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Introduction

This will be a year long course on holomorphic functions and complex manifolds. A very
rough outline:

e Holomorphic functions of 1 complex variable.

Holomorphic function of several complex variables.

Newlander-Nirenberg Theorem

Sheaf cohomology.

e Riemann surfaces.

Higher dimensional complex manifolds.

1 Lecture 1

1.1 Cauchy’s formula in one complex variable

For now, just consider f : U — C, where U C C is an open set. We write z € U as z = z+1y.
Assume that f, as a mapping from R? — R?, is differentiable. This means that, for each
2z € U, there exists a linear mapping L, : R? — R? such that
f ) = f(z) = Lol

h Tl

0. (1.1)



This implies that the partial derivatives of f exist. Conversely, if the partial derivatives exist
and are continuous at z, then the mapping L, exists. Writing

ren = (400). (12)

we have that
du  Ou
L.= (g %) : (1.3)
or Oy

We say that f is complex differentiable at z € U if there exists complex number ¢, € C such
that

o G +R) = 1) = hll

h—0 |12l

0. (1.4)

This is a much stronger condition than (1.1]). If such a ¢, exists, then

o i FEEN =) _0f

h—0 h =0z

(1.5)

Note that if f is complex differentiable at z, writing ¢, = ¢; + ico and h = hy + iho, we have

Czh = Clhl - CQhQ + i(Cth —+ C1h2) (16)
and
. Uxhl + Uyhg
L:h = (vxhl + Uyh2) ) (1.7)

so we see that (|1.1]) is satisfied and necessarily u, = v, and u, = —v,.
We say that f is holomorphic in U if it is C! and satisfies the Cauchy-Riemann equations:

ou Ov ou ov
= —and — = ——. 1.
or Oy and oy ox (18)

Defining the differential operators

0
the Cauchy-Riemann equations are equivalent to — f = 0, where f = u + iv. If f is holo-

z
morphic, then f is complex differentiable at any z € U, and we have

_9
027

Cy

(1.9)
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Definition 1.1. We say that f is complex analytic in U if for each zy € U, there exists a
power series expansion

F(2) =) a(z — )", (1.10)

which converges absolutely and uniformly in a disc A(zg, €) around zp, for some € > 0.

We want to show the equivalence of holomorphicity and complex analyticity. For this,
we need the following; see |[GHT8|, page 3.

Proposition 1.2 (Cauchy-Pompieu Eormula). Let 2 C C be a bounded domain in C with
C! boundary. For z € Q and f € C'(Q), we have

f(z)—i f(w)dw_i_i (")f(w)dw/\dw7 (1.11)

21 Joq W — Z 21 Jo Ow  w—2z

where the boundary has the counterclockwise orientation.

Proof. The 1-form

1 f(w)dw
- 1.12
o0mi w — 2z ( )
satisfies
1 dw N d
_ 1 df dondw (1.13)

20w w—z

Apply Stokes” Theorem to the annular domain Q2 \ A(z,¢€), to get

/ n= / dn. (1.14)
O(Q\A(z,€)) Q\A(z,€)

/ 77—/ n. (1.15)
o0 OA(z,€)

If dn € L'(Q), then the right hand side of (1.14]) is

/dn—/ dn. (1.16)
Q A(z,€)

The left hand side of (1.14]) is

Write w = z + re??, we estimate

(/ dﬂﬁ/ kMSC/
A(z,€) A(z,€) A(z,€)

dw N dw
w—z

€ 2
gg// dr Adf < C'e, (1.17)
0 0




so dn is obviously in L'(Q), and taking the limit as ¢ — 0 then shows that

/dn:/ n — lim 7. (1.18)
Q o9 =0 JoA(z,e)

With w = 2z + ee?, we compute

/ 1 [* f(z+ee®))eic®dd 1 [*"
BINERS)

=— | flz+e®)ab. (1.19)

27i J, eet? 27 /o

Using the mean value theorem, we also have that

2 27
ICE %/0 e+ ey < %/0 F(2 + eci®) — F(2)|d0 < Ce, (1.20)
which shows that
lim n=f(z), (1.21)

and we are done. O

A consequence is the equivalence between holomorphic and analytic functions; see [GHTS,
page 4].
Proposition 1.3. Let U be an open set in C. Then f is holomorphic in U if and only if f

1s complex analytic in U.

Proof. 1f f is holomorphic in U the Cauchy-Pompieu formula in a small disc A = A(z, €)
yields for z € A,

f(z) = 2% » %- (1.22)

Then expand

1 1 1 1
= = — (1.23)
w—2z W—2y+2—=% w—zgl—rzf)

o0

1 Z— 2 F
= E 1.24
w— 2 &= (w—zo) ’ (1.24)

with the sum converging absolutely and uniformly in any smaller disc. So the above yields
the power series expansion

which also converges absolutely and uniformly in any smaller disc.



For the converse, if f has a power series expansion, then each term in the power series
satisfies the Cauchy integral formula without solid integral. So then f does also by uniform
convergence. So we have

0 0 [ 1 flw)dwY 1 0 1 B

For more details, see [GHT7S|, page 4]. ]

Definition 1.4. We wil let Q C C be a bounded domain with C* boundary. If u is holo-
morphic in an open set €, then we write u € O(f).

2 Lecture 2

2.1 Some basic results in one complex variable

First, let’s recall the basic result about differentiating under an integral.

Proposition 2.1. Let

f(z) = / a(z,w)dw N dw. (2.1)
Q
(Note this notation does not mean that f is holomorphic in z or that a is holomorphic as a
function of 2 variables!). Assume that
1. a(z,w) € LY(Q), in the w variable.
2. % and g—; exist for all z, for almost every w € €.

3. |52 +|%| < h(w), where h € L*(12).

Then
9, 0
a—‘z = /Q a(a(z,w))dw A dw (2.2)
0 0
8_£ = /Q £(a(z,w))dw A dw. (2.3)
Proof. Recall that
0 1,0 0

The real part of the left hand side of (2.2) is

Re(ﬁ_f) B 1<8Ref N 8]mf)

= 2.
ox dy (25)

0z 2



The real part of the right hand side of (2.2) is

1 f0Re(a(x + iy,w))  OIm(a(z + iy, w))
/Q 5( ox + Jy

)dw A dw. (2.6)

Therefore we can consider real-valued functions, and prove for partials with respect to the
real variables x and y. We have that

8’ 67 :[7 2 ?
ox (I,y) (lsiﬁo f(x y(S) f( y) ( : )
For 0 # 0, consider
5, — 3 ) 9 ) 9 l—
f(:):+ y) f(I y) _/ a(x+5+zy w) a(x+zy w)dw/\ = (2.8)

By the mean value theorem, given § > 0, there exists 2’ on the line segment from (x,y) to
(x + 0, y) such that

a(z + 0 + iy, w) — a(x + iy, w) = ?(m’ + 1y, w)0, (2.9)
T
S0
a(x + 0+ iy, w) — alx + iy, w da, , .
: ) 2@t ) |02t 4y )
(2.10)

< (%(x’ﬂ'y,w)‘ + (%(x’ﬂy,w)‘ < |h(w)].

We can do this for any sequence 9,, — 0, so the result follows from Lebesgue’s dominated
convergence theorem. The proof for the other derivative ([2.3) is similar. ]

We next go through several corollaries of the Cauchy-Pompieu formula; see [Hor90, Chap-
ter 1] for more details.

Corollary 2.2. (Interior derivative estimates.) Let K C € be a compact subset. Then there
exist constant Cy, depending only upon K and € such that

ON\FEk
— < 1 .
sup |(57) u(2)] < Cullullrco, (211)

for all u € O(R2).
(Cauchy’s estimate in a disc.) In the case that u € O(A(zp,10)), then there exists Cy,
depending only upon k such that for any r < ry, we have

d\F k!
’<&> u(zo)| < “xluller@acon, (2.12)

Proof. Choose a ¢ € C3°(Q2) (compact support) such that ¢ = 1 in a neighborhood of K. If
u € O(), then

) )
= () = uz—v. (2.13)



Now we apply (1.11)) to ¥u in Q to get

vt = o [ u(w) 22L) dw A di (2.14)

271 o w—=z
Now consider

op(w) 1

ow w—z

a(z,w) = u(w) (2.15)
If z € K, then |w—z| > § > 0, since the support of 01 /0w is at a positive distance from K.
So using Proposition [2.1] we can differentiate under the integral as many times as we like,
and obtain

271 w—z

(%)k(z/}u(z)) — L/Qu(w)a‘g—;“)<%)k( ! Jdw A di (2.16)

If z € K, then ¢u is equal to u in a neighborhood of z, so (2.11)) follows.

Next, from (|1.25]), we have a power series expansion

) = Sanle = 20l = [ _ulw)dw (2.17)

p— © 270 Jon (w0 — z)RFL

(k)
Since ay = uk—('zo)’ this clearly implies (2.12)). ]

Corollary 2.3 (Liouville). A bounded entire function on C is constant.

Proof. Let u € O(C). Choose z, € C, then for any r > 0, by (2.12)), we have
' (z0)| < Cr, (2.18)
which implies that u'(zy) = 0, therefore u is constant. O

Exercise 2.4. The fundamental theorem of algebra follows from this: If a polynomial P(z)
has no zeroes, then 1/P(z) would be a bounded entire function, and therefore constant.
Details are left as an exercise.

Corollary 2.5. If u, € O(Q) and u, — u converges uniformly to u in the C° norm as
n — oo on compact subsets, then u € O(S).

Proof. Let K C €2, be a compact subset. Then given € > 0, there exist /N such that

SUp | (2) — un(2)| <€, (2.19)
zeK

for m,n > N. The difference u,, — u, € O(Q). Corollary implies that

3161}? %(um — un)(z)‘ < Ce. (2.20)

10



This says that Ou,/0z converges uniformly on K. But Ou,/0Z = 0, so the real partial
derivatives Ou, /Ox and Ou,/Jy converge uniformly. It is an elementary result that if a
sequence of functions converges uniformly, and the derivatives converge uniformly, then the
limit of the derivatives is the derivative of the limit. This implies that v € C' and

ou ou,,

o5z = lim =2 =0, (2.21)

]

Corollary 2.6 (Montel’s Theorem). If u, € O(Q) and |u,| is uniformly bounded on every
compact subset K C €, then some subsequence u,; converges uniformly on compact subsets
to a limit u € O().

Proof. Corollary yields a uniform bound on derivatives of u, on any compact subset.
By Arzela-Ascoli Theorem, some subsequence converges to a limit « uniformly on compact
subsets. Then the previous corollary yields that u € O(Q). ]

Corollary 2.7 (The maximum principle). If f € O(Q), Q is connected, and there exists a
20 € Q such that |f(2)] < |f(z0)| for all z € Q, then u is constant.

Proof. Theset M ={z€ Q| |f(2)| =1|f(20)|} is closed by continuity. Take any z’ € Q such
that |f(2")] = |f(z0)|- Then for any € > 0 such that A(z’,¢) C Q, (1.11)) is
1 flw

2T Jon(are W — 2

dw. (2.22)
Writing w = zp + ee®, this is

f(Z) = %/0 Wf(z + ee)df (2.23)

which implies that |f(2')| = |f(z + ee?)| for all f. Letting e vary, we see that the set M is
also open, and since Q) is connected, M = Q. Therefore |f| is constant in 2, and writing
f =u+iv, we have

u* + v* = constant. (2.24)
Differentiating this yields
2uu, + 2vv, = 0 = 2uu, + 2vv,. (2.25)

Using the Cauchy-Riemann equations gives

2uu, — 2vuy, = 0 = 2uu, + 20U, (2.26)
This implies that
2uu, — 2uvu, = 0 = 2uvu, + 207U, (2.27)
and we get that
(u? + v*)u, = 0, (2.28)
which implies that u, = 0, so u is constant. Then f is constant. O

11



Corollary 2.8 (Riemann’s removable singularity theorem). If u € O(A*(z,7)) where
A*(z9,7) = A(20,7) \ {20}, satisfies

u(z) = o(|z — 2| ™), as z — 2 (2.29)
Then u extends to a holomorphic function on A(zg, 7).

