bounded linear mappings. Assume
that

1. L is an isomorphism with bounded inverse T .

2. Q satisfies ∥Q∥ · ∥T∥ = δ < 1.

Then F is also an isomorphism and

∥F−1∥ ≤ 1

1− δ
∥T∥. (21.12)

Proof. Given f ∈ B2, we want to solve the equation Fx = f for a unique x ∈ B1 with a
bound ∥x∥B1 ≤ C∥f∥B2 . Writing x = Ty, then the equation we want to solve becomes

F (Ty) = (L + Q)(Ty) = f, (21.13)

or

y = f − Q(Ty) (21.14)

So we would like to find a fixed point of the operator S : B2 → B2 defined by

Sy = f − Q(Ty) (21.15)
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We next claim that under the assumptions, S is a contraction mapping from B2 to B2. To
see this, we compute

∥Sy1 − Sy2∥B2 = ∥Q(Ty1)− Q(Ty2)∥B2

≤ ∥Q∥ · ∥Ty1 − Ty2∥B1

≤ ∥Q∥ · ∥T∥ · ∥y1 − y2∥B2 = δ∥y1 − y2∥B2 .

(21.16)

where δ = ∥Q∥∥T∥ < 1 by assumption. We then let y0 = 0, and define yj+1 = Syj. If
n ≥ m, we have

∥yn − ym∥B2 ≤
n∑

j=m+1

∥yj − yj−1∥B2

=
n∑

j=m+1

∥Sj−1y1 − Sj−1y0∥B2

≤
n∑

j=m+1

δj−1∥y1 − y0∥B2

≤ δm

1− δ
∥y1 − y0∥B2 .

(21.17)

The right hand side limits to 0 as m → ∞, so the sequence yj is a Cauchy sequence in
the Banach space B2, which therefore converges to a limit y∞. Since S is continuous, we
therefore have

Sy∞ = S lim
j→∞

yj = lim
j→∞

Syj = lim
j→∞

yj+1 = y∞. (21.18)

Take m = 1 in (21.17) to get

∥yn − y1∥B2 ≤
δ

1− δ
∥y1 − y0∥B2 =

δ

1− δ
∥y1∥B2 (21.19)

Letting n→ ∞ yields

∥y∞∥B2 − ∥y1∥B2 ≤ ∥y∞ − y1∥B2 ≤
δ

1− δ
∥y1∥B2 . (21.20)

Then x∞ = Ty∞ is a solution to F (x∞) = f and

∥x∞∥B1 ≤ ∥T∥∥y∞∥B2 ≤
1

1− δ
∥T∥ · ∥f∥B2 , (21.21)

since y1 = S(y0) = S(0) = f , which implies (21.12). Finally, uniqueness then follows from
(21.16).
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22 Lecture 22

22.1 Hölder spaces

Given a subset D ⊂ Rn, 0 < α < 1, and f : D → C, we define

∥f∥C0(D) = sup
x∈D

|u(x)| (22.1)

[f ]α;D = sup
x,y∈D,x̸=y

|f(x)− f(y)|
|x− y|α

(22.2)

∥f∥C0,α(D) = ∥f∥C0(D) + [f ]α,D. (22.3)

The space of continuous functions on D is denoted C0(D), and is a Banach space with the
norm (22.1). The space of Hölder continuous functions C0,α(D) ⊂ C0(D) with the norm
(22.3) is a Banach space. Note that (22.2) only defines a seminorm.

Given k ≥ 0, and a multi-index β = (j1, . . . , jn) with j∗ ≥ 0, and |β| = j1 + · · ·+ jn = k,
we define the seminorms

[f ]k;D = sup
x∈D,|β|=k

|∂βu(x)|, (22.4)

[f ]k,α;D = sup
|β|=k

[∂βf ]α,D. (22.5)

Then we define norms by

∥f∥Ck(D) =
k∑

j=0

[f ]j;D (22.6)

∥f∥Ck,α(D) = ∥f∥Ck(D) + [f ]k,α;D. (22.7)

The space of k-times continuously differentiable functions on D is denoted Ck(D), and is
a Banach space with the norm (22.1). The space of functions Ck,α(D) ⊂ Ck(D) with the
norm (22.3) is a Banach space.

Exercise 22.1. Show that if f1, f2 ∈ Ck,α(D), then so is f1f2 ∈ Ck,α(D) and

∥f1f2∥Ck,α(D) ≤ ∥f1∥Ck,α(D) · ∥f2∥Ck,α(D) (22.8)

22.2 Solution of the Beltrami equation

Recall from above, we have reduced the problem to finding a simply-connected neighborhood
U of x, and a function v : U → R with dv(x) ̸= 0 solving the equation dJTdv = 0, which is

vxx + vyy + (avx + (c− 1)vy)y − ((b+ 1)vx − avy)x = 0. (22.9)

Since J = J0 + o(1) as (x, y) → (0, 0), we have that a → 0, b → −1 and c → 1, so let us
simply redefine b to be b+ 1 and c to be c− 1, and rewrite the equation as

vxx + vyy + (avx + cvy)y − (bvx − avy)x = 0, (22.10)

81



where we now have a, b, c → 0 and (x, y) → (0, 0). Since we only need a solution in a small
neighborhood, let’s turn on our microscope and write for ϵ > 0

x′ = ϵx, y′ = ϵy, v′(x′, y′) = v(ϵx′, ϵy′). (22.11)

The equation in the new coordinates is

v′xx + v′yy + (a′v′x + c′v′y)y − (b′v′x − a′v′y)x = 0, (22.12)

where a′(x′, y′) = a(ϵx′, ϵy′), and similarly for b′, c′.
Writing v′ = y′ + h, we get

hxx + hyy + (a′hx + c′hy)y − (b′hx − a′hy)x = a′x + c′y. (22.13)

We define

B1 = C2,α
0 (B1(0)) = {u ∈ C2,α(B1(0)) | u = 0 on ∂B1(0)} (22.14)

B2 = C0,α(B1(0)) (22.15)

F (h) = hxx + hyy + (a′hx + c′hy)y − (b′hx − a′hy)x (22.16)

L (h) = hxx + hyy (22.17)

Q(h) = (a′hx + c′hy)y − (b′hx − a′hy)x. (22.18)

So we have

F = L + Q : B1 → B2. (22.19)

Proposition 22.2. If a′, b′, c′ ∈ C1,α, then the mappings F ,L ,Q are bounded linear map-
pings.

Proof. First, for L , we have

∥L h∥C0,α = ∥hxx + hyy∥C0,α ≤ C∥h∥C2,α , (22.20)

just by definition. For Q, consider for example

∥a′hxy∥C0,α ≤ ∥a′∥C0,α · ∥hxy∥C0,α ≤ C∥h∥C2,α , (22.21)

the other terms in Q are treated similarly.

Proposition 22.3. There exists a constant C > 0 so that the operator norm of Q satisfies

∥Q∥ ≤ Cϵα. (22.22)

Proof. Take a term in Q like above, that is

∥a′hxy∥C0,α ≤ ∥a′∥C0,α · ∥hxy∥C0,α ≤ ∥a′∥C0,α · ∥h∥C2,α . (22.23)

Since a ∈ C0,α(B1(0)) with a(0) = 0, the Hölder assumption on a implies that

|a(x, y)| ≤ ∥a∥Cα |z|α. (22.24)
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So then we have

∥a′∥C0(B1) = sup
x′∈B1

|a(x′, y′)| = sup
x∈Bϵ

|a(x, y)| ≤ ∥a∥Cα(Bϵ) · ϵα (22.25)

Next, we have

[a′]C0,α(B1) = sup
x′,y′∈B1,x′ ̸=y′

|a′(x′)− a′(y′)|
|x′ − y′|α

(22.26)

= ϵα sup
x,y∈Bϵ,x ̸=y

|a(x)− a(y)|
|x− y|α

(22.27)

≤ ϵα[a]C0,α(Bϵ). (22.28)

Other terms are treated similarly to obtain

∥Qh∥C0,α(B1) ≤ ϵα(∥a∥C0,α(Bϵ) + ∥b∥C0,α(Bϵ) + ∥c∥C0,α(Bϵ))∥h∥C2,α(B1). (22.29)

Finally then, the operator norm is

∥Q∥ = sup
h̸=0

∥Qh∥C0,α

∥h∥C2,α

≤ ϵα(∥a∥C0,α(Bϵ) + ∥b∥C0,α(Bϵ) + ∥c∥C0,α(Bϵ)) (22.30)

Now we recall the fundamental result about the Dirichlet problem for the Laplace oper-
ator.

Theorem 22.4. The mapping ∆0 : C2,α
0 (B1(0)) → C0,α(B1(0)) is an isomorphism with

bounded inverse, that is, there exists a constant C so that if ∆0u = f and u = 0 on the
boundary, then

∥u∥C2,α(B1(0)) ≤ C∥f∥C0,α(B1(0)). (22.31)

Proof. We just indicate how this is proved. Any solution is unique by the maximum principle.
There is actually an explicit integral formula for the solution

u =

∫
B1(0)

G(x, y)f(y)dy, (22.32)

where G(x, y) is the Green’s function defined by

G(x, y) =

{
1
2π

(
log |x− y| − log

(
|y||x− y/|y|2|

)
y ̸= 0

1
2π

log |x| y = 0
. (22.33)

Then one can just directly verify this is a solution if f ∈ C0,α(B1(0)), and also directly verify
the estimate (22.31); see [GT01].
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Now, we can use the Inverse function theorem (Lemma 21.2) to obtain that for ϵ suffi-
ciently small, the operator F : B1 → B2 is an isomorphism with bounded inverse satisfying

∥F−1∥ ≤ C∥T∥ (22.34)

Recall that we need to solve

F(h) = a′x + c′y (22.35)

Since F is an isomorphism, there exists a solution h satisfying

∥h∥C2,α(B1) ≤ C∥a′x + c′y∥Cα(B1) ≤ Cϵα∥ax + cy∥Cα(Bϵ) ≤ C ′ϵα (22.36)

So then we have that v = y + h satisfies

|vy(0)− 1| ≤ C ′ϵα, (22.37)

So our solution v = y + h satisfies the necessary gradient condition at the origin for ϵ
sufficiently small. This completes the proof of the theorem.

Unfortunately, the trick in this subsection does not help us to solve the Newlander-
Nirenberg problem in higher dimensions. We will next discuss another method which is
more complicated, but has the advantage that it can be extended to the higher dimensional
case.

23 Lecture 23

23.1 Reduction to the analytic case

In the subsection, we will discuss a method of Malgrange, which transforms the smooth
case into the analytic case [Mal69], [Nir73, Section I.4]. We want to change coordinates
ξ = ξ(z, z) so that such that our solution of the Beltrami equation in the z-coordinates

wz + µ(z, z)wz (23.1)

transforms into another Beltrami equation,

Wξ̄ + Ũ(ξ, ξ̄)Wξ = 0, (23.2)

with Ũ analytic. Note that we want a real change of coordinates, so if we write ξ = ξ1 + iξ2,
we need

det

(
∂ξ1
∂x

∂ξ1
∂y

∂ξ2
∂x

∂ξ2
∂y

)
(0, 0) ̸= 0. (23.3)

As we know, after a change of basis, this is

det

(
∂ξ
∂z

∂ξ
∂z

∂ξ̄
∂z

∂ξ̄
∂z

)
(0, 0) =

∣∣∣∂ξ
∂z

(0, 0)
∣∣∣2 − ∣∣∣∂ξ

∂z
(0, 0)

∣∣∣2 ̸= 0. (23.4)
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Write

w(z, z) = W (ξ(z, z), ξ̄(z, z)) (23.5)

µ(z, z) = U(ξ(z, z), ξ̄(z, z)). (23.6)

Then

∂w

∂z
=
∂W

∂ξ

∂ξ

∂z
+
∂W

∂ξ̄

∂ξ̄

∂z
(23.7)

∂w

∂z
=
∂W

∂ξ

∂ξ

∂z
+
∂W

∂ξ̄

∂ξ̄

∂z
. (23.8)

So the Beltrami equation becomes

∂W

∂ξ

∂ξ

∂z
+
∂W

∂ξ̄

∂ξ̄

∂z
= −U(ξ, ξ̄)

(∂W
∂ξ

∂ξ

∂z
+
∂W

∂ξ̄

∂ξ̄

∂z

)
, (23.9)

which we can write as

∂W

∂ξ̄
= −

(
∂ξ
∂z

+ U(ξ, ξ̄)∂ξ
∂z

∂ξ̄
∂z

+ U(ξ, ξ̄)∂ξ̄
∂z

)
∂W

∂ξ
, (23.10)

which is another Beltrami equation with a new right hand side

Ũ(ξ, ξ̄) =
ξz + U(ξ, ξ̄)ξz
ξ̄z + U(ξ, ξ̄)ξ̄z

. (23.11)

Let us try to find the coordinates so that

∂

∂ξ
Ũ(ξ, ξ̄) = 0. (23.12)

Then then new Ũ will be anti-holomorphic and therefore analytic by the Cauchy integral
formula. From the chain rule, we have

∂

∂ξ
=
∂z

∂ξ

∂

∂z
+
∂z

∂ξ

∂

∂z
, (23.13)

and we have

∂

∂ξ
Ũ(ξ, ξ̄) =

∂

∂ξ

(ξz + U(ξ, ξ̄)ξz
ξ̄z + U(ξ, ξ̄)ξ̄z

)
=
(
zξ∂z + zξ∂z

)(ξz + U(ξ, ξ̄)ξz
ξ̄z + U(ξ, ξ̄)ξ̄z

)
.

(23.14)

By the inverse function theorem, we have(
zξ zξ̄
zξ zξ̄

)
=

(
ξz ξz̄
ξ̄z ξ̄z̄

)−1

=
1

|ξz|2 − |ξz|2

(
ξ̄z̄ −ξz̄
−ξ̄z ξz

)
, (23.15)
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so

zξ =
1

|ξz|2 − |ξz|2
ξ̄z̄ (23.16)

zξ =
−1

|ξz|2 − |ξz|2
ξ̄z. (23.17)

We therefore have

∂

∂ξ
Ũ(ξ, ξ̄) =

1

|ξz|2 − |ξz|2
(ξ̄z̄∂z − ξ̄z∂z)

(ξz + U(ξ, ξ̄)ξz
ξ̄z + U(ξ, ξ̄)ξ̄z

)
. (23.18)

If we multiply through by the leading factor, we want to solve

0 = (ξ̄z̄∂z − ξ̄z∂z)
(ξz + U(ξ, ξ̄)ξz
ξ̄z + U(ξ, ξ̄)ξ̄z

)
(23.19)

but keep in mind that we need to find a solution with |ξz|2(0, 0)−|ξz|2(0, 0) ̸= 0. Converting
the U(ξ, ξ̄) term back to the (z, z) coordinates, we have

0 = (ξ̄z̄∂z − ξ̄z∂z)
(ξz + µ(z, z)ξz
ξ̄z + µ(z, z)ξ̄z

)
. (23.20)

The equation (24.20) is quasilinear of the form

F (D2ξ,Dξ, ξ, z, z) = 0. (23.21)

Definition 23.1. The linearization of F at a function ξ is given by

F ′
ξ(h) =

d

dt
F (D2(ξ + th), D(ξ + th), ξ + th, z, z)

∣∣∣
t=0
. (23.22)

The linearization is too complicated to write down in general, but the following is all
that we really need.

Proposition 23.2. Assuming µ ∈ C1, then the linearization of F at ξ = z is

F ′
z(h) = ∂z

(
hz + µ(hz − h̄z − µh̄z)

)
+ h̄z̄µz − h̄zµz. (23.23)

If µ(0, 0) = 0, then we have

F ′
z(h)(0, 0) =

1

4
∆h+ c1hz + c2h̄z + c3hz + c4h̄z. (23.24)

for some constants c1, c2, c3, c4. If µ has sufficiently small C1,α, norm then F ′
z is an elliptic

operator with Hölder coefficients bounded in Cα.
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Proof. We write out

F (D2(ξ + th), D(ξ + th), ξ + th, z, z) (23.25)

=
(
(ξ + th)z̄∂z − (ξ + th)z∂z

)((ξ + th)z + µ(z, z)(ξ + th)z

(ξ + th)z + µ(z, z)(ξ + th)z

)
. (23.26)

Letting ξ = z, this becomes

F (D2(z + th), D(z + th), z + th, z, z) (23.27)

=
(
(1 + th̄z̄)∂z − th̄z∂z

)(thz + µ(z, z̄)(1 + thz)

(1 + th̄z) + µ(z, z)th̄z

)
. (23.28)

We also see that

F ′
z(h) = ∂z

(
hz + µ(hz − h̄z − µh̄z)

)
+ h̄z̄µz − h̄zµz. (23.29)

Noting that

∂2h

∂z∂z
=

1

2

( ∂
∂x

− i
∂

∂y

)( ∂
∂x

+ i
∂

∂y

)
h =

1

4
∆h, (23.30)

the proposition follows from this.

We next need the inverse function theorem in Banach spaces.

Lemma 23.3. Let F : B1 → B2 be a C1-map between two Banach spaces such that F (x) =
F (0)+L (x)+Q(x), where the operator L : B1 → B2 is linear and Q(0) = 0. Assume that

1. L is an isomorphism with inverse T satisfying ∥T∥ ≤ C1,

2. there are constants r > 0 and C2 > 0 with r < 1
3C1C2

such that

(a) ∥Q(x)− Q(y)∥B2 ≤ C2 · (∥x∥B1 + ∥y∥B1) · ∥x− y∥B1 for all x, y ∈ Br(0) ⊂ B1,

(b) ∥F (0)∥B2 ≤ r
3C1

.