Proof. Consider the function

v(z) = {é’z — 20)"u(z) j ii*(zoar) (2.30)
We have
tig P = e zoutz) =0 2y

by assumption, so v(z) € O(A(zp,r)) and therefore admits a power series expansion
v(z) = ch(z — 2)F, (2.32)
k=2
since v(zp) = v'(z9) = 0. Then

u(z) =Y craa(z — 2)" (2.33)

is the required extension. O

3 Lecture 3

3.1 The Schwarz Lemma

Lemma 3.1 (Schwarz Lemma). Let u € O(A(0)), and assume that u(0) = 0 and |u| < 1.
Then |v'(0)| <1 and |u(2)| < |z| for every z € Ay(0). Equality holds at some zy if and only
if u(z) = c- z where ¢ € C satisfies |c| = 1.

Proof. Consdier v(z) = “Z. Then v € O(A1(0)) and v(0) = «/(0). Given z € A;(0), choose

z

r > 0 such that |z| <7 < 1. Then v is analytic in A,(0), and the maximum principle yields
that
u(w)
lv(2)| < sup |v(w)| = sup —= < 1/r, (3.1)

|w|=r jwl=r W

Letting »r — 1, we are done. The inequality being equality at some interior point implies
that v is a constant function with |v| = 1, equivalently u(z) = c- z. O

12



Exercise 3.2. This is very useful, for example it can be used to show that any holomorphic
automorphism of the unit disc must be of the form

9 2+ cC

U(z) = e’ —0, 3.2
() = et 22 (32)
where 6 € R and ¢ € C satisfies |¢| < 1. The proof is to compose with a mapping of the
above form to normalize so that ¥(0) = 0, and then apply the Schwarz Lemma. Details left

as an exercise.

3.2 Meromorphic functions

Definition 3.3. For a domain Q C C, we say that f € M(Q), or f is meromorphic in €, if

there is an open covering U; of Q such that f|y, = £, where g; and h; are in O(U;) and h;
J

is not identically zero.

Note this is equivalent to saying that f has a Laurent series expansion near any z, € €2
with only finitely many negative terms. That is we have

f(2) =Y aw(z = 20)". (3.3)

If some coefficient a; # 0 for £ < 0, then zj is called a pole. Note that the set of poles will be
some discrete subset {w;} of 2. The finite sum of the negative terms is called the principal
part of f at zy. The order of f € M(Q) at zy € € is the least integer n € Z such that the

coefficient a,, # 0 in (3.3]).
Example 3.4. The function e!/* is holomorphic on C* = C\ {0}, but it is not meromorphic
on C. It has an essential singularity at the origin.

We will next consider a more general situation of functions which are holomorphic in an
annulus A(zo;71,72) = A(20,72) \ A(20,71) with 0 < r; < 7.

Proposition 3.5. If f is holomorphic in a neighborhood of an annulus A(zo;r1,72) with
0 <ry <rg, then f admits a expansion

o0

fz)= > ar(z—=2)" (3.4)

k=—o00

which converges uniformly on compact subsets of A(zg;r1,r2). Furthermore the coefficient
ay 18 given by

1 f(w)
= — ————d 3.5
ak 2mi OA(20,r) (w - zO)k+1 v ( )

for any ry < r <ry. In particular, the expansion (3.4)) is uniquely determined by f.

13



Proof. Since f is assumed to be holomorphic in a neighborhood of the annulus, the Cauchy-
Pompieu formula yields for z € A(zg;71,72),

1 f(w)dw 1 flw)dw
f(Z)Z—./ L——./ (w)dw (3.6)
27 OA(zors) W — Z 211 OA(zo1) W — 2
If |z — 20| < |w — 20| expand
1 1 1 1
= - - (3.7)
w—z w—z+z2—z w—zl-I=2
1 [ z—z F
:w—zz e B (3.8)
0 k=0 0
and if |z — zo| > |w — 2],
1 1 —1 1
= = — (3.9)
w—z w—z2+tzn—-2 z2-znl-7"

1 X /w-—2z F
= E , (3.10)
Z— 20 0 Z— 20
Substituting these expansions into (3.6)), we formally obtain

O Y e S = 1)

N 271 A (z0,m2) w — 2o —0 w — 2o

T flw)— i(w_z‘))kd (3.12)
P w w .
271 DA (20,71) =204\ 2~ %

If z € A(zp;71,72) and |w — 29| = 79, then |z — 2| < ro = |w — 2|, so (3.7)) is valid. If
|lw — 29| = r1, then |z — 29| > r; = |w — 2o, so (3.9)) is valid. Both series convergenge
uniformly on compact subsets of A(zg;r1,r2), so we have that

(e}

SRE VD L 613

k=0
o)

Note that, for any k € Z, the function f(w)(w — 20)* is holomorphic in a neighborhood of
the annulus, so by Stokes” Theorem we have

[ o= [ - )
9A(20,r2) OA(z0,71) (3‘15)

= / d (f(w)(w — z)*dw) = 0.
A(zo5r1,72)

14



So the integral

/6 o ) (3.16)

is independent of r, and we have

1 f(w) k

= — ————d — . 3.17

f(Z) Z:OO <27T’L /BA(ZO,T) (w - ZO)k+1 w) (Z ZO) ( )
0

Remark 3.6. If f is holomorphic in a punctured disc A*(zg,r), then it is holomorphic in an
annulus A(zg,7/2,7), so we also obtain an infinite Laurent series expansion at any isolated
singularity.

Definition 3.7. If f =>"7" _ ax(z — 2)¥, then the residue of f at z is
Res, (f) =a_1. (3.18)

Corollary 3.8 (The Residue Theorem). Assume that f is holomorphic in Q\ {z1,..., Zm}.
Then

z)dz = 2mi Z Res. (f) (3.19)

Proof. Since f is holomorphic in the complement (in €2) of a union of balls around z;, by
Stokes’s theorem (like in (3.15) above), we see that

m

REEDS /(9 R (3.20)

j=

for some € > 0 (this is also known as Cauchy’s Theorem). By Proposition [3.5]

Kz — z)dz = Z ak/ (z — 20)¥dz, (3.21)

OA(zj,€)

fe= [ 3
/aA(Zj,E) aA(Zjve) k=—oc0
0

since the series converges uniformly on dA*(z;,€). However, letting z = z; + re’’, we see
that

k=—o00

2m k=-1
/ (z — 2)fdz = m : (3.22)
OA(z;.0) 0 k#-1

and we are done. O

Corollary 3.9 ( The argument principle). If f € M(Q) with no poles on 9, then

Z q
(3.23)
/3A(zo,'r) Z Z ]

where z; are the zeros and poles of f, with m; is the order of f at z;.

15



Proof. Let z; be any zero or pole of f. Then we can write f(z) = (¢ — 2;)™ g(2) where g(z)
is holomorphic at z; and non-zero in a neighborhood of z;. Then

) m g
&) r—m g

So the result follows from the residue theorem. O

(3.24)

4 Lecture 4

4.1 The O-equation in domains in C

Our goal is to prove the following result.

Theorem 4.1. If Q C C is any bounded domain, and g € C*(R), then there ezists g €
C>(Q) with Zf = g.

If we want to solve a% f = g, it is natural to guess that

1 g(w)dw N dw
f(z) = 27?2'/9 w—2z (4.1)
is a solution. However, letting a(z,w) = g(w)/(w — z), we have
da(z,w) -1
A e I 4.2
) )= (4.2

so the assumptions of Proposition [2.1] are NOT satisfied, so we cannot directly differentiate
under the integral sign! Another problem is that g is only assumed to be in C*(2), so it is
not in L'(Q) and is not necessarily defined. We first give a preliminary result, with a
stronger assumption on g.

Proposition 4.2. If g € C'(Q) then the function

f(2) = 1 /Q g(w)dw A dw, (43)

2w w—z
satisfies f € CY(Q) and 0f |0z = g in Q.

Proof. Since g is assumed to be in C(Q), the integral in (4.3)) is well-defined. To show that
0f/0zZ = g in , we will fix any point zy € Q, and show that 0f/0Z(z9) = g(20). Choose
a C> cutoff function ¢ € C§(€2) such that ¥ = 1 on A(zg,r) C Q, where r is sufficiently
small. We then write f = f; + fa, where

filz) = %/Q ¢(w)gz(uwzdzu A dw (4.4)
folz) = QLM/Q (1-— w(wzg_(u;)dw A du_)‘ (4.5)

16



For z in a small neighborhood of zjy, the integrand in f; does not have a singularity. We can
therefore differentiate under the integral sign to see that 0fy/0Z(29) = 0. So we just need to
prove that df,/0Z = g at zy. Since ¥ has compact support, we can extend g to all of C,
and write

fi() =5 /C eyl .
L [ (EH2)g(€ + 2)dE N dE
 2mi /(C ¢ ) (4.7)

where we used the change of variables w = £ + z. Note that

O +2)g(§+2) W€+ 2)9(+2))

- _ n (4.8)
O((€ +2)g(€+2)) _ O((€ + 2)g(€ + 2)) (4.9)
9z O€ | '

This shows that the z and Z partials of the integrand are uniformly in L', so we can differ-
entiate under the integral sign, to obtain

0fiz) _ 1 [ O((§+2)g(§ +2))dE AdE
0z omi /C 0E ¢ (4.10)
1 (Y (w)g(w)) dw A dw
- 272/@ — P (4.11)

Now apply the Cachy-Pompieu formula in a very large ball in C, to conclude the right hand
side is equal to ¥(z)g(z) which is g(2) if z € A(zo, 7). O

Remark 4.3. With a little more work, the assumptions can be weakened to g being bounded
and continuous on €; see [HL84, Theorem 1.1.3], but the derivative is interpreted as a
distributional derivative.

This result does not directly help us in proving Theorem But notice that in the
proof, we also proved the following result.

Proposition 4.4. If g € C°(Q)), then there exists f € C(C) such that f 0z = g.

Proof. Above, we proved that there is a solution f € C*(C), but the same argument allows
us to differentiate f; infinitely many times, provided ¢ is infinitely differentiable. O]

Remark 4.5. In general, we cannot expect that f has compact support. Take g € C2°(C)
with [ gdz A dz # 0 and let f be any solution of 9f /9% = g. By Stokes’ Theorem,

O#/(cgdz/\dZ: C%dz/\d?z—/@d(fdz)z& (4.12)

if f has compact support, which is a contradiction.

Now we can prove a special case of Theorem [5.3]
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Proposition 4.6. Theorem[5.9 is true for Q = A(z,r) is a disc in C, and Q = A*(z,7) a
punctured disc, and for Q@ = A(z;ry,73) an annulus.

Proof. We first consider the case of a disc. Take a sequence 0 < r; < 1y < --- < 71
such that lim; ,r; = r. Let 0 < ¢ € CP(A(%,7441)) and ¢, = 1 on A(z,74). Then
g = g € C(A(2,7x41), and by Proposition 4.4 we can find f;, € C*(C) such that
Ofr = gr, which is equal to g in A(z,ry).
Now there is no reason that the sequence f; will converge to a limit, so we need to modify
as follows. We claim that we can choose fj so that
sup | fiea(2) = ful2) < 27" (4.13)

2Z’EA(z,rk—1)

Given fo, the difference f3 — fo is holomorphic in A(z,r1). So there exists a polynomial Pj
such that

sup | fs(2) — fo2) — P3(2)| <272 (4.14)

2'€A(z,r1)

So we redefine f3 to be f3 — P3. We then proceed by induction. Given f, the difference
fr+1 — fr is holomorphic in A(z,rg_1), so we can find a polynomial Py, such that

sup | fus1 (2) = fiu(#) = P (2) < 27, (4.15)

2/ €A(z,rk—1)

and we redefine fj 1 to be fri1 — Pry1.

The sequence of functions fj will be a Cauchy sequence in any disc A(z,7’), when 1’ < r.
So there exists a uniform limit f. Fixing any m, then f — f,, is then a uniform limit of
holomorphic functions in A(z, r,,_1), so is holomorphic by Corollary , and the convergence
is in C! of any compact subset. So we can differentiate to show that

8fn /0% — Of 0% = g, (4.16)

and the proof is finished.
The case of a punctured disc or annulus is similar, but using truncated Laurent series ex-
pansions instead of polynomials which was proved above in Proposition [3.5 and Remark [3.6]
m

5 Lecture 5

5.1 Runge’s Theorem
To handle the case of an arbitrary domain €2 C C, we need some machinery.

Theorem 5.1 (Runge’s approximation Theorem, first version). Let K C C be a compact
subset, and f € O(U) for some open set U with K C U. Given any € > 0, there exists a
rational function f. with

sup |f(z) — fe(2)| <, (5.1)

zeK

and such that poles of f. are contained in C\ K.
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Proof. The proof is from [Sar(07, Theorem IX.15], we just give an outline. From elementary
arguments, there exists a simple contour v with image in U \ K such that K C Int(y) C U.
L.e., v separates K from the complement of U. Note that K might have several components,
and U \ K might be disconnected, in which case v will be disconnected. Since the countour
is simple, by Cauchy’s Integral formula, we have

flz) = %/%dw (5.2)

for any z € K. Note that this works for piecewise smooth paths because Stokes’ Theorem
holds for a domain with piecewise smooth boundary. By dividing the plane into a sufficiently
fine grid, we can assume that v is piecewise smooth and v = v; + - - - 7, with each ~; a line
segment parallel to one of the coordinate axes. Consider each term

fe(z) = %/ %dw. (5.3)

We can approximate this arbitrarily closely with a Riemann sum Ry, which will be of the
form
1 Cl

++ ,
(T w; — 2

(5.4)

where the w; are points on 7. Doing this for every «;, the proof is complete. O]

In this result, the poles of f. will be quite close to K, and still in 2. The full version of
Runge’s Theorem allows us to move the poles to specified points in C\ K, in particular they
can be moved outside of €.

Theorem 5.2 (Runge’s approximation Theorem, second version). Let K C C be a compact
subset, and f € O(U) for some open set U with K C U. Let S C C\ K which contains at
least one point from each connected component of C\ K. Given any ¢ > 0, there exists a
rational function f. with

sup 1f(z) = [(2)] <, (5.5)

and such that poles of f. are contained in S. If C\ K is connected, the rational functions
can be taken to be polynomials.

Proof. The proof is from [Sar(07, Theorem IX.17]. In the proof of Theorem , each term in
the approximation was of the form ¢/(w — z), where w € . Now choose a picewise linear
path « from w to any point wy in the same connected component of C\ K. Choose points
w; on « so that

|w;—1 — w;| < dist(vy, K). (5.6)

We show that any rational R;_; function with a pole only at w;_; may be uniformly ap-
proximated on K by a rational function R; with a poles only at w;. But this follows from
consdering the Laurent series expansion of R;_; centered at w;: R;_; is holomorphic in the
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region U = C \ A(wj, |lw; — w;_1]), so the Laurent series of R;_; centered at w; converges
uniformly on compact subsets of U. Then we can approximate R;_; by a rational function
with a pole only at w;, uniformly on K, since K is a compact subset of U, which follows
from (}5.6)).

If C\ K is connected, by the above argument, we can move the pole of the rational
function R; to a single point zo so that K C A(0, |zp|). The Talyor series of R; centered at
any point z € K converges uniformly on K, so we can approximate by the partial sums of
this Taylor series.

O

Now we can prove the general result:

Theorem 5.3. If Q C C is any domain, and g € C*®(2), then there exists f € C*°(Q2) with
P

=) =9

Proof. We choose a sequence of compact sets K; C Ko C K3 C ---, so that E C IntK;

and UK; = €. Note that C\Q C C\ K, and we can assume that for large j, each component

of C\ K, contains a component of C\ Q. Let 0 <, € Cj°(K,4+1) and ¢, = 1 on K;. Then

g; = ¥jg9 € Cg°(Kj11), and by Proposition we can find f; € C*°(C) such that 0f; = g;.
We claim that we can choose f; € C*°(2) so that

sup [fy1(2) — (=) < 27, (5.7)

ZGKj_1
We proceed by induction. Given f;, the difference f;;1 — f; is holomorphic in
U= IIltKj DK = Kj—l' (58)

We have C\ 2 C C\ Kj, so by Theorem there exists a rational function R;.; such that
it poles are in C\ 2 and such that

sup | fj41(2) = fi(2) = Rjsa(2)] <277, (5.9)

ZEKj,l

and we redefine f;41 to be fj11 — Pj_.

The sequence of functions f; will be a Cauchy sequence in any subset kK, for fixed m.
So there exists a limit f, with uniform convergence on compact subsets. Fixing any m,
then f — f,, is then a uniform limit of holomorphic functions in K,, 1, so is holomorphic by
Corollary 2.5, and the convergence is in C' of any compact subset. So we can differentiate
to show that

Of 0% — Of 0F = g, (5.10)

and the proof is finished.
O
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6 Lecture 6

The above solution of the inhomogeneous Cauchy-Riemann equations has many corollaries,
we next give a few applications. The first is Mittag-Leffler’s Theorem.

Theorem 6.1 (Mittag-LefHler). Let Q be a domain in C and {w;} a discrete subset of 2.
Let P; be any principal sum at w;. Then there exists a meromorphic function h € M()
such that the principal part of h at w; is P; and there are no other poles in (.

Proof. Let 1; be a cutoff function supported in a small neighborhood of w; which doesn’t
contain any other points in the discrete subset. Consider g = ) ;¥;Pj. Then 0g/0z €
C*(2). By Theorem [5.3] there exists a solution f € C(Q) of df/0z = dg/dz. Then
h = g — f satisfies Oh/0Z = 0, and the principal part of h at w; is P;. O

6.1 Logarithm of a function

We next want to answer the question of when is it possible to take to logarithm of a nowhere-
zero holomorphic function.

Definition 6.2. Let U be a domain in C. If f € O(U) is nowhere-zero, then we write
feo ).

First, we consider a disc.

Proposition 6.3. If f € O*(A(z,7)) then there exists F € O(A(zo,7)) such that et = f.
Such a solution is unique up to adding an integer multiple of 2mi.

Proof. Given any z € A(zg, 1), we define

[,
F(Z)_/v o, (6.1)

where 7 is the straight line path from 2, to z. Consider a square with corners at 2z, and
z, such that ~ is the diagonal. Then 2 sides of the square and the diagonal form a closed
triangle. By Cauchy’s Theorem, the integral is the same if we integrate along the edges. Then
the fundamental theorem of calculus shows that F is differentiable, and F'(z) = f'(2)/f(2).
Then consider the function G(z) = fe™*'. We compute

G'(2) = fl(2)e F = fe FEF(2) =0, (6.2)
so G is constant. By adding the appropriate constant to F', we can therefore assume G(z) =
1, which is f = ef'.

Assume that ef* = f = ef2. Then

fF =e"F] = e F) = fF}, (6.3)

and since f is nowhere vanishing, F| = F3, so F} and F differ by a constant, which must be
an integer multiple of 27s. O
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Definition 6.4. We say that a domain U is simply connected if every simple closed curve
in U bounds a disc in U.

Notice that the above proof works for any simply-connected domain. However, we will
next prove this in a different way.

Definition 6.5. Let U € C be a domain. We say that U has H'(U;Z) = 0 if any countable
locally finite covering of U by discs U; = A(zj,7;) has the following property. For any n;; € Z
satisfying n;; = —nj;, and nj, — ng + n;; = 0 whenever U; N U; N Uy, # () then there exists
n; € Z such that n;; = n; — n; whenever U; N U; # (.

Remark 6.6. This definition is in fact equivalent to assuming that U is simply-connected,
but this fact needs some tools from algebraic topology which we will not discuss right now.

Proposition 6.7. Let U C C be a domain satisfying H*(U;Z) = 0 If f € O*(U) then there
exists F' € O(U) such that e¥’ = f.

Proof. Take a covering as in Definition [6.5] Then we view f as a collection of functions
fi € O*(U;), with f; = f; on U; N U,;. Each U; is a disc, so by the above, there exists
g; € O(U;) with f; = €% on U;. We have ]{—J =979 =1 on U; N Uj, so there exists n;; € Z
such that g; — g; = 2my/—1n;; there. By the assumption that H'(U;Z) = 0, there exists
n; € Z such that n;; = n; — n; whenever U; N U; # 0. We have g; — g; = 2mv/—1(n; — n;)
on U; NU;. Therefore g; = g; — 2m/—1n; satisfies g/ = g; on U; N Uj so defines a function
F € O(U) satisfying f = ef". O

Remark 6.8. The function z in nowhere zero in any punctured disc A*(0,7). If 2 = ¥ for
F € O(A*), then F’ = 1/z there (that is, F is a primitive for 1/z). But if v is S*(r/2),
then f7 F'(z)dz = 0 from the fundamental theorem of calculus, but fw(l/z) = 2my/—1, a
contradiction.

Remark 6.9. Secretly, we are using the long exact sequence in cohomology associated to
the exponential sheaf sequence

0—21vV—1-Z = Oy =5 0F — 1, (6.4)

where Oy is the sheaf of germs of holomorphic functions on U, and similarly for Oj;. This
gives the exact sequence

0— H°(U;Z) — H°(U,Oy) — H(U,0f,) — H (U; Z). (6.5)

If U is connected, then H%(U;Z) ~ Z. However, the Oth cohomology group of any sheaf is
the space of global sections, so we have the exact sequence

0—27Z— OU)— 0*U) - H'(U;Z). (6.6)

Thus if H'(U;Z) = 0, then the third arrow is surjective.
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7 Lecture 7

7.1 Weierstrass Theorem

We give more applications of the solution of the inhomogeneous Cauchy-Riemann equations.
References for this section are [H6r90, Chapter 1] and [Eps91, Section 1.6].

Definition 7.1. Let U C C be a domain. We say that U has H*(U;Z) = 0 if any countable
locally finite covering of U by discs U; = A(z;, r;) has the following property. For any n;;;, € Z
satisfying nijx = —njix = —Nigj and njg — g+ 10— nijr = 0 whenever U;NU;NULNU; # 0,
then there exists n;; € Z satistying n;; = —nj; such that n;;; = nj, — ni + n;; whenever
U,NnU;NU, # 0.