Then there exists a unique solution to F (x) = 0 in B1 such that

∥x∥B1 ≤ 3C1 · ∥F (0)∥B2 . (23.31)

Proof. Writing x = Tf , we can write the equation F (x) = 0 as

F (0) + f + Q(Tf) = 0, (23.32)

that is

f = −Q(Tf)− F (0). (23.33)

So we would like to find a fixed point of the operator S : B2 → B2 defined by

Sf = −Q(Tf)− F (0). (23.34)
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We next claim that under the assumptions, S is a contraction mapping from Br/C1(0) ⊂ B2.
To see this, we compute

∥Sf1 − Sf2∥B2 = ∥Q(Tf1)− Q(Tf2)∥B2

≤ C2(∥Tf1∥B1 + ∥Tf2∥B1)(∥Tf1 − Tf2∥B1

≤ C2(2C1r/C1)C1∥f1 − f2∥B2 ≤
2

3
(∥f1 − f2∥B2).

(23.35)

We then let f0 = 0, and define fj+1 = Sfj. If n ≥ m, we have

∥fn − fm∥B2 ≤
n∑

j=m+1

∥fj − fj−1∥B2

=
n∑

j=m+1

∥Sj−1f1 − Sj−1f0∥B2

≤
n∑

j=m+1

(2
3

)j−1

∥f1 − f0∥B2

≤ (2/3)m

1− 2/3
∥f1 − f0∥B2 .

(23.36)

The right hand side limits to 0 as m → ∞. This proves that the sequence fj is a Cauchy
sequence in the Banach space B2, which therefore converges to a limit f∞. Since S is
continuous, we therefore have

Sf∞ = S lim
j→∞

fj = lim
j→∞

Sfj = lim
j→∞

fj+1 = f∞. (23.37)

Take m = 1 in (23.36) to get

∥fn − f1∥B2 ≤ 2∥f1 − f0∥B2 = 2∥f1∥B2 (23.38)

Letting n→ ∞ yields

∥f∞∥B2 − ∥f1∥B2 ≤ ∥f∞ − f1∥B2 ≤ 2∥f1∥B2 . (23.39)

Then x∞ = Tf∞ is a solution to F (x∞) = 0 and

∥x∞∥B1 ≤ C1∥f∞∥B2 ≤ 3C1∥F (0)∥B2 (23.40)

which implies (29.5). If x is any solution satisfying (29.5), then letting f = L x, we estimate

∥f∥B2 ≤
1

C1

∥x∥B1 ≤
1

C1

3C1
r

3C1

=
r

C1

(23.41)

and uniqueness then follows from (23.35).
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24 Lecture 24

24.1 Remarks on scaling

For the original Beltrami equation wz = µ(z, z)wz, we can assume that µ(0, 0) = 0. By
scaling the coordinates z = ϵz′, and letting w′(z′, z′) = w(ϵz′, ϵz′), then we have

w′
z′ = µ′(z′, z′)w′

z′ , (24.1)

where

µ′(z′, z′) = µ(ϵz′, ϵz′). (24.2)

Lemma 24.1. We have

∥µ′∥C0(B1) = ∥µ∥C0(Bϵ) (24.3)

[µ′]α;B1 = ϵα[µ′]α;Bϵ (24.4)

∥∇′µ′∥C0(B1) = ϵ∥∇µ∥C0(Bϵ) (24.5)

[∇′µ′]α;B1 = ϵ1+α∥∇µ∥C0(Bϵ). (24.6)

In general, we have

[µ′]k,α;B1 = ϵk+α[µ]k,α;Bϵ (24.7)

Proof. The first (24.3) is trivial. For (24.4), we have

[µ′]α;B1 = sup
x′,y′∈B1,x′ ̸=y′

|µ′(x′)− µ′(y′)|
|x′ − y′|α

= sup
x′,y′∈B1,x′ ̸=y′

|µ(ϵx′)− µ(ϵy′)|
|x′ − y′|α

= sup
x,y∈Bϵ,x ̸=y

|µ(x)− µ(y)|
|xϵ−1 − yϵ−1|α

= ϵα[µ′]α;Bϵ .

(24.8)

For (24.5), we need to relate ∂z′µ
′ and ∂zµ, and similarly for the barred derivative. For this

we have

(∂z′µ
′)(z′, z′) = ϵ∂zµ(ϵz

′, ϵz′), (24.9)

we can write as

∇′µ′(z′, z′) = ϵ∇µ(ϵz′, ϵz′), (24.10)

from which (24.5) follows immediately.
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For (24.6), we have

[∇′µ′]α;B1 = sup
x′,y′∈B1,x′ ̸=y′

|∇′µ′(x′)−∇′µ′(y′)|
|x′ − y′|α

= sup
x′,y′∈B1,x′ ̸=y′

|ϵ∇µ(ϵx′)− ϵ∇µ(ϵy′)|
|x′ − y′|α

= sup
x,y∈Bϵ,x ̸=y

|ϵ∇µ(x)− ϵ∇µ(y)|
|xϵ−1 − yϵ−1|α

= ϵ1+α∥∇µ∥C0(Bϵ).

(24.11)

The general pattern should be obvious, and (24.7) follows from similar computations.

Remark 24.2. It is sometimes convenient to define alternative norms as follows. First,
define the semi-norms

[µ]′k,α;D = (diam(D)/2)k+α[µ]k,α;BR
, (24.12)

which then give the norms ∥µ∥′
Ck,α(D)

, like in the above definitions. If the domain is a ball,
then the new norms are scaling invariant:

∥µ′∥′Ck,α(B1)
= ∥µ∥′Ck,α(Bϵ)

. (24.13)

Back to our problem, we have

∥µ′∥C1,α(B1) = ∥µ′∥′C1,α(B1)
= ∥µ∥′C1,α(Bϵ)

(24.14)

= ∥µ∥C0(Bϵ) + ϵ∥∇µ∥C0(Bϵ) + ϵ1+α[µ]1,α;Bϵ . (24.15)

Since µ ∈ C1,α(Bϵ) ⊂ C0,α(Bϵ), we have that

|µ(x)− µ(y)| ≤ C|x− y|α. (24.16)

Since µ(0) = 0, we have an estimate for x ∈ Bϵ,

|µ(x)| ≤ C|x|α ≤ Cϵα. (24.17)

Combining these estimates, we obtain that there exists a constant C, depending only upon
∥µ∥C1,α(Br0 )

for some fixed radius r0, so that

∥µ′∥C1,α(B1) ≤ Cϵα. (24.18)

Consequently, we can just assume that our original µ is defined in B1 and satisfies

∥µ∥C1,α(B1) < Cϵα. (24.19)
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24.2 Solution of the Malgrange equation

We want to find a solution of the equation

0 = (ξ̄z̄∂z − ξ̄z∂z)
(ξz + µ(z, z)ξz
ξ̄z + µ(z, z)ξ̄z

)
. (24.20)

with |ξz|2(0, 0)− |ξz|2(0, 0) ̸= 0. From the scaling above, we can assume that the C1,α norm
of µ in B1 is arbitrarily small. The equation (24.20) is quasilinear of the form

F (D2ξ,Dξ, ξ, z, z) = 0. (24.21)

We define

B1 = C2,α
0 (B1(0)) = {u ∈ C2,α(B1(0)) | u = 0 on ∂B1(0)} (24.22)

B2 = C0,α(B1(0)) (24.23)

F (h) = F (z + h) (24.24)

L (h) = F ′
z(h) (24.25)

Q(h) = F (z + h)− F (z)− F ′
z(h) = F (h)− F (0)− L (h). (24.26)

Recall from the linearization formula in Proposition 36.2

F ′
z(h) = ∂z

(
hz + µ(hz − h̄z − µh̄z)

)
+ h̄z̄µz − h̄zµz, (24.27)

and

F ′
z(h)(0, 0) =

1

4
∆h+ c1hz + c2h̄z + c3hz + c4h̄z. (24.28)

Since µ(0, 0) = 0 and µ has arbitrarily small C1,α norm, the operator L is a small perturba-
tion of the Laplacian. By the inverse function theorem for linear operators (Lemma 21.2), we
can define the mapping T : C0,α → C2,α

0 to be the unique solution to the Dirichlet problem

L (Tf) = f in B(0, 1), T f = 0 on ∂B(0, 1). (24.29)

Also from Lemma 21.2, there exists a constant C so that

∥Tf∥C2,α(B(0,1)) ≤ C∥f∥C0,α(B(0,1)). (24.30)

Let us recall that

F (h) = F (z + h) = F (D2(z + th), D(z + th), z + th, z, z)

=
(
(1 + h̄z̄)∂z − h̄z∂z

)(hz + µ(z, z̄)(1 + hz)

(1 + h̄z) + µ(z, z)h̄z

)
.

(24.31)

In particular,

F (0) = ∂zµ, (24.32)
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which has arbitrarily small norm in B2.
We need to estimate

Q(h2)− Q(h2) = F (z + h2)− F ′
z(h2)− (F (z + h1)− F ′

z(h1)). (24.33)

Consider f(t) = F (z + th2 + (1 − t)h1). Since F (z + h) = F̃ (D2h,Dh, h, z), where F̃ is
a smooth function of these variables (for C2-norm of h sufficiently small), then using the
fundamental theorem of calculus

F (z + h2)− F (z + h1) = f(1)− f(0) =

∫ 1

0

f ′(t)dt. (24.34)

We note that

f ′(t) =
d

ds
F (z + sh2 + (1− s)h1)|s=t =

d

ds
F (z + th1 + (1− t)h2 + s(h2 − h1))|s=0

= F ′
z+th1+(1−t)h2

(h2 − h1).
(24.35)

This gives the expression

Q(h2)− Q(h1) =
(∫ 1

0

F ′
z+th1+(1−t)h2

(h2 − h1)dt
)
− F ′

z(h2 − h1)

=
(∫ 1

0

(F ′
z+th1+(1−t)h2

− F ′
z)dt

)
(h2 − h1).

(24.36)

We next claim that for any y and h, we have the estimate

∥(F ′
z+h − F ′

z)y∥C0 ≤ C∥h∥C2∥y∥C2 . (24.37)

To see this, note the linearized operator is of the form

F ′
u(h) =

d

dt
F (u+ th)|t=0

= aij(D2u,Du, u, z)Dijh+ bi(D2u,Du, u, z)Dih+ c(D2u,Du, u, z)Dih.
(24.38)

If F̃ (D2h,Dh, h, z) is C2 in the D2h,Dh, h variables, and continuous in the z variable, then
the coefficients aij, bi, c are C1 as functions of D2u,Du, u, and we have for example

c(D2(z + h), D(z + h), z + h, z) = c(D2z,Dz, z, z) +O(|D2h|+ |Dh|+ |h|), (24.39)

so the estimate (24.37) follows. This implies the quadratic estimate for the C0-norm.
For the Hölder norm, similar to the above arguments, we see that any y and h, we have

the estimate

∥(F ′
z+h − F ′

z)y∥Cα ≤ C∥h∥C2,α∥y∥C2,α , (24.40)

provided that F̃ is C2,α in the D2h,Dh, h variables and Hölder continuous in the z variable.
This finishes the quadratic estimate.
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As mentioned above, by taking ϵ sufficiently small, we can always arrange so that condi-
tion (b) is satisfied. The implicit function theorem yields a solution h with

∥h∥C2,α(B1) = o(ϵ), (24.41)

as ϵ→ 0. Obviously, we have

|h(0)| = o(ϵ), |∇h|(0) = o(ϵ), (24.42)

as ϵ→ 0. Then if ϵ is sufficiently small, then condition (23.4) will also be satisfied.

Remark 24.3. The minimal regularity required in the above arguments is µ ∈ C1,α. One
can actually get away with only assuming µ ∈ C0,α, but one needs a different method to see
this. The Beltrami equation can be solved locally for µ ∈ C0,α by inverting the ∂z operator
using the Cauchy-Pompeiu formula, and a solution can be produced by an iteration method.
However, this is a bit technical (it takes around 30 pages), so we will omit. There are many
great references for this method, see for example [Spi79], [Ber58], [Ahl66].

25 Lecture 25

In the next few lectures, we will give a review of Riemannian geometry

25.1 Review of theory of vector bundles

We will next define real vector bundles, but note that everything we will say works for
complex bundles, by replacing R with C.

Definition 25.1. A smooth real vector bundle of rank k over a smooth manifold Mn is a
topological space E together with a smooth projection

π : E →M (25.1)

such that

• For p ∈M , π−1(p) is a vector space of dimension k over R.

• There exists local trivializations, that is, there are smooth mappings

Φα : Uα × Rk → E (25.2)

which maps p× Rk linearly onto the fiber π−1(p) for every p ∈ Uα.

The transition functions of a bundle are defined as follows.

φαβ : Uα ∩ Uβ → GL(k,R) (25.3)

defined by

φαβ(x)(v) = π2(Φ
−1
α ◦ Φβ(x, v)), (25.4)
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for v ∈ Rk.
On a triple intersection Uα ∩ Uβ ∩ Uγ, we have the cocycle condition

φαγ = φαβ ◦ φβγ. (25.5)

Conversely, given a covering Uα of M and transition functions φαβ satisfying (25.5), there is
a vector bundle π : E →M with transition functions given by φαβ. (It turns out this bundle
is uniquely defined up to bundle equivalence, which we will define below.) If the transitions
function φαβ are C∞, then we say that E is a smooth vector bundle.

A vector bundle mapping is a mapping F : E1 → E2 which is linear on fibers, and covers
the identity map, that is, the following diagram commutes

E1 E2

M M.

F

πE1
πE2

id

(25.6)

Assume we have a covering Uα of M such that E1 has trivializations Φα and E2 has trivial-
izations Ψα. Then any vector bundle mapping gives locally defined functions

Fα : Uα → Hom(Rk1 ,Rk2) (25.7)

defined by

Fα(x)(v) = π2(Ψ
−1
α ◦ F ◦ Φα(x, v)). (25.8)

It is easy to see that on overlaps Uα ∩ Uβ,

Fα = φE2
αβFβφ

E1
βα, (25.9)

equivalently,

φE2
βαFα = Fβφ

E1
βα. (25.10)

We say that two bundles are E1 and E2 are equivalent if there exists an invertible bundle
mapping F : E1 → E2. This is equivalent to non-singularity of the local representatives, that
is, det(Fα) ̸= 0. A vector bundle is trivial if it is equivalent to the trivial product bundle.
That is, E is trivial if there exist functions

fα : Uα → GL(k,R) (25.11)

such that

φβα = fβf
−1
α . (25.12)

Definition 25.2. A section of π : E → M is a smooth mapping σ : M → E such that
π ◦ σ = IdM .

In terms of local trivializations, we define

sα = πRk ◦ Φ−1
α ◦ s : Uα → Rk, (25.13)

which yield the defining relation for a section

sα = ϕαβsβ. (25.14)

The space of sections of a vector bundle is denoted by Γ(M,E), which is a vector space.

94



25.2 Operations on bundles

Note that if f1 : Rk → Rk and f2 : Rl → Rl are linear maps then there is an obvious induced
mapping f1 ⊕ f2 : Rk ⊕ Rl → Rk ⊕ Rl defined by

(f1 ⊕ f2)(v1, v2) ≡ f1(v1)⊕ f2(v2). (25.15)

The direct sum E1 ⊕ E2 of bundles E1 and E2 is a vector bundle with transition functions

φE1⊕E2
αβ = φE1

αβ ⊕ φE2
αβ. (25.16)

Note that if f1 : Rk → Rk and f2 : Rl → Rl are linear maps, then there is an obvious induced
mapping f1 ⊗ f2 : Rk ⊗ Rl → Rk ⊗ Rl defined on indecomposable tensors by

(f1 ⊗ f2)(v1 ⊗ v2) ≡ f1(v1)⊗ f2(v2), (25.17)

and extended by linearity to the tensor product. The tensor product E1 ⊗E2 of bundles E1

and E2 is again a bundle, and has transition functions

φE1⊗E2
αβ = φE1

αβ ⊗ φE2
αβ. (25.18)

The dual E∗ of any bundle E, is a bundle, and has transition functions

φE∗

αβ =
(
(φE

αβ)
−1
)T

= (φE
βα)

T . (25.19)

Note that the inverse is necessary in order to have the cocycle condition satisfied. In general,
if E1 and E2 are vector bundles, then we define Hom(E1, E2) = E∗

1 ⊗ E2, which in terms of
transition functions is

φ
Hom(E1,E2)
αβ =

(
(φE1

αβ)
−1
)T ⊗ φE2

αβ. (25.20)

Note that for any linear map f : Rk → Rk, there is a naturally induced mapping

Λpf : Λp(Rk) → Λp(Rk) (25.21)

therefore for any vector bundle E, the pth exterior power Λp(E) is defined to be the bundle
with transition functions

φ
Λp(E)
αβ = Λp(φE

αβ). (25.22)

For a complex vector bundle π : E → M , there is another operation called the conjugate
bundle E which is the complex vector bundle obtained by replacing each fiber of E with the
complex conjugate vector space. The transition functions are simply

φE
αβ = φE

αβ. (25.23)

Remark 25.3. In the above, we only defined morphisms in the category of vector bundle to
be mappings covering the identity map. We could have instead morphisms to cover arbitrary
diffeomorphisms. This would lead to a coarser notion of equivalence, and is not usually used
for vector bundle equivalence.
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25.3 Riemannian metrics on real vector bundles

If π : E → M is a real vector bundle, a Riemannian metric on E is a choice of smoothly
varying positive definite symmetric inner product on each fiber. That is g ∈ Γ(E∗ ⊗ E∗)
satisfying

g(e1, e2) = g(e2, e1), (25.24)

g(e, e) > 0 for e ̸= 0. (25.25)

Proposition 25.4. If E is any real vector bundle, then E admits a Riemannian metric.