Theorem 7.2 (Weierstrass). Let U be a domain in C with H*(U;Z) = 0, {w;} a discrete
subset of U, and n; € Z. Then there exists a meromorphic function f € M(U) with the
order of f at w; equal to n; and no other poles or zeroes.

Proof. We cover U by discs U; = A(z;, ;) such that each w; is contained in exactly one of
these discs. Define the function f; = (2 — w;)™ if w; € U;, and let f; = 1 if U; doesn’t
contain any of the discrete points. On U; N Uj, let fi; = fi/f;. Then f;; € O*(U;, NUj)
is a non-vanishing holomorphic function. Since U; N U; is simply-connected, we can define
gij = log f;;. Note that g;; € O(U; N Uj) is only defined up to adding an integer multiple of
2mi. Since

fir = % = }t—;% = fijfik: (7.1)
the g,; satisfy on triple intersections U; N U; N Uy,
9ij — 9ik T Gjk = 2Tingy, (7.2)
where n;j; € Z. The n;j;, satisfy the condition on intersections U; N U; N U, N Uy,
Nkt — Mkt + Niji — Nyjie = 0. (7.3)
By the assumption that H%(U;Z) = 0, there exists integers n;; such that
Nijk = Njk — Nik + Ny, (7.4)
whenever U; N U; N Uy, # (. Then g;; = gi; — 2min;, satisty
9ij — i + 9 = 0. (7.5)

Choose a partition of unity 1; subordinate to U;, and define

hi= Y _gvi, (7.6)
J
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which satisfies h; € C*°(U;). On U; N U;, we have

hi = h; = Z(g;k - gé*k)@/)k: = Zggﬂ/)k = gz’j. (7.7)
k k
We then have that
0 o ,
%(hi —hy) = oz = 0, (7.8)

So we can define h € C>*(U) by letting
Oh;

YT oz
By Theorem [5.3] we can solve the equation df/9z = h for f € C*°(U). Then we redefine
h; = h; — f. These now satisfy h; € O(U;), and h; — I, = g;;.

So going back to the above, we define f/ = e~ f;. On intersections, we now have

/ —hi r. . . .

f], B 6_h9fj N fi fi fi
so the f/ patch together to define f € M(U). Since we only multiplied the f; by a non-zero

holomorphic function, the order of f at w; is equal to n;, and there are no other zeros or
poles of f in U. O

h

(7.9)

Remark 7.3. Note that any domain in C is necessarily a non-compact 2-manifold, it will
follow by Poincare duality HZ, (U;Z) = 0. This is equivalent to the vanishing of the
Cech cohomology group H?(U;Z) = 0, which implies that the condition in Definition is
always satisfied for any domain U C C. So the assumption that H%(U;Z) = 0 in actually
superfluous. In contrast, if we consider a compact Riemann surface ¥, then H?*(3;Z) ~ Z,

and Weierstrass’ Theorem will not necessarily hold.
Corollary 7.4. If f € M(U), then there exists g,h € O(U) such that f = g/h in all of U.

Proof. 1t f has poles of order n; at wj;, then by the Weierstrass Theorem, there exists a
holomorphic function h € O(U) which has a zero of order n; at w;. Then g = hf has no
poles so g € O(U). O

Corollary 7.5. If U is any domain in C, then there exists u € O(U) such U cannot be
extended to any larger domain.

Proof. Take a discrete subset w; with closure containing the boundary of €2. By the Weier-
strass Theorem, there exists u € O(U) which has zeroes at the w;, but is not identically
zero. This function cannot be extended holomorphically in a neighborhood of any bound-
ary point. This is because any holomorphic function f whose zero set has a limit point in
a domain must be identically zero. (Proof: let the limit point be zy, then we can factor
= (2 — 20)%g(2), where g(29) # 0, so the zeros of a any holomorphic function are isolated;
this is also known as the Identity Theorem.) O
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Remark 7.6. The power series

F(z) =Y 2" (7.11)

J=0

converge on compact subsets to a holomorphic function on the unit disc, which cannot be
extended past any boundary point. See [GK0G, Chapter 9] and the more general Hadamard
gap theorem. However, this is proved by ad hoc methods and not really related to the above
proof.

8 Lecture 8

8.1 Holomorphic line bundles on domains in C

Let 84 = {U, };ez be a countable locally finite open covering of a domain U C C by discs. For
Z.aj € I7 let fij € O*(UZ N U]) SatiSfy fji = fi;17 and

fiw = fij - fin (8.1)

on U;NU; NU,. We call the cocycle condition, and write that f;; € Z*(4, Of;). We call
the collection {f;;,%,7 € I} a holomorphic line bundle with respect to the open covering il
A collection f; € O(U;) for i € T is called a section of the line bundle if f;; f; = f; on U;NU;.
The trivial line bundle is f;; = 1 on all U;NU;. Note that there is a multiplicative structure:
the product of fi; and fj; is simply fi; fi;, which clearly satisfies the cocyle condition. Define
C°(4U, OF;) to be the collection of f; € O*(U;), which we call the space of 0-cocycles with
respect to 4. Define § : C° — Z' by 6{fi} = fi/f; on U; N U;. Then we define H' (8, OF)
as Z1/5(C°). We call this the set of equivalence classes of holomorphic line bundles on U,
with respect to the open covering 4. Note that two line bundles f;; and f; are equivalent
if and only if there exists f; € O*(U;) such that fi;f; = fi; fi. In particular, a line bundle is
equivalent to the trivial line bundle if and only if there exists f; € O*(U;) such that f;; f; = fi,
equivalently, if and only if there exists a nowhere vanishing section.

What we have proved above can be restated as follows.

Proposition 8.1. If U C C is a domain and 3 is a countable locally finite covering of U
by discs, then any holomorphic line bundle is equivalent to a trivial holomorphic line bundle
(everything with respect to the open covering Al).

Proof. We simply review the above proof of the Weierstrass Theorem. In that proof, we
first constructed f;; € O*(U; N U;) satistying the cocycle condition. Now we are just given
fij € Z'(4U,0f). Then we choose g;; = log fi; in O(U; NU;). The g;; satisfy on triple
intersections U; N U; N U,

9ij — Yik + Gk = 2miN4k, (8.2)
where n;;, € Z. We then used the assumption H?*(U;Z) =0 to find n;; satisfying

Nyl = Njk — Nag + Nyj, (8.3)
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whenever U; NU; N Uy # (). Then ggj = gij — 2mv/ —1n,;; satisfy

9i; — 9ix + 951, = 0. (8.4)

Then, using the partition of unity argument, we found h; € O(U;) with g;; = hi — h’;. Define
f; = e". Exponentiation of this yields

; I_pt eh; f

/. L [ An. - N )

i = eIV Ing — o9 — fij = ehihi = = (8.5)
e fj

and we are done since the collection { f;} are a nowhere vanishing section of the line bundle.

]

Remark 8.2. Similar to above, we can define Z' (4, Oy) to be the collection of gj; € O(U;N
Uj) satisfying gi; = —gj;, and

9ij — 9ix T 9jx =0 (8.6)

on triple intersections U;NU;NUy. Note this is an additive group, as opposed to multiplicative
in the case of line bundles. Define C°(4l, Oy ) to be the collection of 1} € O(U;) and § : CY —
Z* by 6{hj} = h; — h;. Then we can define H' (4, Oy) = Z'/6(C°). The argument involving
a partition of unity proved that H' (4, Oy) = 0, which relied on Theorem , the solvability
of the inhomogeneous Cauchy-Riemann equation in C*°(U). This is a special case of a
general result about the equivalence of Cech and Dolbeault cohomology.

Remark 8.3. We want to remove the dependence of the above on the open covering, we will
do this later. The proof of the Weierstrass Theorem (using the partition of unity argument),
yields the vanishing of the sheaf cohomology group H' (U, Oy) = 0. The long exact sequence
in cohomology associated to the exponential sheaf sequence

0—21V—1-Z = Oy =5 0F — 1, (8.7)
yields
0=H"U Oy) — H (U, Of) — H*(U;Z) = 0, (8.8)

from which it follows that H'(U, Of;) = 0. In other words, any holomorphic line bundle on
U is (equivalent to) a trivial bundle. This will not be true in general for domains in C" for
n > 1: as an example, consider a product of punctured discs, which has H*(A* x A*; Z) ~ Z.
This will also not be true for a compact Riemann surface ¥, which satisfies H*(3;Z) = Z.

9 Lecture 9

9.1 Power series in several variables

We review some basic facts about power series in several variables. Some good references for
this material are [FG02, Chapter 1], [JP08, Chapter 1], or [KP02, Chapter 2.1], We write
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a point z = (z1,...,2,). The open polydisc with polyradius r = (ry,...,r,) about a point

20 = (29,...,29) is the set

A(zg,7m) = {2 | |Zj_Z?| <rj, j=1...n} (9.1)

We will let a = (ay,...,0,) € Z7 denote a multi-index, where Z, denotes the non-negative
integers. Define

24 =2 (9.2)

2| = |z - - 2] ™ (9.3)

ol = oyl ol (9.4

la| = a1 + - + ay. (9.5)

Definition 9.1. The series Zani ao(z — z9)® converges at z if some rearrangement con-
verges, that is, give some bijection ¢ : Z, — (Z )", the series

D gz — 7)Y (9.6)
=0

converges. The domain of convergence of the power series is the interior of the set of points
of convergence.

In 1 variable we know that domains of convergence are discs. Regions of convergence in
several variable can be more complicated.

Example 9.2. The domain of convergence of the series > o zFw" is {(z,w) | |zw| < 1}.

Example 9.3 (Boas). The series > - | 2"w™ converges in the 3 sets
Uy ={(z,w) | Jw| <1}, Uy ={(0,w)}, Us ={(z,w) | |z] <1 and |w| = 1}. (9.7)

Only U; is an open set; the sets Us and Us are 1 dimensional, and are not domains. The
domain of convergence is Uj.

Lemma 9.4 (Abel). If > anz® (centered at z = 0) converges at the point 2’ then it con-
verges uniformly and absolutely for any point z of the form z; = p;z; where |p;| < 1. Fur-
thermore, a point p belongs to the domain of convergence of the power series Y a,z* if and
only if there exists a neighborhood U of p, a constant C, and v < 1 such that |a,z®| < Crlel
forall z € U.

Proof. Since the series converges at the point 2/, the terms must be bounded, so there exists

a constant C' so that |a.||2'|* < C. Let p = max{|p1|,...,|pn|} < 1, and consider any point
z=(21,...,2,) s0 that |z;| < p[z}|. We then have
|aall2l* < laalpl]2'|* < Cp°l. (9:8)
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So given an integer N > 0, we have

N
D laallz1* = ) laall2l®

la<N §=0 |al=j

<Y Y ow

=0 |al=j

(9.9)

How many multi-indices of length j are there? This is counting the number of non-negative
integer solutions of

oty = (9.10)

To see this, let o) = a; + 1, then we are interested in the number of positive integer solutions
to

a+-+a,=j+n. (9.11)

So we have a total of 7 + n integers, dividing this up into n integers is the same as putting
n — 1 partitions somewhere in the spaces between them, so the number is

(j ; i; 1). (9.12)

Continuing with the above calculation,

> |aa||z|ascz(j;’j]1)pf

la|<N
j+n—1
=C
Z )
(9.13)
C . . . ;
= WZ(JJFH—1)(J+"—2)”'(J+1)ﬂj
=
N
<Gy "
j=0
Applying the ratio test, we have
tim U2y (JL) p=p (9.14)
j—ro0 Jnp j—ro0 J

so the series converges provided p < 1.