Proof. Take the Euclidean metric on trivializations, and patch together using a partition of
unity.

Corollary 25.5. For any real vector bundle E, E∗ ∼= E.

Proof. Choose a Riemannian metric g on E. Then the mapping ♭ : E → E∗ defined by

♭(e1)(e2) = g(e1, e2) (25.26)

is an ismorphism on fibers, and covers the identity map.

Remark 25.6. The inverse of ♭ is usually denoted by ♭−1 = ♯ : E∗ → E.

In the special case that E = TM is the tangent bundle, the pair (M, g) is called a
Riemannian manifold, with the metric g ∈ Γ(S2(T ∗M)). In coordinates,

g =
n∑

i,j=1

gij(x)dx
i ⊗ dxj, gij = gij, (25.27)

and gij ≫ 0 is a positive definite symmetric matrix.
Note that a vector field X ∈ Γ(TM) in coordinates X = X i ∂

∂xi , then

♭X = (♭X)idx
i = gijX

jdxj, (25.28)

and similarly if ω = ωidx
i, then

♯ω = (♯ω)i
∂

∂xi
= gijωj

∂

∂xi
(25.29)

So the flat operator lowers an index, and the sharp operator raises an index, which explains
the notation for anyone familiar with reading music.

25.4 Connections on vector bundles

A connection is a mapping Γ(TM)× Γ(E) → Γ(E), denoted by ∇Xσ, such that

• ∇f1X1+f2X2s = f1∇X1s+ f2∇X2s,

• ∇X(fs) = (Xf)s+ f∇Xs.
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Note the first condition, linearity over C∞ functions, implies that the value of (∇Xs)(p) only
depends on the value of Xp. But the second condition means that it does depend on the
values of the section in a neighborhood of p. In coordinates, letting si, i = 1 . . . p, be a local
basis of sections of E,

∇∂isj = Γk
ijsk, (25.30)

which defines the Christoffel symbols Γk
ij of a connection, which are not tensorial. If E carries

an inner product, then ∇ is compatible if

X⟨s1, s2⟩ = ⟨∇Xs1, s2⟩+ ⟨s1,∇Xs2⟩. (25.31)

For a connection in TM , ∇ is called symmetric if

∇XY −∇YX = [X, Y ], ∀X, Y ∈ Γ(TM). (25.32)

Theorem 25.7 (Fundamental Theorem of Riemannian Geometry). There exists a unique
symmetric, compatible connection in TM .

Invariantly, the connection is defined by

⟨∇XY, Z⟩ =
1

2

(
X⟨Y, Z⟩+ Y ⟨Z,X⟩ − Z⟨X, Y ⟩

−⟨Y, [X,Z]⟩ − ⟨Z, [Y,X]⟩+ ⟨X, [Z, Y ]⟩
)
.

(25.33)

Letting X = ∂i, Y = ∂j, Z = ∂k, we obtain

Γl
ijglk = ⟨Γl

ij∂l, ∂k⟩ = ⟨∇∂i∂j, ∂k⟩

=
1

2

(
∂igjk + ∂jgik − ∂kgij

)
,

(25.34)

which yields the formula

Γk
ij =

1

2
gkl
(
∂igjl + ∂jgil − ∂lgij

)
(25.35)

for the Riemannian Christoffel symbols.

26 Lecture 26

26.1 Covariant derivatives of tensor fields

Let E and E ′ be vector bundles over M , with covariant derivative operators ∇, and ∇′,
respectively. The covariant derivative operators in E ⊗ E ′ and Hom(E,E ′) are

∇X(s⊗ s′) = (∇Xs)⊗ s′ + s⊗ (∇′
Xs

′) (26.1)

(∇XL)(s) = ∇′
X(L(s))− L(∇Xs), (26.2)
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for s ∈ Γ(E), s′ ∈ Γ(E ′), and L ∈ Γ(Hom(E,E ′)). Note also that the covariant derivative
operator in Λ(E) is given by

∇X(s1 ∧ · · · ∧ sr) =
r∑

i=1

s1 ∧ · · · ∧ (∇Xsi) ∧ · · · ∧ sr, (26.3)

for si ∈ Γ(E).
These rules imply that if T is an (r, s) tensor, then the covariant derivative ∇T is an

(r, s+ 1) tensor given by

∇T (X, Y1, . . . , Ys) = ∇X(T (Y1, . . . Ys))−
s∑

i=1

T (Y1, . . . ,∇XYi, . . . , Ys). (26.4)

We next consider the above definitions in components for (r, s)-tensors. For the case of a
vector field X ∈ Γ(TM), ∇X is a (1, 1) tensor field. By the definition of a connection, we
have

∇mX ≡ ∇∂mX = ∇∂m(X
j∂j) = (∂mX

j)∂j +XjΓl
mj∂l = (∇mX

i +X lΓi
ml)∂i. (26.5)

In other words,

∇X = ∇mX
i(dxm ⊗ ∂i), (26.6)

where

∇mX
i = ∂mX

i +X lΓi
ml. (26.7)

However, for a 1-form ω, (26.2) implies that

∇ω = (∇mωi)dx
m ⊗ dxi, (26.8)

with

∇mωi = ∂mωi − ωlΓ
l
im. (26.9)

The definition (26.1) then implies that for a general (r, s)-tensor field S,

∇mS
i1...ir
j1...js

≡ ∂mS
i1...ir
j1...js

+ Sli2...ir
j1...js

Γi1
ml + · · ·+ S

i1...ir−1l
j1...js

Γir
ml − Si1...ir

lj2...js
Γl
mj1

− · · · − Si1...ir
j1...js−1l

Γl
mjs .

(26.10)

Notice the following calculation,

(∇g)(X, Y, Z) = Xg(Y, Z)− g(∇XY, Z)− g(Y,∇XZ) = 0, (26.11)

from the compatbility condition. So the metric tensor is parallel, i.e., ∇g ≡ 0.
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26.2 Double covariant derivatives

For an (r, s) tensor field T , we will write the double covariant derivative as

∇2T = ∇∇T, (26.12)

which is an (r, s+ 2) tensor.

Proposition 26.1. If T is an (r, s)-tensor field, then the double covariant derivative satisfies

∇2T (X, Y, Z1, . . . , Zs) = ∇X(∇Y T )(Z1, . . . , Zs)− (∇∇XY T )(Z1, . . . Zs). (26.13)

Proof. The left hand side of (26.13) is

∇2T (X, Y, Z1, . . . , Zs) = ∇(∇T )(X, Y, Z1, . . . , Zs)

= ∇X(∇T (Y, Z1, . . . , Zs))−∇T (∇XY, Z1, . . . , Zs)

−
s∑

i=1

∇T (Y, . . . ,∇XZi, . . . Zs).
(26.14)

The right hand side of (26.13) is

∇X(∇Y T )(Z1, . . . , Zs)− (∇∇XY T )(Z1, . . . Zs)

= ∇X(∇Y T (Z1, . . . , Zs))−
s∑

i=1

(∇Y T )(Z1, . . . ,∇XZi, . . . , Zs)

−∇T (∇XY, Z1, . . . , Zs).

(26.15)

The first term on the right hand side of (26.15) is the same as first term on the right hand
side of (26.14). The second term on the right hand side of (26.15) is the same as third term
on the right hand side of (26.14). Finally, the last term on the right hand side of (26.15) is
the same as the second term on the right hand side of (26.14).

For illustration, let’s compute an example in coordinates. If ω ∈ Ω1(M), then

∇i∇jωk = ∂i(∇jωk)− Γp
ij∇pωk − Γp

ik∇jωp

= ∂i(∂jωk − Γl
jkωl)− Γp

ij(∂pωk − Γl
pkωl)− Γp

ik(∂jωp − Γl
jpωk).

(26.16)

Expanding everything out, we can write this formally as

∇2ω = ∂2ωk + Γ ∗ ∂ω + (∂Γ + Γ ∗ Γ) ∗ ω, (26.17)

where ∗ denotes various tensor contractions. It appears that in general

∇i∇jω ̸= ∇j∇iω. (26.18)

The obstruction to commuting covariant derivatives leads to the concept of curvature.
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26.3 Gradient, Hessian, and Laplacian

As an example of the above, we consider the Hessian of a function. For f ∈ C1(M,R), the
gradient is defined as

∇f = ♯(df), (26.19)

which is a vector field. This is standard notation, although in our notation above, ∇f = df ,
where this ∇ denotes the covariant derivative. The Hessian is the (0, 2)-tensor defined by
the double covariant derivative of a function, which by Proposition 26.1 is given by

∇2f(X, Y ) = ∇X(∇Y f)−∇∇XY f = X(Y f)− (∇XY )f. (26.20)

In components, this formula is

∇2f(∂i, ∂j) = ∇i∇jf = ∂i∂jf − Γk
ij(∂kf). (26.21)

The symmetry of the Hessian

∇2f(X, Y ) = ∇2f(Y,X), (26.22)

then follows easily from the symmetry of the Riemannian connection. Notice that no curva-
ture terms appear in this formula, which happens only in this special case.

The Laplacian of a function is the trace of the Hessian when considered as an endomor-
phism,

∆f = tr
(
X 7→ ♯(∇2f(X, ·))

)
, (26.23)

so in coordinates is given by

∆f = gij∇i∇jf. (26.24)

This turns out to be equal to

∆f =
1√

det(g)
∂i
(
gij∂jf

√
det(g)

)
. (26.25)

Exercise 26.2. Prove (26.25) (hint: use Jacobi’s formula for the derivative of a determi-
nant).

27 Lecture 27

27.1 Curvature in the tangent bundle

The curvature tensor is defined by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z, (27.1)
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for vector fields X, Y , and Z. We define

Rm(X, Y, Z,W ) ≡ −⟨R(X, Y )Z,W ⟩. (27.2)

We will refer to R as the curvature tensor of type (1, 3) and to Rm as the curvature tensor
of type (0, 4).

The algebraic symmetries are:

R(X, Y )Z = −R(Y,X)Z (27.3)

0 = R(X, Y )Z +R(Y, Z)X +R(Z,X)Y (27.4)

Rm(X, Y, Z,W ) = −Rm(X, Y,W,Z) (27.5)

Rm(X, Y,W,Z) = Rm(W,Z,X, Y ). (27.6)

In a coordinate system we define quantities R l
ijk by

R(∂i, ∂j)∂k = R l
ijk ∂l, (27.7)

or equivalently,

R = R l
ijk dx

i ⊗ dxj ⊗ dxk ⊗ ∂l. (27.8)

Define quantities Rijkl by

Rijkl = Rm(∂i, ∂j, ∂k, ∂l), (27.9)

or equivalently,

Rm = Rijkldx
i ⊗ dxj ⊗ dxk ⊗ dxl. (27.10)

Then

Rijkl = −⟨R(∂i, ∂j)∂k, ∂l⟩ = −⟨R m
ijk ∂m, ∂l⟩ = −R m

ijk gml. (27.11)

Equivalently,

Rijlk = R m
ijk gml, (27.12)

that is, we lower the upper index to the third position. In coordinates, the algebraic sym-
metries of the curvature tensor are

R l
ijk = −R l

jik (27.13)

0 = R l
ijk +R l

jki +R l
kij (27.14)

Rijkl = −Rijlk (27.15)

Rijkl = Rklij. (27.16)

Of course, we can write the first 2 symmetries as a (0, 4) tensor,

Rijkl = −Rjikl (27.17)

0 = Rijkl +Rjkil +Rkijl. (27.18)
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Note that using (27.16), the algebraic Bianchi identity (27.18) may be written as

0 = Rijkl +Riklj +Riljk. (27.19)

We next compute the curvature tensor in coordinates.

R(∂i, ∂j)∂k = R l
ijk ∂l

= ∇∂i∇∂j∂k −∇∂j∇∂i∂k

= ∇∂i(Γ
l
jk∂l)−∇∂j(Γ

l
ik∂l)

= ∂i(Γ
l
jk)∂l + Γl

jkΓ
m
il ∂m − ∂j(Γ

l
ik)∂l − Γl

ikΓ
m
jl∂m

=
(
∂i(Γ

l
jk) + Γm

jkΓ
l
im − ∂j(Γ

l
ik)− Γm

ikΓ
l
jm

)
∂l,

(27.20)

which is the formula

R l
ijk = ∂i(Γ

l
jk)− ∂j(Γ

l
ik) + Γl

imΓ
m
jk − Γl

jmΓ
m
ik (27.21)

Fix a point p. Exponential coordinates around p form a normal coordinate system at p.
That is gij(p) = δij, and ∂kgij(p) = 0, which is equivalent to Γk

ij(p) = 0. The Christoffel
symbols are

Γl
jk =

1

2
glm
(
∂kgjm + ∂jgkm − ∂mgjk

)
. (27.22)

In normal coordinates at the point p,

∂iΓ
l
jk =

1

2
δlm
(
∂i∂kgjm + ∂i∂jgkm − ∂i∂mgjk

)
. (27.23)

We then have at p

R l
ijk =

1

2
δlm
(
∂i∂kgjm − ∂i∂mgjk − ∂j∂kgim + ∂j∂mgik

)
. (27.24)

Lowering an index, we have at p

Rijkl = −1

2

(
∂i∂kgjl − ∂i∂lgjk − ∂j∂kgil + ∂j∂lgik

)
= −1

2

(
∂2 7 g

)
.

(27.25)

The 7 symbol is the Kulkarni-Nomizu product, which takes 2 symmetric (0, 2) tensors and
gives a (0, 4) tensor with the same algebraic symmetries of the curvature tensor, and is
defined by

A7B(X, Y, Z,W ) =A(X,Z)B(Y,W )− A(Y, Z)B(X,W )

− A(X,W )B(Y, Z) + A(Y,W )B(X,Z).

To remember: the first term is A(X,Z)B(Y,W ), skew symmetrize in X and Y to get the
second term. Then skew-symmetrize both of these in Z and W .
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27.2 Sectional curvature, Ricci tensor, and scalar curvature

Let Π ⊂ TpM be a 2-plane, and let Xp, Yp ∈ TpM span Π. Then

K(Π) =
Rm(X, Y,X, Y )

g(X,X)g(Y, Y )− g(X, Y )2
=

g(R(X, Y )Y,X)

g(X,X)g(Y, Y )− g(X, Y )2
, (27.26)

is independent of the particular chosen basis for Π, and is called the sectional curvature of
the 2-plane Π. The sectional curvatures in fact determine the full curvature tensor:

Proposition 27.1. Let Rm and Rm′ be two curvature tensors of type (0, 4) which satisfy
K(Π) = K ′(Π) for all 2-planes Π, then Rm = Rm′.

From this proposition, if K(Π) = k0 is constant for all 2-planes Π, then we must have

Rm(X, Y, Z,W ) = k0

(
g(X,Z)g(Y,W )− g(Y, Z)g(X,W )

)
. (27.27)

That is

Rm =
k0
2
g 7 g. (27.28)

In coordinates, this is

Rijkl = k0(gikgjl − gjkgil). (27.29)

We define the Ricci tensor as the (0, 2)-tensor

Ric(X, Y ) = tr(U → R(U,X)Y ). (27.30)

We clearly have

Ric(X, Y ) = Ric(Y,X), (27.31)

so Ric ∈ Γ(S2(T ∗M)). We let Rij denote the components of the Ricci tensor,

Ric = Rijdx
i ⊗ dxj, (27.32)

where Rij = Rji. From the definition,

Rij = R l
lij = glmRlimj. (27.33)

Notice for a space of constant curvature, we have

Rjl = gikRijkl = k0g
ik(gikgjl − gjkgil) = (n− 1)k0gjl, (27.34)

or invariantly

Ric = (n− 1)k0g. (27.35)
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The Ricci endomorphism is defined by

Rc(X) ≡ ♯
(
Ric(X, ·)

)
. (27.36)

The scalar curvature is defined as the trace of the Ricci endomorphism

R ≡ tr(X → ♯Ric(X, ·)). (27.37)

In coordinates,

R = gpqRpq = gpqglmRlpmq. (27.38)

Note for a space of constant curvature k0,

R = n(n− 1)k0. (27.39)

Exercise 27.2. If n = 2, then we necessarily have

Rijkl = K(gikgjl − gjkgil) (27.40)

Rij = Kgij (27.41)

R = 2K, (27.42)

for a function K : M → R, which is called the Gaussian curvature. So the scalar curvature
determines the full curvature tensor in dimension 2.

Remark 27.3. It turns out that if n = 3, then the Ricci tensor determines the full curvature
tensor. If n ≥ 4, then the curvature tensor is not determined by the Ricci tensor. There is
another component called the Weyl curvature, which we will discuss later.