If p belongs to the domain of convergence, then by definition the series converges in a
neighborhood of p. Then by the first part it converges in some polydisc around the origin
containing z, and we follow the first part of the proof.

O
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Definition 9.5. We say that f is complex analytic in U if for each zy € U, there exists a
power series expansion

f(2) = aalz = 2) (9.15)

aEZl

which converges absolutely and uniformly in a polydisc A(zp, €) around zp, for some positive
polyradius €.

9.2 Cauchy’s formula in several complex variables

Basic reference are |[GH7S8, [Hor90, Nogl6].

Definition 9.6. We say that f is holomorphic in U if it is C*(U) and satisfies the Cauchy-
Riemann equations,

of .
ﬁ:()’j:l...n' (9].6)
Proposition 9.7. Let U be an open set in C. Then f is holomorphic in U if and only if f
1s complex analytic in U.

Proof. Consider n = 2, the higher-dimensional case is similar. We assume that U =
A(0,71) x A(0,75) is a polydlsc and f € CY(U). If f is holomorphic in U, then for fixed 2,
the slice f(z1, 22) is a 1-variable holomorphic function for z, € A(0,75). This holds similarly
for the other variable, so the Cauchy-Pompieu formula applied twice yields

1 21, wa )dw
2'/TZ |’LU2|—7‘2 Wo — 22
(9.17)
( ) / / f(wy, we)dw
2mi lwal=ra J jwr|=r1 (w1 — 21)(wg — 22)
For any (29, 29) € U, we expand
1 1 1 1 1 1
= 0 0 = 5 5 (9.18)
(wl—Zl)(w2—22> W — 2o W1 — 29 +Zl — 21 Wy — oW1 — 21 1 — 21—2’10
'LUl_Zl
1 1 [z — z? k
— 9.19
w2—Zgw1—z?§(w1—z?> (9-19)
1 2 = 2O\ [z — 20\
27 <2 17— <1
— 9.20
(wl—z?)(wg—zg);(wg—z>kzzo(wl_z) ( )
Yy e 021)
N (wy — 20)+1 (wy — 29)H1 :
k=0 1=0
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We next show that we are justified in the last step. Let (29,29) € A(0,7]) x A(0,rh) with
rv < 1y and 7y, < r5. Then we have |w; — 29| > ry — 7}, and |wy — 28| > ry — . For
|21 — 20 < (r1 — r})/2 and |2z — 25| < (ro — 14)/2, we then have

(21— 20)%(2 — 29)! ‘ 1
wy — 2 (wy — 29)HH T (g — 1) (g — 1)

lam| = ( 2 kot (9.22)
so the sum converges absolutely and uniformly in any smaller polydisc by Lemma [0.4 In-
terchanging the integration and summation in then yields a power series expansion
for f.

The converse is similar to the 1-variable case. If f has a power series expansion, then
each term in the power series satisfies the Cauchy integral formula . So then f does
also by uniform convergence. Then we can differentiate under the integral to see that f is
holomorphic. For more details, see [GHTS, page 6]. ]

Remark 9.8. Note that the integral in is just over a 2-dimensional torus contained
in the boundary of the polydisc. The topological boundary of the polydisc is 3-dimensional,
but it is not a manifold, it is (A x A) = ST x AUA x S!, and these 2 sets intersect along
the torus. The higher dimensional case is similar: the integral is over a real n-dimensional
torus contained in the boundary of the polydisc.

Similar to the 1 variable case, we have the following corollaries.

Corollary 9.9. If f holomorphic in 2, then f is infinitely differentiable in €, and for any
2o € ), f admits a power series expansion

f= Z ao(z — 20)%, (9.23)
a€Z’l

with
L9 ()

a P S ———
T al 0zo

_( 1 )"/ / flwy, -+ wy)dw -+ - dw,
2m1 |wn|=rn \wﬂ:rl(uhr_-Z?)al+1"'(uhl_-Zg)an+17

for any r such that the polydisc A(zo, 1) C €.

(9.24)

Corollary 9.10 (The maximum principle). Let 2 C C" be connected, and f € O(Q)NC ().
Then | f| does not assume its mazimum at an interior point unless f is constant.

Proof. We can assume that Q = A(0,r7) = A; x --- x A, is a polydisc centered at the
origin, and that |f| attains a maximum at the center point. The one variable function z; —
f(21,0,---,0) is constant by the maximum principle in one variable, that is f(z1,0,---,0) =
f(0,-+-,0). Then, for any fixed z;, the one variable function zy +— f(z1,29,0,---,0) is
constant, so

f(z1,22,0,---,0) = f(2,0,---,0) = f(0,---,0). (9.25)

Iterating this argument shows that f is constant. O
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Corollary 9.11. Let K C €2 be a compact subset. Then there exist constants C||, depending
only upon K and €2 such that

P < Cysup 2. (9.26)
z z€Q

sup
zeK

for all u € O(9).

Proof. Again, we just consider the case of 2 dimensions, the higher dimensional case is
similar. Fix (29,29) € Q, and let A(2%, (r;,72)) C Q be a polydisc. Then for (21, 29) €
A(2°% (ry, 7)) with ] < r; and 7, < 79, we have

[e.9]

fla,22) = > am(z — ) (22 — 29)', (9.27)

k,1=0

where

1 2/ / f(wy, we)dw
A — | — . (928)
(27”) wal=ra S jun|=r (W1 — 20)FFL (wy — 29)1+1

We then get Cauchy’s inequalities
ak—s—l f 0

11!
_ : (Z?’ZQ) ]{?.l.TlT’Q
0270z

= Kkl ay| < sup | f(w)]. (9.29)

(Tl - Tll)k(TQ - Té)l w=(w1,w2),|wi|=r1,|wz|=r2
Since the distance of K to 02 is positive, the claim follows. m
The following corollaries are proved exactly as before.

Corollary 9.12. If u, € O(Q) and u, — u converges uniformly to u in the C° norm as
n — 0o on compact subsets, then u € O(S).

Corollary 9.13. If u,, € O(Q) and |u,| is uniformly bounded on every compact subset K C
Q, then some subsequence u,; converges uniformly on compact subsets to a limit u € O(S2).

10 Lecture 10

10.1 Hartogs’ Theorem

Consider the polydisc A(0,r) = {z € C" ||zj| < r,j =1,...,n}, and for 0 < r" < r, let

A(r' r) = A(r) \ A(r!).

Theorem 10.1 (Hartogs). Let n > 1, and 0 < ' < r. If f € O(A(r',r)), then there exists
a holomorphic function F € O(A(r)) with F' = f on A(r',r).
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Proof. Write a point in C" as (z,w), where z € C"~!. We then have

(A™1(0,7) x AY0,7)) \ (A™71(0,7") x A(0,7")) (10.1)

= A" r) x AYN0,7) UA"H0,7) x AN 7). '
Then for each z € A"1(0,7'), the cross section of A™(r',r) is a 1-dimensional annulus
AY(r',r). However if z € A" 1(+/,r), then the cross section is a disc A'(0,7). Let’s write
down the expression

1 f(z,w)dw
2w/ —1 lwj=r W = Zn

For r' < |z| < r and |z,| < r this equals to f, by Cauchy’s Theorem. This expression clearly
defines a holomorphic function in all of A(r). The function F agrees with f whenever
" < |z| < r. By the identity principle, F' = f in A(r’,r), so is the required extension of
f. O

F(z,z,) =

(10.2)

In particular, while non-removable isolated singularities exist when n = 1, isolated sin-
gularities are always removable if n > 1! We also have the following corollary.

Corollary 10.2. Letn > 1. If Q C C" is a domain and f € O()) then the zero set of f,
Zy={2€ Q| f(z) =0} does not contain any isolated points.

To prove the corollary, note that 1/f would be a holomorphic function with an isolated
singularity, which doesn’t exist.

The next result will show that zero sets of holomorphic functions are large, they are
always complex (n — 1)-dimensional in a very precise sense.

10.2 Weierstrass Preparation Theorem

For n = 1, we know that zeros of a non-constant holomorphic function are isolated. We
want to investigate the structure of zero sets of holomorphic function in C". So consider
f(z1,...,2n) € O(U), where U is a neighborhood of the origin, and assume that f(0,...,0) =
0. Consider a complex line through the origin

L,=A{c(z1,...,2,) |c € C}. (10.3)

If we restrict f|L, we get a 1 variable holomorphic function. If this restricted function were to
vanish identically for all complex lines through the origin, then f itself would be identically
zero. So if f is not identically zero, there exists a least one line on which f is not identically
zero. By a rotation, we may assume that this in the nth coordinate line. I.e., for fixed
(z1,...,2n-1), we look at the holomorphic function of one variable w +— f(z1,..., 2,1, w).
By assumption f(0,...,0,w) is not identically zero, so there is a unique minimal d such
that f(0,...,0,w) = w?h, where h does not vanish at 0. Then there exists » > 0 and
d > 0 such that |f(0,...,0,w)| > 0 for |w| = r. By continuity, there exists ¢ > 0 so that
|f(z1, ..y Zn1,w)| > 0/2 for |w| = r and |(z1,...,2,)] < €. We next recall the argument
principle.
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Corollary 10.3 ( The argument principle). If f € M(Q) with no poles on OS2, then

d

)
/8A(zo,r)w f(w) dw =3 m;z] (10.4)

j=1

where w; are the zeros and poles of f, with m; is the order of f at w;.

To simplify notation, let 2 = (z1,...,2,1) € C"71. First of all, we apply the argument
principle to the function w — f(z,w), with ¢ = 0 to get that

offow(z,w) , N~
/wr ) ; 7 (10.5)

where m; is the multiplicity of f at the zeros of the function w +— (z,w) inside |w| < r and
|z| < e. This is equal to d for z = 0. Since it is a continuous integer valued function, the
function w — f(z,w) also has d zeroes, counted with multiplicity for |w| < r and |z| < e.
We let by(2),- - bg(z) denote the zeros of f(z,w) for = € C"! fixed. The problem is that
these function cannot necessarily be chosen smoothly, because there is no canonical ordering
of these zeros. We define

9(z,w) = (w—=b1(2)) - - (w = ba(2)) (10.6)

Obviously, the zero set of g is exactly the same as the zero set of f. However, this is not
obviously holomorphic due to the ordering problem. However, we may write

g(z,w) = w! = o1 (b(2))w' ™" + o (b(2))w* + - + (= 1) 0u(b(2)) (10.7)

where the o; are the ith elementary symmetric function, i.e.,

Ul(bl,...,bd):b1+"'+bd (108)

O'Q(bl,...,bd) = szb] (109)
i#]

: (10.10)

Jd(bl,...,bd) :b1~-'bd. (1011)

We have the following lemma.

Lemma 10.4. There ewists polynomials P; with rational coefficients so that the elementary
symmetric function o; = P;(Fy,--- | F;), where

F,(b) =bf +--- + 0. (10.12)
for1 <1< d.

Proof. Obviously o, = P;. For o5, we have

1
oy = 5(Fl2 - F). (10.13)
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For o3, we have

1 1 1
= _F} — ~R[F + - F;. 10.14
03 = o1 T 5l + 313 ( )
Will leave the proof of the general case as an exercise (Hint: use a induction argument, or
ask Newton). O

However, if we apply the argument principle again for ¢ > 0, we will get

FE) = b b = B e

Thus we see that the power sums F,(z) = by(2)?+ - - -+ by(2)? are analytic functions of z, for
|z| < e. By the lemma, the elementary symmetric functions are analytic there, which proves
that the function g(z,w) defined above is analytic.