27.3 Commuting covariant derivatives

Let X, Y, Z ∈ Γ(TM), and compute using Proposition 26.1

∇2Z(X, Y )−∇2Z(Y,X) = ∇X(∇YZ)−∇∇XYZ −∇Y (∇XZ)−∇∇Y XZ

= ∇X(∇YZ)−∇Y (∇XZ)−∇∇XY−∇Y XZ

= ∇X(∇YZ)−∇Y (∇XZ)−∇[X,Y ]Z

= R(X, Y )Z,

(27.43)

which is just the definition of the curvature tensor. In coordinates,

∇i∇jZ
k = ∇j∇iZ

k +R k
ijm Z

m. (27.44)

We extend this to (p, 0)-tensor fields:

∇2(Z1 ⊗ · · · ⊗ Zp)(X, Y )−∇2(Z1 ⊗ · · · ⊗ Zp)(Y,X)

= ∇X(∇Y (Z1 ⊗ · · · ⊗ Zp))−∇∇XY (Z1 ⊗ · · · ⊗ Zp)

−∇Y (∇X(Z1 ⊗ · · · ⊗ Zp))−∇∇Y X(Z1 ⊗ . . .⊗ Zp

= ∇X

( p∑
i=1

Z1 ⊗ · · ·∇YZi ⊗ · · · ⊗ Zp

)
−

p∑
i=1

Z1 ⊗ · · ·∇∇XYZi ⊗ · · · ⊗ Zp

−∇Y

( p∑
i=1

Z1 ⊗ · · ·∇XZi ⊗ · · · ⊗ Zp

)
+

p∑
i=1

Z1 ⊗ · · ·∇∇Y XZi ⊗ · · · ⊗ Zp.

(27.45)
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With a slight abuse of notation, this may be rewritten as

∇2(Z1 ⊗ · · · ⊗ Zp)(X, Y )−∇2(Z1 ⊗ · · · ⊗ Zp)(Y,X)

=

p∑
j=1

p∑
i=1,i ̸=j

Z1 ⊗∇XZj ⊗ · · ·∇YZi ⊗ · · · ⊗ Zp

−
p∑

j=1

p∑
i=1,i ̸=j

Z1 ⊗∇YZj ⊗ · · ·∇XZi ⊗ · · · ⊗ Zp

+

p∑
i=1

Z1 ⊗ · · · ⊗ (∇X∇Y −∇Y∇X −∇[X,Y ])Zi ⊗ · · · ⊗ Zp

=

p∑
i=1

Z1 ⊗ · · · ⊗ R(X, Y )Zi ⊗ · · · ⊗ Zp.

(27.46)

In coordinates, this is

∇i∇jZ
i1...ip = ∇j∇iZ

ii...ip +

p∑
k=1

R ik
ijm Zi1...ik−1mik+1...ip . (27.47)

Proposition 27.4. For a 1-form ω, we have

∇2ω(X, Y, Z)−∇2ω(Y,X,Z) = ω(R(Y,X)Z). (27.48)

Proof. Using Proposition 26.1, we compute

∇2ω(X, Y, Z)−∇2ω(Y,X,Z)

= ∇X(∇Y ω)(Z)− (∇∇XY ω)(Z)−∇Y (∇Xω)(Z)− (∇∇Y Xω)(Z)

= X(∇Y ω(Z))−∇Y ω(∇XZ)−∇XY (ω(Z)) + ω(∇∇XYZ)

− Y (∇Xω(Z)) +∇Xω(∇YZ) +∇YX(ω(Z))− ω(∇∇Y XZ)

= X(∇Y ω(Z))− Y (ω(∇XZ)) + ω(∇Y∇XZ)−∇XY (ω(Z)) + ω(∇∇XYZ)

− Y (∇Xω(Z)) +X(ω(∇YZ))− ω(∇X∇YZ) +∇YX(ω(Z))− ω(∇∇Y XZ)

= ω
(
∇Y∇XZ −∇X∇YZ +∇[X,Y ]Z

)
+X(∇Y ω(Z))− Y (ω(∇XZ))−∇XY (ω(Z))

− Y (∇Xω(Z)) +X(ω(∇YZ)) +∇YX(ω(Z)).

(27.49)

The last six terms are

X(∇Y ω(Z))− Y (ω(∇XZ))−∇XY (ω(Z))

− Y (∇Xω(Z)) +X(ω(∇YZ)) +∇YX(ω(Z))

= X
(
Y (ω(Z))− ω(∇YZ)

)
− Y (ω(∇XZ))− [X, Y ](ω(Z))

− Y
(
X(ω(Z))− ω(∇XZ)

)
+X(ω(∇YZ))

= 0.

(27.50)
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Remark 27.5. It would have been a lot easier to assume we were in normal coordinates,
and ignore terms involving first covariant derivatives of the vector fields, but we did the
above for illustration.

In coordinates, this formula becomes

∇i∇jωk = ∇j∇iωk −R p
ijk ωp. (27.51)

As above, we can extend this to (0, s) tensors using the tensor product, in an almost identical
calculation to the (r, 0) tensor case. Finally, putting everything together, the analogous
formula in coordinates for a general (r, s)-tensor T is

∇i∇jT
i1...ir
j1...js

= ∇j∇iT
i1...ir
j1...js

+
r∑

k=1

R ik
ijm T

i1...ik−1mik+1...ir
j1...js

−
s∑

k=1

R m
ijjk

T i1...ir
j1...jk−1mjk+1...js

.

(27.52)
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28 Lecture 28

28.1 Conformal geometry and complex geometry

In real dimension 2, there is a close relation between complex geometry and conformal
geometry.

Definition 28.1. Given a manifold M , Riemannian metrics g and g̃ are conformal if there
exists u :M → R such that g̃ = e−2ug. The conformal class of a Riemannian metric g is

[g] = {e−2ug | u ∈ C∞(M,R)} (28.1)

A mapping between manifolds f : (M1, g1) → (M2, g2) is a conformal transformation if f ∗g2
is conformal to g1.

In real dimension 2, there is a close relation between complex geometry and conformal
geometry.

Proposition 28.2. A almost complex structure on a Riemann surface (J : TM → TM, J2 =
−Id) is equivalent to an oriented conformal structure. More precisely, let (M,J) be a Rie-
mann surface with almost complex structure J . Choose any Riemannian metric g which is
compatible with J , that is, g(JX, JY ) = g(X, Y ). Then (M, [g]) with the complex orientation
is an oriented conformal structure. Conversely, given an oriented conformal class (M, [g])
then there is a unique almost complex structure J with the property that any metric in the
respective conformal class is compatible with the complex structure J .

Proof. For one direction, we need to show that any 2 compatible metrics are conformal. If
g(JX, JY ) = g(X, Y ) and h(JX, JY ) = h(X, Y ). Choose an basis {e1, e2} of TpM such that
J(e1) = e2 and J(e2) = −e1. Then

g11(p) = g(e1, e1) = g(Je1, Je1) = g(e2, e2) = g22(p), (28.2)

and

g12(p) = g(e1, e2) = g(Je1, Je2) = g(e2,−e1) = −g12(p). (28.3)

Since g11(p) = g22(p) and g12(p) = g21(p) = 0, we have

g(p) = g11(p)((e
1)2 + (e2)2), (28.4)

where {e1, e2} is the dual basis to {e1, e2}. This argument equally applies to h, to show that

h(p) = h11(p)((e
1)2 + (e2)2). (28.5)

Since this is true at any point, it shows that g and h are conformal.
Conversely, given an oriented conformal class [g], let ω be an oriented volume form, which

is a nowhere-vanishing 2-form. We can choose a metric g ∈ [g] uniquely with the property
that the volume form of g, dVg = ω. Then we define J : TM → TM by

g(X, Y ) = ω(X, JY ). (28.6)
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Note that this defines J uniquely since ω is a non-degenerate 2-form. If we do the same
procedure for g̃ = e−2ug, then dVg̃ = e−2ug (since the volume form is like

√
det(g)dx ∧ dy),

so we obtain the same J . To see that J2 = −Id, choose an oriented orthonormal basis
{e1, e2} for TpM . Then ω = dVg = e1 ∧ e2. This implies that

1 = g(e1, e1) = ω(e1, Je1) (28.7)

0 = g(e1, e2) = ω(e1, Je2) (28.8)

0 = g(e2, e1) = ω(e2, Je1) (28.9)

1 = g(e2, e2) = ω(e2, Je2), (28.10)

which implies that Je1 = e2 and Je2 = −e1, so J2 = −I is an almost complex structure.

We also have the following result for mapping under this correspondence.

Proposition 28.3. Complex structures (M1, J1) and (M2, J2) on Riemann surfaces are bi-
holomorphic if and only if the corresponding conformal structures (M, [g1]) and (M2, [g2]) are
orientation preserving conformally equivalent.

Proof. Given (M,J), choose a holomorphic coordinate system {x, y}. As seen in the above
proof, the conformal class of a compatible metric in this coordinate system is the Euclidean
conformal class [gEuc]. So the statement reduces to proving that for U ⊂ C, f : U → C
is holomorphic if and only if it is orientation-preserving and conformal (with respect to the
Euclidean metric). Writing f = u+ iv, then Cauchy-Riemann equations are

ux = vy, uy = −vx. (28.11)

The equations for conformality are

f ∗gEuc = e−2ugEuc. (28.12)

The Jacobian of f is given by

f∗ =

(
ux uy
vx vy

)
(28.13)

The left hand side is

f ∗gEuc(∂x, ∂x) = gEuc(f∗∂x, f∗∂x) = gEuc(ux∂x + vxpy, ux∂x + vx∂y) = u2x + v2x (28.14)

f ∗gEuc(∂x, ∂y) = gEuc(f∗∂x, f∗∂y) = gEuc(ux∂x + vxpy, uy∂x + vy∂y) = uxuy + vxvy (28.15)

f ∗gEuc(∂y, ∂y) = gEuc(f∗∂y, f∗∂y) = gEuc(uy∂x + vy∂y, uy∂x + vy∂y) = u2y + v2y. (28.16)

If f is holomorphic, then this clearly implies that f is conformal. Conversely, if f is conformal
and orientation preserving, we obtain

u2x + v2x = u2y + v2y (28.17)

uxuy + vxvy = 0 (28.18)
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This says that the vectors v⃗ = (ux, vx) and w⃗ = (uy, vy) are orthogonal and have the same
norm; they must differ by a 90 degree rotation. So there are 2 possibilities:

(ux, vx) = (vy,−uy) or (ux, vx) = (−vy, uy), (28.19)

which is

f∗ =

(
ux uy
−uy ux

)
or f∗ =

(
ux uy
uy −ux

)
(28.20)

The mapping f being orientation preserving is equivalent to the Jacobian determinant being
positive, so we see that we must be in the first case, which are exactly the Cauchy-Riemann
equations.

Remark 28.4. The second case corresponds to anti-holomorphic ∂f = 0. That is, orientation-
reversing and conformal is equivalent to anti-holomorphic.

28.2 Conformal transformation of Gauss curvature

Proposition 28.5. Under the conformal change g̃ = e−2ug, the Christoffel symbols trans-
form as

Γ̃i
jk = gil

(
− (∂ju)glk − (∂ku)glj + (∂lu)gjk

)
+ Γi

jk. (28.21)

Invariantly,

∇̃XY = ∇XY − du(X)Y − du(Y )X + g(X, Y )∇u. (28.22)

Proof. Using (25.35), we compute

Γ̃i
jk =

1

2
g̃il
(
∂j g̃kl + ∂kg̃jl − ∂lg̃jk

)
=

1

2
e2ugil

(
∂j(e

−2ugkl) + ∂k(e
−2ugjl)− ∂l(e

−2ugjk)
)

=
1

2
e2ugil

(
− 2e−2u(∂ju)gkl − 2e−2u(∂ku)e

−2ugjl + 2e−2u(∂lu)gjk

+ e−2u∂j(gkl) + e−2u∂k(gjl)− e−2u∂l(gjk)
)

= gil
(
− (∂ju)gkl − (∂ku)gjl + (∂lu)gjk

)
+ Γi

jk.

(28.23)

This is easily seen to be equivalent to the invariant expression.

Proposition 28.6. If n = 2, and g̃ = e−2ug, the conformal Gauss curvature equation is

∆gu+Kg = K̃e−2u, (28.24)

where K̃ = Kg̃.
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Proof. We will use the following formulas

Γ̃i
jk = gil

(
− (∂ju)glk − (∂ku)glj + (∂lu)gjk

)
+ Γi

jk. (28.25)

and

R l
ijk = ∂i(Γ

l
jk)− ∂j(Γ

l
ik) + Γl

imΓ
m
jk − Γl

jmΓ
m
ik. (28.26)

Recall that if n = 2, then we necessarily have

Rijkl = K(gikgjl − gjkgil). (28.27)

Choose a normal coordinate system {x1, x2} for the g metric at a point p, then

R1212 = K(p). (28.28)

The above formulas then yield

K(p) = R1212 = R 1
122 = ∂1(Γ

1
22)− ∂2(Γ

1
12). (28.29)

Next, we have

R̃1212 = K̃(p)(g̃11g̃22 − g̃21g̃12) (28.30)

But

g̃ij = e−2ugij, (28.31)

so we get that

R̃1212 = K̃(p)e−4u, (28.32)

or

K̃(p) = R̃1212e
4u (28.33)

But from above,

R̃1212 = g̃1kR̃
k

122 = e−2uR̃ 1
122 . (28.34)

Combining these,

K̃(p) = e2uR̃ 1
122 . (28.35)

Now we use the above curvature formula

e−2uK̃(p) = R̃ 1
122 = ∂1(Γ̃

1
22)− ∂2(Γ̃

1
12) + Γ̃1

1mΓ̃
m
22 − Γ̃1

2mΓ̃
m
12. (28.36)

Using the fact that the coordinates are normal for g, we compute the first term

∂1(Γ̃
1
22) = ∂21u+ ∂1Γ

1
22 (28.37)
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The second term is

−∂2(Γ̃1
12) = ∂22u− ∂2Γ

1
12. (28.38)

The third term is

Γ̃1
1mΓ̃

m
22 = (−∂1ug1m − ∂mug11 + ∂1ug1m)(−∂2ugm2 − ∂2ugm2 + ∂mug22) (28.39)

= −∂mu(−∂2ugm2 − ∂2ugm2 + ∂mug22) (28.40)

= −(∂1u)
2 + (∂2u)

2. (28.41)

The fourth term is

−Γ̃1
2mΓ̃

m
12 = −(−∂2ug1m − ∂mug12 + ∂1ug2m)(−∂1ugm2 − ∂2ugm1 + ∂mug12) (28.42)

= −(−∂2ug1m + ∂1ug2m)(−∂1ugm2 − ∂2ugm1) (28.43)

= −(∂2u)
2 + (∂1u)

2 (28.44)

Adding all these up yields

e−2uK̃(p) = ∂21u+ ∂22u+ ∂1Γ
1
22 − ∂2Γ

1
12. (28.45)

Since the coordinates are normal, we have

(∆u)(p) = gij∇i∇ju = gij(p)(∂i∂ju− Γk
ij(p)∂ku) = ∂21u+ ∂22u, (28.46)

which yields the formula

e−2uK̃ = ∆u+K, (28.47)

and we are done.

29 Lecture 29

29.1 Structure group reduction

We give another fancier proof of the equivalence between almost complex geometry and
conformal geometry in real dimension 2.

Proposition 29.1. A Riemann surface (M,J) with an almost complex structure J is equiv-
alent to an oriented conformal structure (M, [g]).

Proof. A complex structure is a reduction of the structure group of the frame bundle to
GL(1,C) ⊂ GL(2,R). The explicit map is

a+ ib 7→
(
a b
−b a

)
. (29.1)

An oriented conformal class is a reduction to CO(2,R) ⊂ GL(2,R), where

CO(2,R) = R+ × SO(2,R) = {λ · A|λ ∈ R+, A ∈ SO(2,R)}, (29.2)

and it is easy to see that this is the same as image in (29.1) (hint: divide the matrix in (29.1)
by

√
a2 + b2).
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29.2 Isothermal coordinates

Definition 29.2. Let (M, g) be a Riemannian surface. A coordinate system ϕ : U → R2 is
called isothermal if

ϕ∗g = eλ(x,y)(dx2 + dy2), (29.3)

for some function λ : ϕ(U) → R. Equivalently, (U, g) is conformally equivalent to a domain
in R2 with the Euclidean metric.

We can alternatively describe this as follows.

Proposition 29.3. Fix p ∈ M . Then there exists an isothermal coordinate system around
p iff and only if there exists a neighborhood U of p and u : U → R such that

∆u+Kg = 0. (29.4)

Proof. If there exists an isothermal coordinate system, then the claim follows from the
conformal transformation formula for the Gauss curvature. Conversely, given a solution of
(29.4) locally, then metric g̃ = e−2ug satisfies Kg̃ = 0, that is, it is a flat metric. From basic
Riemannian geometry, there exists a local chart ϕ : U → R2 so that ϕ∗g̃ = dx2 + dy2, and
we are done.

Corollary 29.4. Let (M,J) be an almost complex structure on a oriented Riemann surface.
Choose any compatible metric g. Then an oriented isothermal coordinate system for g near
a point p is a holomorphic coordinate system.

Proof. If ϕ : (U, g) → (R2, gEuc) is isothermal, then ϕ is conformal. Then ϕ∗ is pseudo-
holomorphic by Proposition 28.3.

Remark 29.5. Consequently, the Newlander-Nirenberg problem in real dimension 2 is equiv-
alent to the local solvability of (29.4). We will discuss the solution of this next.

29.3 Negative scalar curvature

Let’s first recall the inverse function theorem in Banach spaces.