Now we consider the function

dw (10.15)

h(z,w) = (10.16)

which is analytic away from the zero set of g. By construction, for each fixed z with |z| < e,
g(z,w) has exactly the same zeros as f(z,w). So the 1 variable function w — h(z,w) is
bounded, and thus has a removable singularity at near any zero of g(z,w), so h extends to
a non-zero holomorphic function for |w| < r. But then the Cauchy integral formula

1 h(z,u)du
- 27y —1 lu|=r U — W

shows that h is continuously differentiable and holomorphic in all of the variables z;. So we
have proved

h(z,w) (10.17)

Theorem 10.5 (Weierstrass Preparation Theorem). Let f(z,w) be an analytic function
which vanishes at the origin, but does not vanish identically on the w-axis. Then there exists
a unique Weierstrass polynomial of the form

g(z,w) = w4+ a1 (2)wt + -+ ag(2), (10.18)
with a;j(z) analytic with a;(0) = 0, such that f = g - h with h(0) # 0.
This gives us a very nice description of the zero set of holomorphic functions.

Corollary 10.6. If f is holomorphic, then locally Z; admits a projection to a (n — 1)
dimension polydisc A"™*, which represents Z; as a d-fold cover of A"~ | which is branched
over the zero locus of a holomorphic function 9 € O(A™1).

Proof. This was proved above, we just need to note that the set where w — f(z,w) has
multiple roots is given by the vanishing of the discriminant &, which is a polynomial in the
roots. O
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We also can prove another removable singularity theorem which allows for a much larger
singular set.

Theorem 10.7 (Riemann Extension Theorem). Let f be holomorphic in Q, and let Z;
denote the zero set of f. Let g be holomorphic in Q\ Z; and bounded. Then g extends to a
holomorphic function G € O(Q).

Proof. This is clearly local, so we can assume that f is a Weierstrass polynomial in a small
polydisc. Recall above, we chose 7, ¢ > 0 so that for |z| < € and |w| = r, f has no zeros, so
g is holomorphic there. Also, for |z| < ¢, w — f(z,w) only has finite many zeroes which are
isolated. Since g is bounded, for |z| < €, the 1 variable function w — ¢(z, w) has removable
singularities. So we can extend to G(z,w). By the Cauchy integral formula, we have

1 g(z,u)du

- 2my/—1 luj=r U —W

is continuous differentiable and holomorphic in the z variables, so is the required extension
of g. O

G(z,w) (10.19)

11 Lecture 11

11.1 Complex differential forms

Using the coordinates

(212" = (@' +ayt, . 2™ iy, (11.1)
recall the definitions
0 1,0 0
— == -1 11.2
0z 2 <8x3 Zagﬂ) (11.2)
0 1,0 e,
e §<8xj “aya‘)’ (1L3)

which are differential operators on complex-valued functions. We define
Tg = spang{d/dz",...,0/02",0/0y*,...0/0y"} (11.4)

which is a real 2n-dimensional vector space, and define vector spaces

T = spanc{0/027,j =1...n} (11.5)
T = spanc{0/077,j =1...n} (11.6)
Te =T @ 1%, (11.7)

which are complex vector spaces of complex dimension n, n, and 2n, respectively. Note that
Te = Tr ® C. Next define

Ay = Hom(Tg,R), (11.8)
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to be the dual vector space to Tg. We can write
Ay = span{dz?’, ... dz", dy*, ... dy"}, (11.9)

where the above is the dual basis to 9/9x!,...,0/dy". Next, define

A = Hom(T™°,C) (11.10)
A% = Hom(T™,C) (11.11)
Ag =AY @ A% (11.12)

Similarly, we have A{ = A ® C. Then we can write

A =span{dz’,j =1...n} (11.13)
A™ =span{d#’ j=1...n}, (11.14)

where dz’ is the dual basis to /027 and dz’ is the dual basis to 9/927, that is,

d21(8/92") = dz1(9/97*) = §7*,

ST e e (11.15)
dz’(0/0z") = dz’(0/0z") = 0.

Define A% to be the vector space

AL =span{dz" A - AdZP NAZP A NAF i <o <y g1 <o < Gy, D+ q =k}

(11.16)
We can then extend this notation to all indices by
dz"" Ndz? = —d2" A d2" (11.17)
dz" N dz? = —dz" A dz" (11.18)
dz' N7 = —dZ A d2'. (11.19)
This extends to a product called the wedge product:
A AR @A — AR (11.20)
which is bilinear, associative, and satisfies
aANB=(-1)PBANa, ac A, peAL (11.21)

Remark 11.1. Notice we can do a similar construction and define A% which will satisfy
Ak =AE®C.

We define A9 C AL to be the span of forms which can be written as the wedge product
of exactly p elements in A1 and exactly ¢ elements in A%!. We have that

AL = P A (11.22)

p+q=k
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Noting that

=) ()
)-2.0-0)

pta=k

we have

Next, suppose we are given a domain U C C". Let

CZWU)={f:U—C| fis smooth}.

ELU) = CE(W) & A
EPI(U) = CF(U) ® AP,

So we have that

&= e

p+q=k

If € EP9(U), then we can write

o= E 0417sz1/\61§‘7,
I1,J

(11.23)

(11.24)

(11.25)

(11.26)
(11.27)

(11.28)

(11.29)

where I and J are multi-indices of length p and g, respectively, and o ; : U — C are smooth

complex-valued functions.
The wedge product extends to

N ER @ER - TR

which is bilinear, associative, and satisfies

aANf=(-1DPBAa, acll, Be&l

(11.30)

(11.31)

Remark 11.2. We can do a similar construction and define C°(U) and &F, which will

satisfy & = EE @ C.

11.2 The operators 0 and 0 in C"
We first define the exterior derivative operator
dg : EF — QEt!

by the following. For f € £k = C°(U), define
of . of . ;
df = Z oot + Z @dy]
i J

Then we extend to any differential forms of any degree by

d(frydz' Ady”) = (dfry) Ada' A dy’.
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Proposition 11.3. The operator dr satisfies
d>=0
d(a A B) = (dar) A B+ (—1)%@a A dp.
Proof. We leave this as an exercise.
By complexification, this operator extends to
de : & — g
The following is a key proposition.
Proposition 11.4. We have
d(EPT) C gPTLa g gratt,

Proof. We simply check on functions that the following formula holds

df = Z —dz +Z d—k
If a € EPY(U), then

o= E aygdzt A dz,
=p,|J|=q

so applying d to ([11.40)), we obtain

80&[7(] k 8051,] —k I —J
da:Z( k B dz —i—; 97 dz)/\dz ANdz?,

1,J
and we are done.
We can therefore define operators
0: & — gL
0: & — Sfé“

by
dary I a 3=
Ja = “dz" Ndz' ANdZ
0zk
1,0k
— 0
Jo=Y_ a”d—’“/\dz Adz.
ozF
1,0k
Using ((17.1)) and we have

8|gp,q - HAerl,qd
8|gp7q - HAWHICZ.
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(11.40)

(11.41)

(11.42)
(11.43)

(11.44)

(11.45)
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Corollary 11.5. We have d = 0 + 0 for operators

O : P9 — gpila (11.48)
0 : EPT — gPatL (11.49)

which satisfy
#2=0, 9 =0, 00+00=0. (11.50)

Proof. The equation d? = 0 implies that
0=(0+0)(0+0)=0*+080+00+7. (11.51)

If we plug in a form of type (p, ¢) the first term is of type (p + 2, ¢), the middle terms are of
type (p+1,¢+ 1), and the last term is of type (p,q + 2). Since ((17.1)) is a direct sum, the
claim follows. m

12 Lecture 12

12.1 De Rham cohomology

We can make the following definition since d? = 0.

Definition 12.1. Let U C R" be a domain. For 0 < k < n, the kth de Rham cohomology
group is

~ {a € &¥U)|da =0}
B d(EXU)) ’

Hl(U) (12.1)

Let f : U — V be a smooth mapping, where U and V are open subset of Euclidean
spaces R™ and R™, respectively. Then we can define the pullback of differential forms

fr &) = gxU) (12.2)
by
F(Y andy’) = > (aro f)d(y' o f) (12.3)
[I|=k |I|=k

Exercise 12.2. If f : U — V is smooth, then

dyo f*= f*ody (12.4)
and if g : V' — W is smooth, then

(gof) =fog" (12.5)

The de Rham cohomology groups enjoy the following functorality properties.
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Proposition 12.3. Let U C R™, V Cc R*, W C R be domains. Let f : U — V be a smooth
mapping. Then there are induced mappings

frrHE (V) — HEL(U). (12.6)
If g : V — W s smooth then so is go f : U — W and
(gof) = f"og": Hip(W) — Hip(U). (12.7)

In particular, if f is a diffeomorphism (one-to-one, onto, with smooth inverse), then the de
Rham cohomologies of U and V' are isomorphic.

Proof. We show that f* induces a well-defined mapping on cohomology f* : HE (V) —
H-(U) by the following. If [a*] € H%,(V) is represented by a form o”, such that dy-a* = 0,
then we have

dyfraf = f*dyaf = 0 =0, (12.8)
so we can define f*[a*] = [f*a*], that is, map to the cohomology class of the pullback of any
representative form. To see that this is well-defined,

Fr(of +dv Bl = frof + frdy BT = ok dy f1E (12.9)
s0 we have
[f*(@" +dv )] = [fa +duf* 6] = [f*a’]. (12.10)
The next part follows since
(gof) =fog (12.11)

holds on the level of forms. Finally, if f is a diffeomorphism, then f~! exists and is smooth,
so we have

foft=idy, f'of=idy, (12.12)

and the induced mappings on cohomology satisfy
f* o (f—l)* = Z.dH(];R(U% (f—l)* o f* = '&'dHécR(V), (1213)
O

12.2 Dolbeault cohomology

We can make the following definition since 9 =0.

Definition 12.4. Let U C C" be a domain. For 0 < p,q < n, the (p, ¢) Dolbeault cohomol-
ogy group is
~ {a € &rU)|0a = 0}

HE(U) SEr i (0)) (12.14)
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Next we define holomorphic mappings.

Definition 12.5. Let f : U — V be a C! mapping, where U and V are open subset

of complex Euclidean spaces C" and C™, respectively. Then f is holomorphic if writing
f="...,f™), then f/: U — C is holomorphic for j =1,...,m.

Proposition 12.6. If f : U — V is holomorphic, then f* preserves the (p,q)-type decom-
position differential forms, i.e.,

frEPUV) = EPI(U). (12.15)

Proof. To see this, let a®? € EP4(V), of the form

o= N ayds AdE (12.16)
H|=p,|J|=q
Then by definition
Frapd = Z (aryo fd(z' o f)y Ad(2? o f). (12.17)
|=p,|J|=q
But
d(z o f)=(0+9)(z7 o f) =" o f), (12.18)

since 27 o f is holomorphic, so this is a form of type (1,0) on U. Similarly,

dZF o f)=(0+9)(Fof) =0z o [), (12.19)
since zJ o f is anti-holomorphic, so this is a form of type (0,1) on U, and we are done. [J

The Dolbeault cohomology groups enjoy the following functorality properties.

Proposition 12.7. Let U ¢ C™,V c C*, W C C! be domains. Let f : U — V be holomor-
phic. Then there are induced mappings

o HPU(V) — HPYU). (12.20)
If g : V. — W 1is holomorphic, then so is go f:U — W and
(go f)" = frog": HM(W) — HPYU). (12.21)

In particular, if f is a biholomorphism (one-to-one, onto, with holomorphic inverse), then
the Dolbeault cohomologies of U and V' are isomorphic.

Proof. We know that the exterior derivative commutes with pullback,

dy o f* = f* o dy. (12.22)
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This is equivalent to

(Ou +dy)o f*= f*o (B +dv) (12.23)

If we plug in a?? € QP4(V), we have 2 equations
Oy o fraP? = f* o dyaP (12.24)
Oy o fraP? = f* o Dyl (12.25)

The second equation implies that f* induces a well-defined mapping on cohomology f* :

HP4(V) — HP(U) by the following. If [a?9] € HP4(V) is represented by a form a9, such
that Oy a?? = 0, then we have

OufraP? = f*OyaP? = f*0 =0, (12.26)
so we can define f*[aP?] = [f*aP ], that is, map to the cohomology class of the pullback of
any representative form. To see that this is well-defined,

fH(aP9+ Oy Prt) = fraPt + f*Oy P! = fraPl + Oy fr P, (12.27)
so we have
[f* (a9 + Oy Pt 1] = [f*aP9 + Oy f* P11 = [f*aP]. (12.28)
The next part follows since
(gof) =frog (12.29)

holds on the level of forms. Finally, if f is a biholomorphism, then f~! exists and is holo-
morphic, so we have

f o fil = idV; fil o f = Z.de (1230)

and the induced mappings on cohomology satisfy
fro (N =idurawy,  (f71)" o f* =iduragy), (12.31)
O

Definition 12.8. A form a € EP°(U) is holomorphic if da = 0, and we write that o € QP(U).

Remark 12.9. We only talk about forms of type (p,0) being holomorphic, we never call a
(p, q¢)-form holomorphic if ¢ > 0. Also, we have (trivially)

QP(U) = H'(U) = {a € EP°(U) | da = 0}. (12.32)

Proposition 12.10. A p-form o € EPP(U) is holomorphic if and only if it can be written
as

a=Y apd, (12.33)

|I|=p

where the ay : U — C are holomorphic functions.
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Proof. We have

= 0
da= Y a%,ﬁdzk Adz. (12.34)
[|=pk
So da = 0 if and only if the o; are holomorphic. m

Remark 12.11. So for U C C" a domain, dim¢ HP*(U) = oo is always infinite-dimensional
for 0 < p < n, in particular because any polynomial function in the z-variables is holomor-
phic.

Example 12.12. Let’s review the case of a domain U C C. First, Hg’O(U) = O(U).

Theorem shows that Hg’l(U ) = {0}. The space H%’O(U ) consists of holomorphic 1-forms,
but since n = 1, any holomorphic 1-form is of the form f(z)dz, where f € O(U). So
HZ°(U) = O(U). Finally,

5. Oll 1,2
B U) = e o ot = @i = 00 (129
which also follows from Theorem [5.3]
13 Lecture 13
13.1 Jacobians
Let f:C" — C™. Let the coordinates on C" be given by
{2 =t iyt iy (13.1)
and coordinates on C™ given by
{wh, . w™} = {ut + ot u™ ™) (13.2)
Write
Te(C") = span{0/0x',...0/0x"™,0/0y",...0/0y"}, (13.3)
Tr(C™) = span{0/ou’,...0/ou™, 0/0v*,...0/0v™}. (13.4)

Then the real Jacobian of

f=0" . ™ =wofulof,...., "0 f). (13.5)

in this basis is given by

oft oft
ozl - Ay™
Jf=1 1+ ... (13.6)
8f2m af2m
Ozl oyn™




We define

0 —I,

Note that J&Cn = —1Id. We have the following characterization of holomorphic mappings.
Proposition 13.1. A C! mapping f : C* — C™ is holomorphic if and only if

feoJocn = Jocm o f. (13.8)
That is, the differential of f commutes with Jy.

Proof. First, we consider m =n = 1. We compute
o)\ o 1 0)\gs S&)°

on _on _on _on
0 ) d 3
oh _op | =\ on o | (13.10)

ayl Bal ox! oyt

says that

which is exactly the Cauchy-Riemann equations. The argument in general is similar, and is
left as an exercise. O]

For any differentiable f, the mapping f. : Tg(C") — Tr(C™) extends to a mapping

fo : Te(C) — T (C™). (13.11)
Consider the bases
Tc(C") = span{d/dz',...0/02",0/0%",...0/0z"}, (13.12)
Tx(C™) = span{0/ow",...0/0w™,0/0w",...0/0w™}. (13.13)
The matrix of f, with respect to these bases is the complex Jacobian, and is given by
oft .. oft oft . off
0z1 ozn ozt oz"
o o om L am
Oz1 2T El Zn
ij = 3?1 ?ﬁl gfl 8?1 (1314)
oL ... oL oL ... S0
A i oF"
ozt az™ ozt oz
where (f!,..., f™) = f now denotes the complex components of f. This is equivalent to
saying that
: af of!
dff =% ——d" ——dz". 13.15
=2 azkz+;azkz (13.15)
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Notice that (13.14)) is of the form
A B
j(Cf - (E Z) (13.16)

which is equivalent to the condition that the complex mapping is the complexification of a
real mapping.
What we have done here is to embed

Homg(R*",R*™) C Hom¢(C*", C*™), (13.17)
where C-linear means with respect to i (not .Jp), via

(A B> 1<A+D+z'(C’—B) A—D+¢(B+C))_

C D 2\A-D—-i(B+C) A+D—i(C— B)

: (13.18)

Notice that if f is holomorphic, the condition that f, commutes with J; says that the real
Jacobian must have the form

A -B
(f)r = (B A ) : (13.19)
This corresponds to the embeddings
Home(C",C™) € Homg(R*",R*™) € Home(C*",C*™), (13.20)

where the left C-linear is with respect to Jy, via

, A -B A+1B 0
A+zB»—>(B A)H( 0 A—z’B)' (13.21)

Note that since the latter embedding is just a change of basis, if m = n, then
det(Jr) = det(A +iB) det(A — iB) = | det(A +iB)|* > 0, (13.22)

which implies that holomorphic maps are orientation-preserving. Note also that f is holo-
morphic if and only if

f(TH0) c T, (13.23)

13.2 Holomorphic inverse function theorem

Proposition 13.2 (Holomorphic inverse function theorem). Let f : U — V be holomorphic
where U and V' are open subsets of C*. Let zy € U satisfy
ofi
det (a—ﬁk> (20) % 0. (13.24)

Then there exists neighborhoods U" of zy and V' of f(zo) such that f : U — V' is a biholo-
morphism.
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Proof. By the above, since f is holomorphic, we have

of’ 2
det(Fa.,) = )det (W)(zo)‘ 20, (13.25)
2
By the (real) smooth inverse function theorem, there exists a smooth inverse f~*: V' — U’
for some neighborhoods. We need to check that f~! is holomorphic. For this, we differentiate

the equation z = f~1(f(z)) using the complex chain rule to get

0 of~toft oaftoft  of ' ofk
0= Loz = L0 W O OT 0T (97
0z’ owk 0z ow" 07 ow”* \ 0z
The latter matrix has non-zero determinant in a neighborhood of zy, from which we conclude
that f~! is holomorphic. O

(13.26)

Corollary 13.3. Let f : U — C be holomorphic, and w € C be a complex regular value.
That 1s,

) )
Vef = (a—i,...,a—;)(z) £0 (13.27)

for all z € f~Y(w). Then f~Y(w) is a complex submanifold of U of complex codimension 1.
That is, near any point z € f~H(w), there exists a neighborhood U’ of z and a holomorphic
mapping V : V' — U’, where V' is a neighbohood of the origin in C", such that

Fol =z, (13.28)
and therefore (f o W)=Y (w) is locally a hyperplane.

Proof. This is an application of the inverse function theorem, the proof is left as an exercise.

L]
Exercise 13.4. Let f : C2 — C be given by

f(Zl, ZQ) = Z% + Z; + 21%9. (1329)
Determine the set of w € C such that f~!(w) is a submanifold.

Exercise 13.5. Generalize Corollary to the case of holomorphic f : U — C™ form > 1.

13.3 Anti-holomorphic mappings

Notice that if f is anti-holomorphic, which is the condition that f, anti-commutes with Jj,
then the real Jacobian must have the form

(for = (g _BA> : (13.30)

This corresponds to the embeddings

Homg(C",C™) C Homg(R*",R*™) C Hom¢(C*",C*™) (13.31)
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via

. A B 0 A+1iB
A+zBr—>(B —A)'_)(A—iB 0 > (13.32)

We see that f is anti-holomorphic if and only if
f(TH0) c T (13.33)

For an arbitary mapping, not necessarily holomorphic or anti-holomorphic, we can de-
compose f, = f¢ + fA, where

fe= % (f« = Jofso) (13.34)
F = S et dof). (13.35)

and f¢ is holomorphic, while f# is anti-holomorphic. In block matrix form, this just says

that

A B\ 1({A+D B-C\ 1(A-D B+C

(C D)_§(C—B A+D>+§(B+C D—A)' (13.36)
13.4 Almost complex structures

Recall that

Tw(C") = span{0/0x*,...0/0z"™,0/dy*,...0/0y"}, (13.37)
Above, we defined
Jo : Tr(C") — Tr(C") (13.38)
by
Jocn = ( I(L _OI”> : (13.39)
which satisfies Jg,(cn = —Id. This mapping is called an almost complex structure. Using this

mapping, we have some nice descriptions of the various spaces we previously introduced.
Upon complexification, we have the decomposition.

To(C") ® C = Te(CY) =T @ 791, (13.40)
We extend Jy to a mapping
Jo : Te(C?) — Te(CM) (13.41)

by complex linearity. Using Jy, we can describe the above decomposition as follows:
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Proposition 13.6. We have

T = span{0/027,j =1...n} = {X —iJoX, X € T,R*} (13.42)
1s the i-eigenspace of Jy and

T = span{0/077,j =1...n} = {X +iJyX, X € T,R*} (13.43)
1s the —i-eigenspace of Jy.
Proof. We leave as an easy exercise. O

Next, recall that
Ay = Hom(Tg,R) = span{dz’, ... dz", dy', ... dy"}, (13.44)
is the dual vector space to Tg. Upon complexification, we have a decomposition
AL =AY @ A% (13.45)
The map Jy also induces an endomorphism of 1-forms
JI AL — AR (13.46)
by
Jo (@) (v1) = w(Jovn).
Since the components of this map in a dual basis are given by the transpose, we have
Jo (dz;) = —dy;.  Jg (dy;) = +da;,

that is
0 I,
Jen = (_]n 0) : (13.47)

which satisfies (J7)? = —Id. We extend JJ to a mapping
Ji AL — AL (13.48)
by complex linearity. Using JI, we can describe the above decomposition as follows.
Proposition 13.7. We have
A = Hom(TH°,C) = span{dz’,j = 1...n} = {a —iJ] a,a € Axz(R*™)} (13.49)
is the i-eigenspace of J, and
A = Hom(T™,C) = span{dz’,j =1...n} = {a +iJl a,a € Axz(R*)} (13.50)

is the —i-eigenspace of JI.
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Proof. This is left as an exercise. O]

We also defined
A=A ®C (13.51)

and proved that there is a decomposition

M=ANoC= P A (13.52)
p+q=k
with
. n n
ametaen — (7). (7). 1359
Finally, we can define
JI:ANeC— AN eC (13.54)
by letting
JE(a) =P, (13.55)

for a € AP p+q=k.
In general, J! is not an almost complex structure on the space A% for k > 1. Also, note
that if @ € APP, then « is J-invariant.