Lemma 29.6. Let F : B1 → B2 be a C1-map between two Banach spaces such that F (x) =
F (0)+L (x)+Q(x), where the operator L : B1 → B2 is linear and Q(0) = 0. Assume that

1. L is an isomorphism with inverse T satisfying ∥T∥ ≤ C1,

2. there are constants r > 0 and C2 > 0 with r < 1
3C1C2

such that

(a) ∥Q(x)− Q(y)∥B2 ≤ C2 · (∥x∥B1 + ∥y∥B1) · ∥x− y∥B1 for all x, y ∈ Br(0) ⊂ B1,

(b) ∥F (0)∥B2 ≤ r
3C1

.

Then there exists a unique solution to F (x) = 0 in B1 such that

∥x∥B1 ≤ 3C1 · ∥F (0)∥B2 . (29.5)
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Using this, we will prove the following.

Proposition 29.7. If (M, g) is compact, and R < 0, then there exists conformal metric
g̃ = e−2ug with R̃ = −1.

Proof. We would like to solve the equation

∆gu+Kg = −e−2u. (29.6)

Let us first assume that there exists a C2 solution of (29.6). Let p ∈M be a point where u
attains a its global maximum. Then ∇u(p) = 0, so

∆gu(p) = gij(∂i∂ju− Γk
ij∂ku)(p) = gij∂i∂ju ≤ 0, (29.7)

since gij is positive definite and p is a maximum point. Then (29.6) evaluated at p becomes

Kg(p) ≥ −e−2u(p) (29.8)

This implies that

u(p) ≤ −1

2
log(−Kg(p)), (29.9)

which gives an a priori upper bound on u. Similarly, by evaluating a a global minimum
point q, we obtain

u(q) ≥ −1

2
log(−Kg(q)), (29.10)

which gives an a priori strictly positive lower bound on u. We have shown there exists a
constant C0 so that ∥v∥C0 < C0. The standard elliptic estimate says that there exists a
constant C, depending only on the background metric, such that (see [GT01, Chapter 4])

∥u∥C1,α ≤ C(∥∆u∥C0 + ∥u∥C0)

≤ C(∥ −Kg − e−2u)∥C0 + CC0 ≤ C1,
(29.11)

where C1 depends only upon the background metric. Applying elliptic estimates again,

∥u∥C2,α ≤ C(∥∆u∥C0,α + ∥u∥C0,α) ≤ C3, (29.12)

where C3 depends only upon the background metric.
Let t ∈ [0, 1], and consider the family of equations

∆u+Kg =
(
(1− t)Kg − t

)
e−2u. (29.13)

Define an operator Ft : C
2,α → Cα by

Ft(u) = ∆u+Kg −
(
(1− t)Kg − t

)
e−2u. (29.14)

Let ut ∈ C2,α satisfy Ft(ut) = 0. The linearized operator at ut, Lt : C
2,α → Cα, is given by

Lt(h) = ∆h+ 2
(
(1− t)Kg − t

)
e−2uth. (29.15)
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Notice that the coefficient h is strictly negative. If Lth = 0, then

0 =

∫
M

h
(
∆h+ 2

(
(1− t)Kg − t

)
e−2uth

)
dVg

= −
∫
M

|∇h|2dVg + 2

∫
M

(
(1− t)Kg − t

)
e−2uth2dVg

(29.16)

this implies that h = 0, so Lt is injective. Since L is formally self-adjoint, some Fredholm
Theory implies that Lt is also surjective (details to be discussed later, since this needs some
Sobolev space theory). Consequently, the linearized operator is invertible. Next, define

S = {t ∈ [0, 1] | there exists a solution ut ∈ C2,α of Ft(ut) = 0}. (29.17)

Since the linearized operator is invertible, the implicit function theorem implies that S is
open. To see this, we assume that there exists a solution ut ∈ C2,α(M) of Ft(ut) = 0. Then
we want to solve

Ft+ϵ(ut+ϵ) = 0 (29.18)

for all t sufficiently small. Let us write ut+ϵ = ut + hϵ, and define

Ft+ϵ(h) = Ft+ϵ(ut + h), (29.19)

and consider as a mapping

Ft+ϵ : C
2,α(M) → C0,α(M). (29.20)

We write out

Ft+ϵ(0) = Ft+ϵ(0) + L(h) +Q(h), (29.21)

where L is the lineariozed operator. First, we have

Ft+ϵ(0) = Ft+ϵ(ut) = ∆(ut) +Kg −
(
(1− t− ϵ)Kg − t− ϵ

)
e−2ut

= ϵ(Kg + 1)e−2ut .
(29.22)

Note that this has arbitrarily small C0,α norm provided ϵ is sufficiently small. Next, we have

L(h) = ∆h+ 2
(
(1− t− ϵ)Kg − t− ϵ

)
e−2uth. (29.23)

Note that this is invertible by a similar argument to above, with elliptic estimates showing
the inverse is uniformly bounded. Finally, we obtain

Q(h) = −
(
(1− t− ϵ)Kg − t− ϵ

)
e−2ut(e−2h − 1 + 2h). (29.24)

We need to verify that

∥Q(h1)−Q(h2)∥C0,α ≤ C(∥h1∥C2,α + ∥h1∥C2,α)∥h1 − h2∥C2,α . (29.25)
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But this follows from

|e−2h + 2h− 1| ≤ Ch2, (29.26)

if h is sufficiently small in C0-norm. So then we can apply the implicit function theorem
from above (Lemma 29.6) to conclude that S is open.

To show that S is closed: assume uti is a sequence of solutions with ti → t0 as i → ∞.
The above elliptic estimates imply there exist a constant C4, independent of t, such that
∥uti∥C2,α < C4. By Arzela-Ascoli, there exists ut0 ∈ C2,α′

and a subsequence {j} ⊂ {i} such
that utj → ut0 strongly in C2,α′

, for α′ < α. The limit ut0 is a solution at time t0. By
elliptic regularity, ut0 ∈ C2,α. This shows that S is closed. Note that u = 0 solves F0(0) = 0.
Since the interval [0, 1] is connected and S is nonempty, this implies that S = [0, 1], and
consequently there must exist a solution at t = 1.

30 Lecture 30

30.1 Spaces of constant curvature

Let us recall some basic facts from Riemannian geometry. The following holds in any di-
mension.

Proposition 30.1. If (M1, g1) and (M2, g2) have constant sectional curvature K1 = K2 = k0
where k0 is a constant, then g1 and g2 are locally isometric.

Proof. By an analysis of Jacobi fields, a metric of constant curvature in radial normal coor-
dinates the metric has the form

g =


dr2 + r2gSn−1 k0 = 0

dr2 + 1
k0
sin2(

√
k0 · r)gSn−1 k0 > 0

dr2 + 1
|k0| sinh

2(
√

|k0| · r)gSn−1 k0 < 0

. (30.1)

So then obviously any 2 such metrics are locally isometric.

Obviously, by scaling the metric, there are really just 3 cases, K = 0, K = 1, andK = −1
The case of K = 0 is just (Rn, gEuc). The case of K = 1 is the round metric on the unit
sphere Sn ⊂ Rn+1. Since sinh(r) ̸= 0 for r > 0, and limr→∞ sinh(r) = ∞, the case of K = −1
is a complete metric on Rn. We denote this as Hn and call this the hyperbolic metric.

Proposition 30.2. Let U be a domain in Rn. Then the metric

g̃ =
(
a|x|2 + bix

i + c
)−2

gEuc (30.2)

has constant curvature K0 = 4ac− |b|2.

Proof. This is just a calculation, and left as an exercise.
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If K > 0, then g̃ is defined on all of Rn. The metric

g̃ =
4

(1 + |x|2)2
g (30.3)

represents the round metric with K = 1 on Sn under stereographic projection. If K < 0
then the solution is defined on a ball, or the complement of a ball, or a half space. The
metric

g̃ =
4

(1− |x|2)2
g (30.4)

is the usual ball model of hyperbolic space, and

g̃ =
1

x2n
g (30.5)

is the upper half space model of hyperbolic space.
In general, we have the following:

Theorem 30.3. If (M, g) is complete, simply-connected, and has constant sectional curva-
ture K = 0, 1,−1 then (M, g) is isometric to Euclidean space, Sn with the round metric, or
hyperbolic space Hn.

Proof. We use some basic Riemannian geometry: the exponential mapping expp : TpM →M
is surjective due to completeness. If K ≤ 0, there are no conjugate points, so expp has no
critical points, so this mapping is a covering space. IfM is simply connected, then this must
be a diffeomorphism. So then the metric is given by the above model metrics globally. In
the case of K = 1, since K > 0, M must be compact by Meyer’s Theorem. It is not hard to
show that expp will give a local isometry ϕ : Sn →M where Sn has the round metric. This
must be a covering mapping, so will be a diffeomorphism since M is simply connected.

30.2 Uniformization on S2

Since the conformal group of (S2, gS), where gS is the round metric, is noncompact, we
cannot hope to prove existence of a constant curvature metric by a compactness argument
as in the k ≥ 1 case. However, there is a trick to solve this case using only linear theory.

Theorem 30.4. If (M, g) is a Riemann surface of genus 0, then g is conformal to (S2, gS).

Proof. We remove a point p from M , and consider the manifold (M \ {p}, g). We want to
find a conformal factor u :M \ {p} → R such that g̃ = e−2ug is flat. The equation for this is

∆u = −K. (30.6)

However, by the Gauss-Bonnet theorem, the right hand side has integral 4π, so this equation
has no smooth solution. But we will find a solution u on M \ {p} so that u = O(log(r)) and
r → 0, where r(x) = d(p, x). Let ϕ be a smooth cutoff function satisfying

ϕ =

{
1 r ≤ r0

0 r ≥ 2r0
, (30.7)
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and 0 ≤ ϕ ≤ 1, for r0 very small. Consider the function f = ∆(ϕ log(r)). Computing in
normal coordinates, near p we have

∆f =
1√

det(g)
∂i(g

ijuj
√

det(g)) =
1√

det(g)
∂r(ur

√
det(g))

= (log(r))′′ + (log(r))′
(
√

det(g))′√
det(g)

.

In normal coordinates, we have
√
det(g) = r +O(r3) as r → 0, so we have

∆f = − 1

r2
+

1

r

(1 +O(r2)

r +O(r3)

)
= − 1

r2
+

1

r2

(1 +O(r2)

1 +O(r2)

)
= O(1) (30.8)

as r → 0.
Next, we compute∫

M

fdV = lim
ϵ→0

∫
M\B(p,r)

∆(ϕ log(r))dV = − lim
ϵ→0

∫
S(p,r)

∂r(log(r))dσ = −2π.

Note the minus sign is due to using the outward normal of the domain M \ B(p, r). Conse-
quently, we can solve the equation

∆(u) = −2∆(ϕ log(r))−K, (30.9)

by the Gauss-Bonnet Theorem and Fredholm Theory in L2. Rewriting this as

∆ũ = ∆(u+ 2ϕ log(r)) = −K, (30.10)

we see that the space (M \ {p}, e−2ũg) is therefore isometric to Euclidean space, since it is
clearly complete and simply connected. By the above, we can write

gS =
4

(1 + |x|2)2
e−2ũg = e−2vg. (30.11)

It is easy to see that v is a bounded solution of

∆v +K = e−2v (30.12)

on M \ {p} and extends to a smooth solution on all of M by elliptic regularity, and we are
done.

30.3 Uniformization

Now we prove the following uniformization theorem.

Theorem 30.5. Let (M,J) be a compact Riemann surface. If k = 0, then (M,J) is biholo-
morphic to the Riemann sphere S2. If k = 1, then the universal cover is biholomorphic to
C. If k > 1, then the universal cover is biholomorphic to the unit disc ∆1(0).
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Proof. First consider the case of genus k ≥ 2. By the Gauss-Bonnet theorem∫
M

KgdVg = 2πχ(M) = 2π(2− 2k) < 0. (30.13)

We first solve the equation

∆u = −K +
2π

V ol
(2− 2k). (30.14)

By Fredholm theory, this has a smooth solution since the right hand side has zero mean
value. Consider the metric g̃ = e−2ug, From (28.24), the Gauss curvature of g̃ is given by

K̃ = e−2u(∆u+K) = e−2u(
2π

V ol
(2− 2k)) < 0, (30.15)

since k ≥ 2. We have found a conformal metric with strictly negative curvature, so Propo-
sition 29.7 yields another conformal metric with constant negative curvature.

For the case k = 1, the equation to be solved is

∆u = −K. (30.16)

By the Gauss-Bonnet Theorem, the right hand side has integral zero. Elementary Fredholm
Theory gives existence of a unique smooth solution. The universal cover of M is isometric
to R2 with the flat metric.

The case of k = 0 we proved in Theorem 30.4, so we are done.

30.4 Automorphisms

We will also need the following:

Proposition 30.6. If f : C → C is a biholomorphism, then f(z) = az+b for some constants
b and a ̸= 0. If f : ∆1(0) → ∆1(0) is a biholomorphism, then

f(z) = eiθ
z + c

1 + c̄z
, (30.17)

where θ ∈ R and c ∈ ∆1(0).

Proof. In the first case, consider the Taylor expansion f =
∑
anz

n at the origin. If f has
an essential singularity at ∞, then by the Casorati-Weierstrass Theorem, the image of the
complement of any ball would be dense, which cannot happen. (To see this, if w0 is not in
the image, and there were a ball ∆ϵ(w0) also not in the image, then g(z) = (f(z) − w0)

−1

would have a removable singularity at the special point. So then f = w0 + g−1 would have a
pole of finite order, which contradicts the essential singularity). Therefore, f is a polynomial,
which must be linear by the fundamental theorem of algebra.

In the second case, one first checks that these mappings do indeed give automorphisms of
the unit disc. Then given g : ∆1(0) → ∆1(0), we can compose with one of the automorphisms
to assume that g(0) = 0. The Schwarz Lemma then implies that |g′(0)| ≤ 1. Apply the same
argument to g−1 yields |(g−1)′(0)| ≤ 1. So we must have |g′(0)| = 1. Then we have equality
in the Schwarz Lemma, which says that g(z) = eiθz, and we are done.
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Recall that

S2 = CP1 = {(z1, z2) ∈ C2 \ {0}}/ ∼ (30.18)

where (z1, z2) ∼ (z′1, z
′
2) if there exists λ ̸= 0 such that (z′1, z

′
2) = λ(z1, z2). Then we have

Proposition 30.7. Let f : CP1 → CP1 be a biholomorphism. Then there exists a, b, c, d ∈ C
with ad− bc ̸= 0 such that

f [z1, z2] = [az1 + bz2, cz1 + dz2]. (30.19)

Thus the automorphism group of CP1 is PGL(2,C).

Proof. Obviously, any such mapping gives an automorphism of S2. By composing with such
a Mobius transformation, we can assume that f([1, 0]) = f([1, 0]). Then in the coordinate
system CP1 ⊃ {[z, 1] |z ∈ C}, we see that f : C → C. Then by the above, f(z) = az + b in
these coordinates, and we are done.

Corollary 30.8. If (M,J) is a compact Riemann surface of genus 0, then (M,J) is biholo-
morphic to (CP1, JCP1).

If (M,J) is a compact Riemann surface of genus 1, then (M,J) is biholmorphic to the
quotient C/Z⊕ Z, where the group acts like translations in some lattice

Lτ1,τ2 = {mτ1 + nτ2 |m,n ∈ Z} (30.20)

with τ1 and τ1 linearly independent over R.
If (M,J) is a compact Riemann surface of genus strictly larger that 1, then (M,J) is

biholmorphic to ∆1(0)/Γ where Γ is a discrete co-compact subgroup of PSL(2,R), where

PSL(2,R) =
{(a b

c d

)
, ad− bc = 1

}
/± I, (30.21)

acts upon the upper half space model H2 = {Im(z) > 0} by fractional linear transformations

z 7→ az + b

cz + d
, (30.22)

Proof. The first case was proved in Theorem 30.4. The only automorphisms of C without
fixed points are the translations, so the first case follows. The second case just needs a
computation: the mappings in (30.17) are exactly the claimed mappings when we identify
the disc with the upper half plane.

31 Lecture 31

Our next topic is the Newlander-Nirenberg Theorem in higher dimensions. For this, we first
need to understand the space of almost complex structures, and we start with the following.
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31.1 Endomorphisms

Let EndR(TM) denotes the real endomorphisms of the tangent bundle.

Proposition 31.1. On an almost complex manifold (M,J), the bundle EndR(TM) admit
the decomposition

EndR(TM) = End+(TM)⊕ End−(TM) (31.1)

where the first factor on the left consists of endomorphisms I commuting with J ,

IJ = JI (31.2)

and the second factor consists of endomorphisms I anti-commuting with J ,

IJ = −JI (31.3)

Proof. Given J , we define

I+ =
1

2
(I − JIJ) (31.4)

I− =
1

2
(I + JIJ). (31.5)

Then

I+J =
1

2
(IJ − JIJ2) =

1

2
(IJ + JI),

and

JI+ =
1

2
(JI − J2IJ) =

1

2
(JI + IJ).

Next,

I−J =
1

2
(IJ + JIJ2) =

1

2
(IJ − JI),

and

JI− =
1

2
(JI + J2IJ) =

1

2
(JI − IJ).

Clearly, I = I+ + I−. To prove it is a direct sum, if IJ = JI and IJ = −JI, then IJ = 0
which implies that I = 0 since J is invertible.

We write down the above in a basis. Choose a real basis {e1, . . . e2n} such that the
complex structure J0 is given by

J0 =

(
0 −In
In 0

)
, (31.6)
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Then in matrix terms, the proposition is equivalent to the following decomposition(
A B
C D

)
=

1

2

(
A+D B − C
C −B A+D

)
+

1

2

(
A−D B + C
B + C D − A

)
. (31.7)

So we have that End+(TM) ∼= GL(n,C) ⊂ GL(2n,C) with(
A −B
B A

)
7→
(
A+ iB 0

0 A− iB

)
, (31.8)

and End−(TM) ∼= GL(n,C) ⊂ GL(2n,C) with(
A B
B −A

)
7→
(

0 A+ iB
A− iB 0

)
. (31.9)

31.2 The space of almost complex structures

We define

J (R2n) ≡ {J : R2n → R2n, J ∈ GL(2n,R), J2 = −I2n}. (31.10)

We next give some alternative descriptions of this space.

Proposition 31.2. The space J (R2n) is the homogeneous space GL(2n,R)/GL(n,C), and
thus

dim(J (R2n)) = 2n2. (31.11)

Proof. We note that GL(2n,R) acts on J (R2n), by the following. If A ∈ GL(2n,R) and
J ∈ J (R2n),

ΦA : J 7→ AJA−1. (31.12)

Obviously,

(AJA−1)2 = AJA−1AJA−1 = AJ2A−1 = −I, (31.13)

and

ΦAB(J) = (AB)J(AB)−1 = ABJB−1A−1 = ΦAΦB(J), (31.14)

so is indeed a group action (on the left). Given J and J ′, there exists bases

{e1, . . . , en, Je1, . . . , Jen} and {e′1, . . . , e′n, J ′e′1, . . . , J
′e′n}. (31.15)

Define S ∈ GL(2n,R) by Sek = e′k and S(Jek) = J ′e′k. Then J
′ = SJS−1, and the action is

therefore transitive. The stabilizer subgroup of J0 is

Stab(J0) = {A ∈ GL(2n,R) : AJ0A−1 = J0}, (31.16)

that is, A commutes with J0. From (31.8) above, this is identified with GL(n,C).
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Given J ∈ Jn, let J(t) : (−ϵ, ϵ) → J2n be a smooth path with J(0) = J , then differenti-
ation yields

−(I2n)
′ = (J ◦ J)′ = J ′ ◦ J + J ◦ J ′. (31.17)

So letting J ′(0) = I, we have that

IJ + JI = 0. (31.18)

Thus we can identify the tangent space at any J as

TJJ2n = {I ∈ End(Rn) |IJ + JI = 0} = End−(R2n), (31.19)

the space of endomorphisms which anti-commute with J .

31.3 Graph over the reals

Next, we will give another description of J (R2n). Define

P(R2n) = {P ⊂ R2n ⊗ C = C2n | dimC(P ) = n,

P is a complex subspace satisfying P ∩ P = {0}}.

If we consider R2n⊗C, we note that complex conjugation is a well defined complex anti-linear
map R2n ⊗ C → R2n ⊗ C.

Proposition 31.3. The space P(R2n) can be explicitly identified with J (R2n) by the follow-
ing. If J ∈ J (R2n) then let

R2n ⊗ C = T 1,0(J)⊕ T 0,1(J), (31.20)

where

T 0,1(J) = {X + iJX,X ∈ R2n} = {−i}-eigenspace of J. (31.21)

This an n-dimensional complex subspace of C2n, and letting T 1,0(J) = T 0,1(J), we have
T 1,0 ∩ T 0,1 = {0}.

For the converse, given P ∈ P(R2n), then P may be written as a graph over R2n⊗1, that
is

P = {X ′ + iJX ′ | X ′ ∈ R2n ⊂ C2n}, (31.22)

with J ∈ J (R2n), and

R2n ⊗ C = P ⊕ P = T 1,0(J)⊕ T 0,1(J). (31.23)

Proof. For the forward direction, we already know this. To see the other direction, consider
the projection map Re restricted to P

π = Re : P → R2n. (31.24)
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We claim this is a real linear isomorphism. Obviously, it is linear over the reals. Let
X ∈ P satisfy π(X) = 0. Then Re(X) = 0, so X = iX ′ for some real X ′ ∈ R2n. But
X = −iX ′ ∈ P ∩ P , so by assumption X = 0. Since these spaces are of the same real
dimension, π has an inverse, which we denote by J . Clearly then, (31.22) is satisfied. Since
P is a complex subspace, given any X = X ′ + iJX ′ ∈ P , the vector iX ′ = (−JX ′) + iX ′

must also lie in P , so

(−JX ′) + iX ′ = X ′′ + iJX ′′, (31.25)

for some real X ′′, which yields the two equations

JX ′ = −X ′′ (31.26)

X ′ = JX ′′. (31.27)

applying J to the first equation yields

J2X ′ = −JX ′′ = −X ′. (31.28)

Since this is true for any X ′, we have J2 = −I2n.

Remark 31.4. We note that J 7→ −J corresponds to interchanging T 0,1 and T 1,0.

Remark 31.5. If we choose P = spanC{∂/∂xj, j = 1 . . . n}. Then P is an n-dimensional
complex subspace of C2n, and Re restricted to P is not an isomorphism, for example.

Remark 31.6. The above proposition embeds J (R2n) as a subset of the complex Grass-
mannian G(n, 2n,C). These spaces have the same dimension, so it is an open subset. Fur-
thermore, the condition that the projection to the real part is an isomorphism is generic, so
it is also dense.

32 Lecture 32

32.1 Graphs over T 0,1(J0)

Above we viewed T 0,1(J) as a graph corresponding to the decomposition C2n = R2n ⊕ iR2n.
In the section we will instead view T 0,1(J) as a graph corresponding to the decomposition
C2n = T 0,1(J0)⊕ T 1,0(J0). This corresponds to a mapping

ϕ : T 0,1(J0) → T 1,0(J0), (32.1)

by writing

T 0,1(J) = {v + ϕv | v ∈ T 0,1(J0)}. (32.2)

Note we can view ϕ as an element of

Hom(T 0,1(J0), T
1,0(J0)) ∼= Λ0,1(J0)⊗ T 1,0(J0), (32.3)
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so we will view ϕ as an element of the latter space. In “coordinates”, we can write

ϕ = ϕk
j̄dz

j ⊗ ∂

∂zk
, (32.4)

and we will view ϕk
j̄ as an n by n complex matrix. We define ϕ as a C-linear mapping

ϕ : T 1,0(J0) → T 0,1(J0), (32.5)

by

ϕ(v) = ϕ(v̄). (32.6)

Consider the mapping

ϕ+ ϕ : C2n → C2n, (32.7)

which in matrix form is

ϕ+ ϕ =

(
0 ϕ

ϕ 0

)
. (32.8)

Recall from (31.9) that this is the complexification of an R-linear mapping

Iϕ : R2n → R2n (32.9)

satisfying IϕJ0 + J0Iϕ = 0, which is given by

Iϕ =

(
Re(ϕ) Im(ϕ)
Im(ϕ) −Re(ϕ)

)
. (32.10)

Proposition 32.1. If ϕ ∈ Λ0,1(J0)⊗T 1,0(J0), then ϕ determines an almost complex structure
if and only if Iϕ does not have −1 as an eigenvalue. The corresponding almost complex
structure is

Jϕ = (Id+ Iϕ)J0(Id+ Iϕ)
−1. (32.11)

Conversely, given J such that J0 + J is invertible, then J corresponds to a unique ϕ with
Id+ Iϕ invertible, which is given by

Iϕ = (J0 + J)−1(J0 − J). (32.12)

Proof. Given

ϕ ∈ Λ0,1(J0)⊗ T 1,0(J0) = HomC(T
0,1(J0), T

1,0(J0)), (32.13)

then

T 0,1(Jϕ) = {v + ϕv, v ∈ T 0,1(J0)} (32.14)
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is an n-dimensional complex subspace of R2n ⊗ C. If X ∈ T 0,1
ϕ ∩ T 0,1

ϕ for a non-zero vector
X, then

X = v + ϕv = w + ϕw, (32.15)

where v ∈ T 0,1(J0) and w ∈ T 1,0(J0). This yields the equations

ϕw = v (32.16)

ϕv = w. (32.17)

This is equivalent the matrix ϕ+ ϕ having 1 as an eigenvalue with eigenvector (w, v). Since
ϕ + ϕ is matrix equivalent to Iϕ, this is equivalent to Iϕ having 1 as an eigenvalue. But if
IϕV = V , then

IϕJ0V = −J0IϕV = −J0V, (32.18)

that is J0V is an eigenvalue of Iϕ with eigenvalue −1. Next, any ṽ ∈ T 0,1(Jϕ) is written as

ṽ = v + ϕ(v)

= Re(v) +Re(ϕ(v)) + i(Im(v) + Im(ϕ(v)),
(32.19)

for v ∈ T 0,1(J0). We compute

Re(ϕ(v)) =
1

2

(
ϕ(v) + ϕ(v)

)
=

1

2

(
ϕ(v) + ϕ(v)

)
= (ϕ+ ϕ)

(v + v

2

)
= Iϕ(Re(v)).

(32.20)

Next,

Im(ϕ(v)) =
1

2i

(
ϕ(v)− ϕ(v)

)
=

1

2i

(
ϕ(v)− ϕ(v)

)
= (ϕ+ ϕ)

(v − v

2i

)
= Iϕ(Im(v)).

(32.21)

Next, any element v ∈ T 0,1(J0) can be written as

v = X ′ + iJ0X
′, (32.22)

for X ′ ∈ R2n, so we have

ṽ = (Id+ Iϕ)X
′ + i(Id+ Iϕ)(J0X

′). (32.23)
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But if ṽ ∈ T 0,1(Jϕ), we must have

Im(ṽ) = JϕRe(ṽ), (32.24)

which yields

(Id+ Iϕ)(J0X
′) = Jϕ(Id+ Iϕ)X

′. (32.25)

This implies that

Jϕ = (Id+ Iϕ)J0(Id+ Iϕ)
−1. (32.26)

The remainder of the proposition follows by solving this equation for Iϕ.

32.2 Beltrami equation in higher dimensions

Next, we let J be a continuous almost complex structure on a open set U ⊂ R2n containing
the origin. Then J : U → Jn is a continuous function. Without loss of generality, we may
assume that J(0) = J0. Then (J0+J)(0) = 2J0 is invertible, so J0+J will also be invertible
in some possibly smaller neighborhood V ⊂ U . Then by Proposition 32.1, we obtain a
unique

ϕj

k̄
: V → Hom(T 0,1(J0), T

1,0(J0)) ∼= Mat(n× n,C), (32.27)

where V is an open subset in R2n.

Proposition 32.2. If ϕj

k̄
defines an almost complex structure on V , then a function f : V →

C is pseudo-holomorphic if and only if

∂

∂zj
f + ϕk

j̄

∂

∂zk
f = 0 (32.28)

for j = 1, . . . , n.

Proof. It is not hard to see that a function f is pseudo-holomorphic if and only if Zf = 0
for all vector fields Z ∈ Γ(T 0,1

ϕ ). A local basis for T 0,1
ϕ is given by

Zj̄ =
∂

∂zj
+ ϕk

j̄

∂

∂zk
, (32.29)

so we are done.

Remark 32.3. For n = 1, there is only 1 component µ = ϕ1
1̄, and the pseduo-holomorphic

condition is

∂

∂z
f + µ

∂

∂z
f = 0, (32.30)

which is of course the Beltrami equation.
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33 Lecture 33

33.1 Integrability

We next interpret the vanishing of the Nijenhuis tensor as an equation on ϕ.

Proposition 33.1. The almost complex structure Jϕ is integrable, that is N(Jϕ) = 0, if and
only if

∂

∂zl
ϕj

k̄
− ∂

∂zk
ϕj

l̄
+ ϕm

k̄

∂

∂zm
ϕj

l̄
− ϕm

l̄

∂

∂zm
ϕj

k̄
= 0. (33.1)

Proof. By Proposition 16.14, the integrability equation is equivalent to [T 0,1
ϕ , T 0,1

ϕ ] ⊂ T 0,1
ϕ .

Writing

ϕ =
∑

ϕj

k̄
dzk ⊗ ∂

∂zj
, (33.2)

if Jϕ is integrable, then we must have[ ∂
∂zi

+ ϕ
( ∂

∂zi

)
,
∂

∂zk
+ ϕ
( ∂

∂zk

)]
∈ T 0,1

ϕ . (33.3)

This yields [ ∂
∂zi

, ϕl
k̄

∂

∂zl

]
+
[
ϕj
ī

∂

∂zj
,
∂

∂zk

]
+
[
ϕj
ī

∂

∂zj
, ϕl

k̄

∂

∂zl

]
∈ T 0,1

ϕ (33.4)

The first two terms are[ ∂
∂zi

, ϕl
k̄

∂

∂zl

]
+
[
ϕj
ī

∂

∂zj
,
∂

∂zk

]
=
∑
j

(∂ϕj

k̄

∂zi
−
∂ϕj

ī

∂zk

) ∂

∂zj
.

The third term is [
ϕj
ī

∂

∂zj
, ϕl

k̄

∂

∂zl

]
= ϕj

ī

( ∂

∂zj
ϕl
k̄

) ∂

∂zl
− ϕl

k̄

( ∂

∂zl
ϕj
ī

) ∂

∂zj
.

Both terms are in T 1,0(J0). For sufficiently small ϕ however, T 0,1
ϕ ∩ T 1,0(J0) = {0}, and

therefore (33.1) holds. The converse holds by reversing this argument.

We can also derive this integrability condition in the following way. If there exists a
locally defined holomorphic function f , then taking the ∂-partial of (32.28) yields

∂2

∂zl∂zj
f +

∂

∂zl

(
ϕk
j̄

∂

∂zk
f
)
= 0. (33.5)

Intechanging j and l yields

∂2

∂zj∂zl
f +

∂

∂zj

(
ϕk
l̄

∂

∂zk
f
)

(33.6)
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If f is C2, then the mixed partials are equal, so subtracting these equations gives

∂

∂zl

(
ϕk
j̄

∂

∂zk
f
)
− ∂

∂zj

(
ϕk
l̄

∂

∂zk
f
)
= 0. (33.7)

Expanding this out( ∂

∂zl
ϕk
j̄ −

∂

∂zj
ϕk
l̄

) ∂

∂zk
f + ϕk

j̄

∂2

∂zl∂zk
f − ϕk

l̄

∂2

∂zj∂zk
= 0 (33.8)

The first 2 terms are good. Using (32.28), the last 2 terms are

ϕk
j̄

∂2

∂zk∂zl
f − ϕk

l̄

∂2

∂zk∂zj
= −ϕk

j̄

∂

∂zk

(
ϕp

l̄

∂

∂zp
f
)
+ ϕk

l̄

∂

∂zk

(
ϕp
j̄

∂

∂zp
f
)

(33.9)

= −ϕk
j̄

( ∂

∂zk
ϕp

l̄

) ∂

∂zp
f + ϕk

l̄

( ∂

∂zk
ϕp
j̄

) ∂

∂zp
f (33.10)

− ϕk
j̄ϕ

p

l̄

∂2f

∂zk∂zp
+ ϕk

l̄ ϕ
p
j̄

∂2f

∂zk∂zp
. (33.11)

The last 2 terms vanish from symmetry. So we have derived

0 =
( ∂

∂zl
ϕk
j̄ −

∂

∂zj
ϕk
l̄ − ϕp

j̄

∂

∂zp
ϕk
l̄ − ϕp

l̄

∂

∂zp
ϕp
j̄

) ∂

∂zk
f. (33.12)

If there exists n holomorphic functions with linearly independent differentials at the origin,
then this implies implies the integrability condition (33.1). This latter argument assumes
that there exists holomorphic coordinates, but nevertheless still gives the correct formula for
the Nijenhuis tensor.

33.2 The operator dc

We will discuss another differential operator dc which will be used to simplify some compu-
tations later. For an almost complex structure J with NJ = 0, we know that

d = ∂ + ∂, (33.13)

and

∂2 = 0, ∂
2
= 0, ∂∂ + ∂∂ = 0. (33.14)

We can write these complex operators in the form

∂ =
1

2
(d− idc), ∂ =

1

2
(d+ idc). (33.15)

for a real operator dc : Ωp → Ωp+1 given by

dc = i(∂ − ∂), (33.16)
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which satisfies

d2 = 0, ddc + dcd = 0, (dc)2 = 0. (33.17)

We next have an alternative formula for dc. Recall that J : TM → TM induces a dual
mapping J : T ∗M → T ∗M , and we extended to J : Λr

C → Λr
C by

Jαp,q = ip−qαp,q, (33.18)

for a α a form of type (p, q). Notice that if αr ∈ Λr
C, then

J2αr = w · αr, where w · αr = (−1)rαr, (33.19)

since

J2αp,q = i2(p−q)αp,q = (−1)p−qαp,q = (−1)p−q+2qαp,q = (−1)p+qαp,q. (33.20)

Proposition 33.2. For α ∈ Λr, we have

dcα = (−1)r+1JdJα. (33.21)

We also have

ddc = 2i∂∂ = (−1)r+1dJdJα. (33.22)

Proof. For α ∈ Λp,q, p+ q = r, we compute

JdJα = ip−qJdα = ip−qJ(∂α + ∂α) (33.23)

= ip−q(ip+1−q∂α + ip−q−1∂α) (33.24)

= i2(p−q)+1∂α + i2(p−q)−1∂α (33.25)

= (−1)p+q(i∂α− i∂α) = (−1)r+1dcα. (33.26)

For (33.22), using (33.14) we have

ddc = (∂ + ∂)i(∂ − ∂) = i(∂∂ + ∂
2 − ∂2 − ∂∂) = 2i∂∂. (33.27)

34 Lecture 34

To finish out the Winter quarter, we will discuss the Newlander-Nirenberg Theorem in higher
dimensions.

So, we let J be a continuous almost complex structure on a open set U ⊂ R2n containing
the origin. Then J : U → Jn is a continuous function. Without loss of generality, we may
assume that J(0) = J0. Then (J0+J)(0) = 2J0 is invertible, so J0+J will also be invertible
in some possibly smaller neighborhood V ⊂ U . Then by Proposition 32.1, we obtain a
unique

ϕj

k̄
: V → Hom(T 0,1(J0), T

1,0(J0)) ∼= Mat(n× n,C), (34.1)

where V is an open subset in R2n. Since the correspondence between J-s and ϕ-s is analytic,
the regularity of these will be the same. That is, if J ∈ Ck,α, Cω, etc., then so is ϕ and
vice-versa.
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34.1 The analytic case

We assume that ϕk
j̄ is analytic. So there exists a power series expansion

ϕk
j̄ =

∑
I,J

(ϕk
j̄ )IJz

I z̄J . (34.2)

Let group these terms together by homogeneity and write

ϕk
j̄ =

∞∑
m=0

(ϕk
j̄ )m (34.3)

where

(ϕk
j̄ )m =

∑
|I|+|J |=m

(ϕk
j̄ )IJz

I z̄J . (34.4)

We may assume that (ϕk
j̄ )0 = 0. We want to solve the equation

∂

∂zj
f + ϕk

j̄

∂

∂zk
f = 0. (34.5)

Let’s do the same for f , we write a formal power series

f =
∑
I,J

fIJz
I z̄J , (34.6)

and group these terms together by homogeneity and write

f =
∞∑

m=0

fm (34.7)

where

fm =
∑

|I|+|J |=m

fIJz
I z̄J . (34.8)

By subtracting a constant, we can also assume that f0 = 0. Expanding (34.5), we have

∂0(f1 + f2 + · · · ) + (ϕ1 + ϕ2 + · · · )(∂0f1 + ∂0f2 + · · · ) = 0. (34.9)

Grouping terms by homogeneity, we have

∂0f1 = 0

∂0f2 = −ϕ1∂0f1

∂0f3 = −ϕ1∂0f2 − ϕ2∂0f1
...

and we see that the general term is given by

∂fm
∂zj

= −
∑

k+l=m,k≥1,l≥1

(ϕp
j̄
)k
∂fl
∂zp

(34.10)
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Proposition 34.1. If fj solves the above system for j = 1, . . . , q, then the expression

Hq+1 = −
∑

k+l=q+1,k≥1,l≥1

(ϕp
j̄
)k
∂fl
∂zp

dzj (34.11)

is a form of type (0, 1) with respect to J0, and satisfies ∂0Hq+1 = 0.

Proof. We prove this by induction. For q = 1, we have ∂0f1 = 0, so f1 = cjz
j is a linear

holomorphic function. Then

H2 = −(ϕp
j̄
)1cpdz

j. (34.12)

For reasons of homogeneity, the integrability equation (33.1) tells us that

∂

∂zl
(ϕp

j̄
)1 −

∂

∂zj
(ϕp

l̄
)1 = 0, (34.13)

so H2 clearly satisfies ∂H2 = 0. So assume the system is satisfied for j = 1 . . . q. Then the
function f = f1 + · · ·+ fq satisfies

∂Jf = Hq+1 +O(|z|q+1) (34.14)

For the next step, we use the above fact that the integrability of J implies that the operator
∂J : Λ0,1(J) → Λ0,2(J) defined by ∂Jα = ΠΛ0,2(J)dα satisfies

∂J∂Jf = 0, (34.15)

for any function f . This yields

0 = ∂J(Hq+1 +O(|z|q+1) = ∂JHq+1 +O(|z|q). (34.16)

Note that for α ∈ Λ0,1(J), Jα = −iα, so from Proposition 33.2, we have that

∂Jα =
1

2
(d− idc)α =

1

2
(dα− iJdJα) =

1

2
(dα− Jdα). (34.17)

Expanding this, we obtain

∂Jα =
1

2
(dα− (J − J0 + J0)dα) =

1

2
(dα− J0dα)−

1

2
(J − J0)dα. (34.18)

From Proposition 32.1 above, the correspondence between ϕ and J is analytic, and ϕ = O(|z|)
implies that J − J0 = O(|z|) as z → 0. Now we plug in α = ∂Jf , and by assumption

0 = ∂J∂Jf = ∂J(Hq+1 +O(|z|q+1) =
1

2
(dHq+1 − J0dHq+1) +O(|z|q) (34.19)

= ∂0Hq+1 +O(|z|q). (34.20)
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Proposition 34.2. For each 1 ≤ p <∞, there exists f =
∑p

j=1 fj satisfying ∂Jf = O(|z|p).

Proof. We prove this by induction. For p = 1, we can take f = cpz
p, and then

∂Jz
k = ∂0z

k +
i

2
(J − J0)dz

k = 0 +O(|z|). (34.21)

Assume that we have found a solution for j = 1 . . . p. Let f =
∑p

j=1 fj, by the induction
assumption, we have

∂Jf = Hp+1 +O(|z|p+1), (34.22)

and by the above, we need to solve the equation

∂0fp+1 = Hp+1. (34.23)

From Proposition 35.4, Hp+1 satisfies ∂0Hp+1 = 0. Equivalently, we can write

Hp+1 = αj̄dz
j, (34.24)

where the coefficients satisfy

∂αj̄

∂zl
=
∂αl̄

∂zj
, j, l = 1, . . . , n. (34.25)

Define

fp+1 =

∫ 1

0

n∑
j=1

zjαj̄(z, tz̄)dt. (34.26)

Then we compute

∂fp+1

∂zk
=

∫ 1

0

(
αk̄(z, tz) +

n∑
j=1

zj
∂

∂zk

(
αj̄(z, tz̄)

))
dt

=

∫ 1

0

(
αk̄(z, tz) +

n∑
j=1

zj
∂αj̄

∂zk
(z, tz̄)t

)
dt

=

∫ 1

0

(
αk̄(z, tz) +

n∑
j=1

zj
∂αk̄

∂zj
(z, tz̄)t

)
=

∫ 1

0

d

dt

(
tαk̄(z, tz̄)

)
dt = αk̄(z, z̄).

(34.27)

We will discuss convergence next time.
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35 Lecture 35

35.1 Convergence of formal power series solution

Last time, we constructed a formal power series solution. Today, we examine the solution in
more detail. We look at the procedure in Proposition 34.2 above. We had Hp+1 satisfying
∂0Hp+1 = 0. Writing

Hp+1 = αj̄dz
j, (35.1)

then the coefficients satisfy

∂αj̄

∂zl
=
∂αl̄

∂zj
, j, l = 1, . . . , n. (35.2)

Defining

fp+1 =

∫ 1

0

n∑
j=1

zjαj̄(z, tz̄)dt, (35.3)

then we showed that ∂0fp+1 = Hp+1.

Proposition 35.1. Writing Hp+1 = αj̄dz
j, where

αj̄ =
∑

|I|+|J |=p

αj̄IJ̄z
IzJ , (35.4)

and fp+1 =
∑

|I|+|J |=p+1 fIJ̄z
IzJ . Then the coefficients fIJ̄ are linear functions of the αj̄IJ̄

with non-negative coefficients.

Proof. We plug (35.4) into (35.3), and compute

fp+1 =

∫ 1

0

n∑
j=1

zj
∑

|I|+|J |=p

αj̄IJ̄z
I(tz)Jdt (35.5)

=
∑

j,|I|+|J |=p

αj̄IJ̄z
IzJzj

∫ 1

0

t|J |dt (35.6)

=
∑

j,|I|+|J |=p

1

|J |+ 1
αj̄IJ̄z

IzJzj, (35.7)

and we are done.

Remark 35.2. Our choice above is very important: there is a freedom to add an arbitrary
holomorphic homogeneous polynomial to fp+1, and our choice eliminates this ambiguity.

Now we return to solving the equation

∂

∂zj
f + ϕk

j̄

∂

∂zk
f = 0. (35.8)
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We will now consider this as an equation in C2n with coordinates (z1, . . . , zn, z1, . . . , zn).
Note by the transformation zj 7→ −zj, we can assume the equation is of the form

∂

∂zj
f − ϕk

j̄

∂

∂zk
f = 0. (35.9)

Remark 35.3. Note that we cannot simply replace ϕ with −ϕ, since the integrability equa-
tion (33.1) is not preserved under this transformation.

We have the homogeneous decompositions

f =
∞∑
j=1

fj, ϕ
k
j̄ =

∞∑
l=1

(ϕk
j̄ )l. (35.10)

We then found the recursive system

∂fq+1 = Hq+1, (35.11)

where

Hq+1 =
∑

k+l=q+1,k≥1,l≥1

(ϕp
j̄
)k
∂fl
∂zp

dzj (35.12)

satisfies ∂0Hq+1 = 0. Then we can solve ∂fq+1 = Hq+1 uniquely with the above proceudre,
where fq+1(z

1, · · · , zn, 0, · · · , 0) = 0 for q > 1. So once f1 = cjz
j is specified, then our

procedure gives a unique formal power series solution.
Write

(ϕk
j̄ )p =

∑
|I|+|J |=p

ϕk
j̄IJ̄z

IzJ . (35.13)

Proposition 35.4. The coefficients fIJ̄ when |I| + |J | = p are a polynomial function of
degree p − 1 in the ϕk

j̄KL̄
for |K| + |L| ≤ p − 1, with all coefficients non-negative rational

numbers. The polynomials are completely determined by the constants c1, . . . , cn.

Proof. Without loss of generality, assume that f1 = z1. Then the first nontrivial equation is

∂f2
∂zj

= (ϕm
j̄ )1

∂f1
∂zm

= (ϕ1
j̄)1 = ϕ1

j̄kz
k + ϕ1

j̄k̄z
k. (35.14)

Then

f2 = ϕ1
j̄kz

kzj +
1

2
ϕ1
j̄k̄z

jzk, (35.15)

so the claim is true for f2. Then we proceed by induction. So assume the claim is true for
f1, . . . , fp. Then the equation for fp+1 is

∂fp+1

∂zj
=

∑
k+l=p+1,k≥1,l≥1

(ϕm
j̄ )k

∂fl
∂zm

(35.16)

=
∑

k+l=p+1,k≥1,l≥1

∑
|I|+|J |=k

ϕm
j̄IJ̄

∂fl
∂zm

. (35.17)

From Proposition 35.1, we just need to show the claim is true for the coefficients on the right
hand side. Since l ≤ p in the sum, by induction the claim is true for the coefficients of fl.
The operator fl 7→ ∂fl/∂z

p obviously preserves non-negativity of the coefficients, so we are
done.
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35.2 Cauchy majorant method

By assumption, the series ∑
I,J

ϕk
j̄IJ̄z

IzJ . (35.18)

converges for any point in the polydisc

P (ρ) = {(z1, . . . , zn, z1, . . . , zn) | |zj| < ρ, |zj| < ρ, 1 ≤ j ≤ n}, (35.19)

with uniform convergence in the polydisc P (ρ′), for any ρ′ < ρ. In particular, for any point
(z1, . . . , zn, z1, . . . , zn) ∈ P (ρ′), there exists a constant C > 0 so that

|ϕk
j̄IJ̄z

IzJ | < C (no summation). (35.20)

Choosing the point zj = ρ′, zj = ρ′ for j = 1, . . . , n, this implies that

|ϕk
j̄IJ̄ | < C(ρ′)−(|I|+|J |). (35.21)

To simplify notation, let’s call ρ′ by ρ. Then we define

Φ(w) = C
( 1

1− wρ−1
− 1
)
=

Cw

ρ− w
(35.22)

which is analytic in the disc ∆(ρ) = {w ∈ C | |w| < ρ}. The power series of Φ(w) is given
by

Φ(w) = C
∞∑
j=1

ρ−jwj. (35.23)

Next, we let

Φ(z1, . . . , zn, z1, . . . , zn) = Φ(z1 + · · ·+ zn + z1 + · · ·+ zn). (35.24)

Using the multinomial theorem, we have the expansion

Φ(z1, . . . , zn, z1, . . . , zn) = C
∑

I,J ̸=(0,0)

ρ−(|I|+|J |) (|I|+ |J |)!
I!J !

zIzJ , (35.25)

which converges absolutely in the polydisc

P = {(z1, . . . , zn, z1, . . . , zn) | |zj| < ρ/2n, |zj| < ρ/2n}. (35.26)

That is, the power series coefficients of Φ(z1, . . . , zn, z1, . . . , zn) are given by

ΦIJ̄ = Cρ−(|I|+|J |) (|I|+ |J |)!
I!J !

, (35.27)
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with Φ00 = 0. Since the multinomial coeffients are at least 1, we have the inequality

|ϕj

k̄IJ̄
| < Cρ−(|I|+|J |) ≤ Cρ−(|I|+|J |) (|I|+ |J |)!

I!J !
= ΦIJ̄ . (35.28)

Next, we claim that Φk
j̄ = Φ determines an integrable almost complex structure. Note we

are viewing this as an n× n matrix will all entries equal. To see this, we use (33.1):

∂

∂zl
Φj

k̄
− ∂

∂zk
Φj

l̄
+ Φm

k̄

∂

∂zm
Φj

l̄
− Φm

l̄

∂

∂zm
Φj

k̄

=
∂

∂zl
Φ(z1 + · · ·+ zn + z1 + · · ·+ zn)− ∂

∂zk
Φ(z1 + · · ·+ zn + z1 + · · ·+ zn)

+
∑
m

∂

∂zm
Φ(z1 + · · ·+ zn + z1 + · · ·+ zn)−

∑
m

∂

∂zm
Φ(z1 + · · ·+ zn + z1 + · · ·+ zn)

= 0 + 0 = 0.

(35.29)

The equation for a holomorphic function with respect to Φ is

∂F

∂zj
= Φ(z1 + · · ·+ zn + z1 + · · ·+ zn)

∑
m

∂F

∂zm
. (35.30)

For all j = 1, . . . , n.
Let’s assume that we can find a solution Fk of (35.30) satisying the initial conditions

Fk(z
1, . . . , zn, 0, . . . 0) = zk, (35.31)

which is analytic in some polydisc |z| < ρ′, |z| < ρ′. Without loss of generality, we can
assume that k = 1. Then to finish the convergence proof, recall that our formal power series
solves

fIJ̄ = PIJ̄(ϕ
∗
∗), (35.32)

where PIJ̄ is a polynomial with non-negative coefficients depending only upon ϕ∗
∗KL for

|K|+ |L| < |I|+ |J |. Since F1 is an analytic solution of the Cauchy-Riemann equations with
respect to Φ, and the same initial conditions as f , we must also have

FIJ̄ = PIJ̄(ΦKL), (35.33)

where PIJ̄ is the same polynomial since Φ(0, 0) = 0 and F (z1, . . . , zn, 0, . . . 0) = z1 has the
same initial conditions as our formal power series solution. We then estimate

|fIJ̄ | = |PIJ̄(ϕ
∗
∗)| ≤ PIJ̄(|ϕ∗

∗|) ≤ PIJ̄(ΦKL̄) = FIJ̄ . (35.34)

The inequalities hold since PIJ̄ is a polynomial with real non-negative coefficients, and using
(35.28). This shows that our power series is majorized by the power series of F , which
implies that the power series for f converges in the open polydisc P (ρ′), by the comparison
test.
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35.3 Completion of convergence proof

To finish the convergence proof, we need to find a solution of

∂F

∂zj
= Φ(z1 + · · ·+ zn + z1 + · · ·+ zn)

∑
m

∂F

∂zm
, (35.35)

for all j = 1, . . . , n, satisfying the initial conditions

F (z1, . . . , zn, 0, . . . 0) = z1, (35.36)

and which is analytic in some polydisc around the origin in C2n.

Proposition 35.5. For any choice of (c1, . . . , cn) ∈ Cn, satisfying c1 + · · · + cn = 0, the
function F =

∑
ckz

k solves (35.35).

Proof. The function F obviously makes the left hand side of (35.35) vanish for any 1 ≤ j ≤ n.
The right hand side of (35.35) is Φ · (c1 + · · ·+ cn) = 0.

Next, let’s try and find a solution F+ of the form

F+(z
1, . . . , zn, z1, . . . , zn) = G(z1 + · · ·+ zn, z1 + · · ·+ zn). (35.37)

Let’s call z = z1 + · · · + zn, z = z1 + · · · + zn, and write G as a function of 2 variables
G = G(z, z). Then (35.35) becomes

∂G

∂z
= Φ(z + z)n

∂G

∂z
. (35.38)

This is just the Beltrami equation:

∂G

∂z
=
nC(z + z)

ρ− z − z

∂G

∂z
. (35.39)

But we have already found an analytic solution G for this equation, it is done in Propo-
sition 19.4 (only the constant C has changed to nC), which satisfies the initial condition
G(z, 0) = 0. So the corresponding solution of the n-dimensional problem satisfies

F+(z
1, . . . , zn, 0, . . . 0) = G(z1 + · · ·+ zn, 0) = z1 + · · ·+ zn. (35.40)

Using Proposition 35.5, we see that the function

F =
1

n

(
F+ + (z1 − z2) + (z1 − z3) + · · ·+ (z1 − zn)

)
(35.41)

is holomorphic with respect to Φ, is analytic in some polydisc P (ρ′), and satisfies the initial
conditions (35.36). This finishes the proof.
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36 Lecture 36

36.1 Reduction to the analytic case

In the subsection, we will discuss a method of Malgrange, which transforms the C2 case into
the analytic case [Mal69, Nir73]. In the z-coordinates, our holomorphic equation is

∂w

∂zj
+ ϕk

j̄

∂w

∂zk
= 0 (36.1)

We now view w as a vector-valued function to Cn. We want to change coordinates ξ = ξ(z, z)
so that such that our holomorphic equation transform into another holomorphic equation
with analytic coefficients. Write

w(z, z) = W (ξ(z, z), ξ̄(z, z)) (36.2)

ϕk
j̄ (z, z) = Uk

j̄ (ξ(z, z), ξ̄(z, z)). (36.3)

Then

∂w

∂zj
=
∂W

∂ξl
∂ξl

∂zj
+
∂W

∂ξ̄l
∂ξ̄l

∂zj
(36.4)

∂w

∂zj
=
∂W

∂ξl
∂ξl

∂zj
+
∂W

∂ξ̄l
∂ξ̄l

∂zj
. (36.5)

So the holomorphic equations become

∂W

∂ξl
∂ξl

∂zj
+
∂W

∂ξ̄l
∂ξ̄l

∂zj
+ Uk

j̄ (ξ(z, z̄), ξ̄(z, z))
(∂W
∂ξl

∂ξl

∂zk
+
∂W

∂ξ̄l
∂ξ̄l

∂zk

)
= 0. (36.6)

By inverting the matrix coefficients, this transforms into another holomorphic system of the
form

∂W

∂ξ̄j
+ Ũk

j̄ (ξ, ξ̄)
∂W

∂ξk
= 0 (36.7)

where Ũ is of the form

Ũk
j̄ =

((∂ξ̄∗
∂z∗

+ Up
∗
∂ξ̄∗

∂zp

)−1)q̄
j̄

(∂ξk
∂zq

+ Up
q̄

∂ξk

∂zp

)
. (36.8)

Let us try to find coordinates so that∑
j

∂

∂ξj
Ũk
j̄ (ξ, ξ̄) = 0. (36.9)

To find the coordinate system ξ, we must write out (36.9), and this becomes a second
order system for ξ as a function of the original z coordinates. From the chain rule, we have

∂

∂ξj
=
∂zl

∂ξj
∂

∂zl
+
∂zl

∂ξj
∂

∂zl
, (36.10)
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so (36.9) becomes

∑
j

(∂zl
∂ξj

∂

∂zl
+
∂zl

∂ξj
∂

∂zl

)((∂ξ̄∗
∂z∗

+ Up
∗
∂ξ̄∗

∂zp

)−1)q̄
j̄

(∂ξk
∂zq

+ Up
q̄

∂ξk

∂zp

)
. (36.11)

The inverse function theorem says that
∂z∗

∂ξ∗
∂z∗

∂ξ̄∗

∂z∗

∂ξ∗
∂z∗

∂ξ̄∗

 =


∂ξ∗

∂z∗
∂ξ∗

∂z∗

∂ξ̄∗

∂z∗
∂ξ̄∗

∂z∗


−1

. (36.12)

Making this substitution, and replacing Up
q̄ (ξ, ξ̄) = ϕp

q̄(z, z), we see that the equation (36.11)
is a quasilinear system of the form

F (D2ξ,Dξ, ξ, z, z) = 0. (36.13)

We recall the definition of the linearization.

Definition 36.1. The linearization of F at a function ξ is given by

F ′
ξ(h) =

d

dt
F (D2(ξ + th), D(ξ + th), ξ + th, z, z)

∣∣∣
t=0
. (36.14)

Proposition 36.2. Assuming ϕ ∈ C1, then the linearization of F at ξ = z is

F ′
z(h) = −1

4
∆h+ (ϕ+ ϕ2) ∗ ∇2h+ (∇ϕ+ ϕ ∗ ∇ϕ) ∗ ∇h. (36.15)

If ϕ(0) = 0, then we have

F ′
z(h)(0) =

1

4
∆h+∇ϕ ∗ ∇h. (36.16)

If ϕ has sufficiently small C1,α, norm then F ′
z is an elliptic operator with Hölder coefficients

bounded in Cα.

Proof. We use the following formula: if A(t) is a path of matrices, then

d

dt
A(t)−1 = −A−1 ◦ d

dt
A ◦ A−1. (36.17)

Let look at each term in (36.11)-(36.12). First, for ξ = z, we have
∂ξ∗

∂z∗
∂ξ∗

∂z∗

∂ξ̄∗

∂z∗
∂ξ̄∗

∂z∗


−1

=

(
In 0

0 In

)
. (36.18)
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Also,

d

dt


∂(z + th)∗

∂z∗
∂(z + th)∗

∂z∗

∂(z + th)
∗

∂z∗
∂(z + th)

∗

∂z∗


−1 ∣∣∣

t=0
= −


∂h∗

∂z∗
∂h∗

∂z∗

∂h̄∗

∂z∗
∂h̄∗

∂z∗

 . (36.19)

Next, we look at the last matrix. At ξ = z, we have

∂ξk

∂zq
+ Up

q̄

∂ξk

∂zp
= Up

q̄ δ
k
p = Uk

q̄ . (36.20)

The linearization of this term is

d

dt

(∂(z + th)k

∂zq
+ Up

q̄

∂(z + th)k

∂zp

)∣∣∣
t=0

=
∂hk

∂zq
+ Up

q̄

∂hk

∂zp
. (36.21)

Next, we look at the middle matrix. At ξ = z, we have((∂ξ̄∗
∂z∗

+ Up
∗
∂ξ̄∗

∂zp

)−1)q̄
j̄
= (In)

q̄
j . (36.22)

The linearization is

d

dt

((∂(z + th)
∗

∂z∗
+ Up

∗
∂(z + th)

∗

∂zp

)−1)q̄
j̄

∣∣∣
t=0

= −
(∂h̄q̄
∂zj

+ Up
j̄

∂h̄q̄

∂zp

)
(36.23)

Putting everything together, we obtain

F ′
z(h) =−

∑
j

(∂hl
∂zj

∂

∂zl
+
∂h̄l

∂zj
∂

∂zl

)(
δq̄
j̄
Uk
q̄

)
−
∑
j

∂

∂zj

(∂h̄q̄
∂zj

+ Up
j̄

∂h̄q̄

∂zp

)
Uk
q̄ (36.24)

−
∑
j

∂

∂zj
δq̄
j̄

(∂hk
∂zq

+ Up
q̄

∂hk

∂zp

)
(36.25)

= −
∑
j

(∂hl
∂zj

∂

∂zl
+
∂h̄l

∂zj
∂

∂zl

)
Uk
j̄ −

∑
j

∂

∂zj

(∂h̄q̄
∂zj

+ Up
j̄

∂h̄q̄

∂zp

)
Uk
q̄ (36.26)

−
∑
j

∂

∂zj

(∂hk
∂zj

+ Up
j̄

∂hk

∂zp

)
. (36.27)

This is of the form

F ′
z(h) = −1

4
∆h+∇h ∗ ∇U +∇2h ∗ U +∇h ∗ U ∗ ∇U +∇2h ∗ U2. (36.28)

At the origin, all of the terms with U vanish by assumption, so we have

F ′
z(h)(0) = −1

4
∆h+∇h ∗ ∇U (36.29)
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From the above discussion on coordinate changes, let ξ = ϵ−1z. If ξ ∈ B1(0) then
z ∈ Bϵ(0). With ϕk

j̄ (z, z) = Uk
j̄ (ϵ

−1z, ϵ−1z), then we have

Ũk
j̄ (ξ, ξ̄) = ϵ · ϵ−1 · Uk

j̄ (ξ, ξ̄) = Uk
j̄ (ξ, ξ̄). (36.30)

Note that

∥Ũ∥C0(B1(0)) = ∥ϕ∥C0(Bϵ(0)), (36.31)

But since ϕ ∈ C1(Bϵ(0)) ⊂ C1,α(Bϵ(0)), by the mean value theorem we have

|ϕ(x)− ϕ(y)| ≤ C|x− y|. (36.32)

Letting y = 0, since ϕ(y) = 0 by assumption, we have

|ϕ(x)| ≤ C|x|. (36.33)

Therefore, we have

∥Ũ∥C0(B1(0)) ≤ Cϵ. (36.34)

Next, with a slight abuse of notation, we have

∥∇Ũ∥C0(B1(0)) = sup
ξ∈B1(0)

∣∣∣∂Ũ(ξ, ξ̄)
∂ξ

∣∣∣+ ∣∣∣∂Ũ(ξ, ξ̄)
∂ξ̄

∣∣∣ (36.35)

= sup
ξ∈B1(0)

∣∣∣∂ϕ(ϵξ, ϵξ̄)
∂ξ

∣∣∣+ ∣∣∣∂ϕ(ϵξ, ϵξ̄)
∂ξ̄

∣∣∣ (36.36)

= ϵ sup
z∈Bϵ(0)

∣∣∣∂ϕ(z, z)
∂z

∣∣∣+ ∣∣∣∂ϕ(z, z)
∂z

∣∣∣ (36.37)

= ϵ · ∥∇ϕ∥C0(Bϵ(0)). (36.38)

Also, we compute

sup
x,y∈B1(0),x ̸=y

|∇Ũ(x)−∇Ũ(y)|
|x− y|α

= sup
x,y∈Bϵ(0),x ̸=y

ϵ∇zϕ(x, x̄)− ϵ∇zϕ(y, ȳ)

ϵ−α|x− y|α
(36.39)

= ϵ1+α sup
x,y∈Bϵ(0),x ̸=y

∇zϕ(x, x̄)−∇zϕ(y, ȳ)

|x− y|α
. (36.40)

Since the C1,α norm is the sum of these 3 parts, we can assume without loss of generality
that

∥ϕ∥C1,α(B1(0)) < ϵ. (36.41)

for any ϵ > 0.

Proposition 36.3. For ϵ sufficiently small, the linearized operator

F ′
z : C

2,α
0 (B1(0)) → C0,α(B1(0)) (36.42)

is invertible with bounded inverse (independent of ϵ), where the domain satisfies Dirichlet
boundary conditions.
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Proof. The leading term in F ′
z is just the vector Laplacian, which is completely uncoupled.

So by standard elliptic elliptic theory for the Laplacian (on functions), we know that the
leading term is invertible, with bounded inverse (with Dirichlet boundary conditions on each
component). We next show that for ϵ sufficiently small, F ′

z will be an arbitrarily small
perturbation of the Laplacian in operator norm. To see this, we write

F ′
z(h) = −1

4
∆h+Qh, (36.43)

where Q are the lower order terms. Let B1 = C2,α(B1(0))0 and B2 = C0,α(B1(0)). Recall
that for the Hölder norms, we have

∥fg∥Ck,α ≤ ∥f∥Ck,α · ∥g∥Ck,α , (36.44)

so we estimate

∥Qh∥B2 = ∥(ϕ+ ϕ2) ∗ ∇2h+ (∇ϕ+ ϕ ∗ ∇ϕ) ∗ ∇h∥B2 (36.45)

≤ (∥ϕ∥B2 + ∥ϕ∥2B2
) · ∥∇2h∥B2 + (∥∇ϕ∥B2 + ∥ϕ∥B2∥∇ϕ∥B2) · ∥∇h∥B2 (36.46)

≤ (ϵ+ ϵ2) · ∥h∥B1 . (36.47)

So the operator norm of Q is estimated

sup
0̸=h∈B1

∥Qh∥B2

∥h∥B1

≤ ϵ+ ϵ2. (36.48)

So by the above inverse function theorem, Lemma 21.2, F ′
z is also invertible with bounded

inverse if ϵ is sufficiently small.

Remark 36.4. Note that the above proof reduced everything to invertibility of the Laplacian
on functions, we did not need to quote any results about elliptic systems of PDEs.

Proposition 36.5. If ϵ is sufficiently small then

∥F (z)∥B2 < Cϵ. (36.49)

Proof. From the above computations, we have

F (z) =
∑
j

∂

∂zj
ϕk
j̄ , (36.50)

so we have

∥F (z)∥C0,α(B1(0)) ≤ C∥∇ϕ∥C0,α(B1(0)) ≤ C∥ϕ∥C1,α(B1(0)) ≤ Cϵ. (36.51)
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36.2 Analyticity

We begin this subsection with the following observation.

Proposition 36.6. Let (M2, J) be an almost complex manifold, and f : M1 → M2 a C1

diffeomorphism. Then Nf∗J = f ∗NJ . Consequently, the equations of integrability are inde-
pendent of the coordinate system.

Proof. Recall the definition of the Nijenhuis tensor

N(X, Y ) = 2{[JX, JY ]− [X, Y ]− J [X, JY ]− J [JX, Y ]}. (36.52)

Let X, Y ∈ Γ(TM2). Then (f ∗J)(X) = f−1
∗ Jf∗X. Also, for a diffeomorphism, we have

f∗[X, Y ] = [f∗X, f∗Y ]; see [?]. Therefore

Nf∗J(X, Y ) = 2{[f−1
∗ Jf∗X, f

−1
∗ Jf∗Y ]− [X, Y ]

− f−1
∗ Jf∗[X, f

−1
∗ Jf∗Y ]− f−1

∗ Jf∗[f
−1
∗ Jf∗X, Y ]}

= 2{f−1
∗ [Jf∗X, Jf∗Y ]− f−1

∗ [f∗X, f∗Y ]− f−1
∗ J [f∗X, Jf∗Y ]− f−1

∗ J [Jf∗X, f∗Y ]}
= 2f−1

∗ {[Jf∗X, Jf∗Y ]− [f∗X, f∗Y ]− J [f∗X, Jf∗Y ]− J [Jf∗X, f∗Y ]}
= f−1

∗ NJ(f∗X, f∗Y ) = f ∗NJ .

(36.53)

By assumption, the complex structure J corresponding to ϕ is integrable, so by Propo-
sition 33.1, we have

∂

∂zl
ϕj

k̄
− ∂

∂zk
ϕj

l̄
+ ϕm

k̄

∂

∂zm
ϕj

l̄
− ϕm

l̄

∂

∂zm
ϕj

k̄
= 0. (36.54)

Let f : U → V be the change of coordinates mapping from the ξ-coordinates to the z-
coordinates. Clearly f ∗J is associated to f ∗ϕ, and the above derivation shows that the
components of f ∗ϕ in the ξ-coordinates are given by Ũ . By Proposition 36.6, the integrability
condition is independent of coordinates, so we have that

∂

∂ξ̄l
Ũ j

k̄
− ∂

∂ξ̄k
Ũ j

l̄
+ Ũm

k̄

∂

∂ξm
Ũ j

l̄
− Ũm

l̄

∂

∂ξm
Ũ j

k̄
= 0. (36.55)

Above, we have found the coordinates ξ so that∑
j

∂

∂ξj
Ũk
j̄ (ξ, ξ̄) = 0. (36.56)

Now we view the coupled system (36.55)-(36.56) as an equation for Ũk
j̄ in the new ξ-

coordinates.

Proposition 36.7. If ∥Ũ∥C0 is sufficiently small, then the system (36.55)-(36.56) is an
overdetermined elliptic first-order system with analytic coefficients.
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Proof. We need to linearize at Ũ , but under the assumptions, it is clearly equivalent to
proving ellipticity for the system

∂

∂zl
ϕj

k̄
− ∂

∂zk
ϕj

l̄
= 0 (36.57)∑

j

∂

∂zj
ϕk
j̄ = 0. (36.58)

For (ξ, ξ̄) a complex cotangent vector, the symbol is

ϕ 7→
(
ξ̄lϕ

j

k̄
− ξ̄k̄ϕ

j

l̄
,
∑
j

ξjϕ
k
j̄

)
(36.59)

If the right hand side vanishes, then we have

0 =
∑
k

ξkξ̄lϕ
j

k̄
−
∑
k

ξkξ̄k̄ϕ
j

l̄
= −|ξ|2ϕj

l̄
. (36.60)

So if ξ ̸= 0, then the symbol mapping is injective.

Remark 36.8. In other words, applying ∂/∂ξk to the first equations, and using the second
equation yields

− ∂

∂ξk
∂

∂ξ̄k
Ũ j

l̄
+

∂

∂ξk

(
Ũm
k̄

∂

∂ξm
Ũ j

l̄
− Ũm

l̄

∂

∂ξm
Ũ j

k̄

)
= 0, (36.61)

which is a determined second-order elliptic system, if ∥Ũ∥C0 is sufficiently small.

A classical result implies that Ũk
j̄ are then analytic functions in the ξ coordinates; see

[?]. So we have proved:

Theorem 36.9. If (M,J) satisfies J ∈ C1,α and J is an integrable complex structure, then
there exists a coordinate system defined in a neighborhood of any point such that J is real
analytic in these coordinates.

Remark 36.10. By more analysis of the Malgrange system, Hill-Taylor have reduced the
regularity assumption; [?]. For example, it suffices to assume J ∈ W 1,p, for p > 2n.
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