14 Lecture 14

14.1 The J-equation for (0,1)-forms and Hartogs’ Theorem

A reference for this section is [HL84, Section 1.2]. For n > 2, and g € £%1(U), the equation
df = g is not always solvable. This follows from (17.14): applying O yields a compatibility
condition dg = 0. The following is in sharp contrast to the case n = 1.

Proposition 14.1. Letn > 2 and g € 58’1(((:") (compact support) have C* reqularity and
satisfy 0g = 0. Then there exists a smooth f € Cg°(C") (also having compact support) with
Of = g. Furthermore, f =0 on the unbounded component of C" \ supp(g).

Proof. We write g = 3", g;dZ’. Define

1 7
Foree ) —/gl(w’z” Zn) o A d, (14.1)
C

211 w— 21

The integral is defined since g; has compact support. Make the change of variable £ = w— 2,
and we can write f as

f(zl,---,zn) _ QL’/TZ./(Cgl(£+21’§27”"zn)d€/\df- (142)
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This shows that we can differentiate under the integral sign to conclude that f has C*°
regularity. Furthermore,

Of (215, 20) 1 0g1(&+ 21,29, ..., 20) 1 -
oz omi /C 07! glend
1 8gl(§+zl,22,...,zn) 1 -

= — — —déNd 14.3

27?2'/(; o€ gl N (143)

1 0g1(w, 29, ..., zn)

_ dw A di = oz,
211 J ow w— 9121, 2n)

by the Cauchy-Pompieu formula applied to a large ball containing the support of g. The
condition that 0g = 0 means that

0= Z Z agﬂ Gzt N, (14.4)

7=1 k=1
SO
9g; _ Ogk
—_— = = 14.5
0z, 0%, (14.5)
for all 1 < j, k <n. Then differentiating ([14.2)) for j > 2, we obtain
af(zl7'_"7zn) :L/agl(f—i_'zla—z%7Zn)1d§/\d§_
0%; 21 Je oz’ §
1 agj(§+21,22,...,zn)1 -
= — —dé N d 14.6
2m’/@ oz! 19 ENdE ( )
1 0g;(w, 22, ..., zy) _
= dw N\ dw = g; ey Zn)-
27rz'/(c ow w— ZICTRNED

So the equation Jf = g¢ is satisfied everywhere. Finally, since ¢ has compact support,
it follows that f is holomorphic on the complement of a large ball B,(0) containing the
support of g. But ( shows that f vanishes when max{|z|,...,|z,|} > r for some r
sufficiently large. Therefore f is a holomorphic function on C" \ B ( ) which vanishes on
the open subset V' = {max{|zs]|,...,|2s|} > r}. By unique continuation, f = 0 on the
unbounded component of C" \ supp(g). O

Theorem 14.2 (Hartogs). Letn > 2, U a domain, and K C U a compact subset of U such
that U \ K is connected. Then if u € O(U \ K), there exists i € O(U) with |y x = u.

Proof. Let 0 <y € C°(U) and x =1 on K. Define g = d(x - u) = d((x — 1) - u). Since
A(xu) = ud(x) + x9(u) = ud(x) + 0, (14.7)

we see that g extends smoothly to U, that is, g € ES’I(U), and 0g = 0. By Proposition m,
there exists f € C3°(C") with 0f = g. So then we let @ = (1 — x)u + f. This satisfies

Of =—g+0(f) =0, (14.8)
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sou € O(U). Let V denote the unbounded component of the complement of the support of
X Since supp(g) C supp(x), from Proposition [14.1]} we have that f = 0in V, so @ = u in
UNV. But since U \ K is connected and V N (U \ K) # (), we have & = v in U \ K from
unique continuation. O

Example 14.3. This gives another proof that point singularities are removable for n > 2.
Also, polydics are removable: if u is holomorphic on A \ A/, where A’ C A then u extends
to a holomorphic function on A. We also see that the same is true for balls B, (0) C B,,(0)
with r; < ra.

14.2 Dolbeault cohomology of a polydisc
Some references for this section are [GHTE, Section 0.2] or [Nogl6, Section 3.6].

Proposition 14.4. If U = A(r) is polydisc (with some radii allowed to be infinite), and
w e EMYU) satisfies Ow = 0 for ¢ > 1, then given any polyradius s < r, there exists
n € EPTYHA(r)) with On = w satisfied in A(s).

Proof. Step 1: reduce to case of £%9. If w € EPI(U),

w= Z wrydz' A dz7. (14.9)
[1|=p,|J|=q
Define
Wy = Z wUdEJ. (1410)
[J|=q

Then w; € £%9, and Ow; = 0. If w; = I, then
O(dz" Amp) = (=1)Pdz" A Onr = (—1)Pdz" A wy, (14.11)
SO

5(2 dz" Amp) = (—1)P dzf Awp = (—1)P Z Z wrydz" A dz, (14.12)

=p [|=p =p |J|=q

and we are done with Step 1. _
Step 2. Given s < 7, if w € E*(A(r)) and dw = 0 in A(r), then there exists €
EY1(A(r)) with On = w satisfied in A(s). Choose cutoff functions 0 < y;(¢) <1 so that

1 t<s;
(1) = - 14.13
it {O o (14.13)

We begin with ¢ = 1. Note that w € E%Y(A(r)), but it does not have compact support, so
we proceed differently than in the proof of Proposition [14.1] Write

w=Y wydz", (14.14)
k
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and define

1 (w22, ..,
Mz, .. 2" = — (w252 oy gt (14.15)

270 J il <r, wh — 21

Then 91, /0z' = x1wi, and we have

— om 0
gy = Z - iz = yandz' + > a:j 7. (14.16)

j>1

That is, we have solved the dz'-term, modulo terms involving dz’ for j > 1 (we have not
even used the fact that dw = 0 yet!) Next, we consider the case

w=Y wdz" (14.17)

k>1

Since Ow = 0, this tells us that dw,/0z' = 0. Next, we define

" 1 Yo (wa)wa (24, w?, 23, .. 2") .
(2, ..., ") = 5 = dw? A dw?. (14.18)

|w?|<ro

Then 91y /0% = xows and Iy /0Z' = 0, so we have

= one a772
ony = 7 szj = YowadZ? + Z 829 (14.19)

7j>2

Assume that we can solve all the terms involving dz* for k < [, and

W= wpdz". (14.20)

k>l

Since Ow = 0, this tells us that Ow1/07 = 0 for j < 1. Then we define

1 oo (Wi )wip (24 . w2
1 n + + + 5 ) ) ’ 1+1 1+1
o = — d Adw'™.
nl+1(z ) Jz ) 27TZ le+1‘§”+1 wl+1 _ Zl+1 w w
(14.21)
Then Onyy1 /07 = xp1wi41 and Oy, /077 = 0 for j < [, so we have
577l+1 = anlJrld_ = Xl+1wl+1d—+1 + Z anlJrl d_J (1422)
— 07/ o0z’
g>l i>l41
By induction, we are done with the case of ¢ = 1.
Next, consider the case of ¢ = 2. Then
w= Y wud AdZ =Y wyd AdE+ ) wpdzt AdE (14.23)

1<k<l 1<l 1<k<l
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Define n =, _; mxrdz", where

1 1 1 .2 o n
me(z 2" = o x(w Ml’j)(lw ’ZZI’ ) ot A di. (14.24)
‘ -

wl|<ry

Then 7y solves Oy, /0z = x1wik. So then

= 0
an=> at nd?t =Y viwnds' AdZF + R (14.25)
0z
1<k 1<k
where R doesn’t include any dz'-s. So we have solved the terms in w involving dz'-s. We

next assume that w is of the form

w= Y wudZ ANdZ =Y wyd? ANdZ+ Y wpdZt AdF (14.26)

1<k<l 2<l 2<k<l

Let n = ",_; noxdz" where

1 o (w?)wap (2t w?, 23, ... 2")
Mk = 5

2 2, 14.2
57 dw” A dw (14.27)

2 L2
|w?|<ro w z

Then Oy /0% = Yawae. Furthermore, since dw = 0, Onay,/0Z' = 0. So then

I => 0nudz*) => Y 8877;’“ dz' N dzF =Y xowndz® A dZ* + R, (14.28)

2<k 2<k 2<1 2<k

where R only has terms dz* A dz' for k,1 > 3. So we have solved as the term in w having
dz'-s or dz*-s. By a similar induction argument as in the ¢ = 1 case, we can solve all terms
in this manner. The case of ¢ > 2 is similar, and details left as an exercise. O

We next upgrade this to have no shrinkage.

Theorem 14.5. If U = A(r) is polydisc (with some radii allowed to be infinite), then
(1) = {0} for g > 1

Proof. Choose a monotone increasing sequence of polyradii ry < ro < ... with lim;_,,r; = 7.
Given w € E%(A(r), by Step 2, we can find 7; € £%1(A(r)) with dn; = w on A(r;). We do
not know that the sequence 7; will converge. However, d(n;+1 —n;) = 0 in A(r;). If ¢ > 2,
then by Step 2, we can find 3,1 € E%972(A(r;)) solving d(Bj41) = nj41 —n; in A(rj_). We
then consider the sequence 7}, = 1j:1 — 0(Bj41). Then 7}, € E*%(A(r;) and

= = =2
8(77;“) = 0njy1 — 0 (@'H) =w (14.29)
in A(r;_1), and this new sequence now obviously converges to a solution € E%¢(A(r) with
on = w in A(r).
If ¢ = 1, then we prove exactly like we did in the case of n = 1, by approximating the
difference 7,41 — n; by a polynomial P;;; to obtain a sequence so that

sup [1j41(2) —n;(2)| < 277, (14.30)
zeK
and we obtain a sequence converging on compact subsets to a solution. O
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Remark 14.6. Using Laurent series instead of polynomials, a similar proof works to prove
that Theorem [14.5] also holds for products A*(ry) X -+ X A*(rg) X A(rp1) X - A1),
that is, we can allow punctured 1-dimensional disks. With a lot more work, one can also
show that Theorem holds for €y x --- x Q,, with ; C C are domains. Note the result
is NOT true for a punctured polydisc A(0,r) \ {0} for n > 2, but we cannot prove that yet.

Remark 14.7. Theorem also holds for a ball B(0,7) C C". However, this is difficult
to prove directly. One could use the Bochner-Martinelli kernel instead of the Cauchy kernel
to prove Proposition [14.4f Then one would also need to prove that the B(0,r) is a Runge
domain, that is, O(B(0,7)) can be approximated by holomorphic polynomials uniformly
on compact subsets. However, it seems actually easier to prove this more generally for
any pseudoconvex domain (using Hormander’s L? methods), and then show that B(0,r) is
pseudoconvex.

15 Lecture 15

15.1 Almost complex manifolds

Definition 15.1. An almost complex manifold is a real manifold with an endomorphism
J: TM — TM satisfying J? = —Id.

The following lemma shows that we can always take J to be standard at any point.

Lemma 15.2. Let J : R*® — R?" be a linear mapping satisfying J> = —Id. Then there
exists an invertible matriz A such that A= 'JA = Jguec.

Proof. For X € R*", define

(a+ib)X =aX +bJX. (15.1)
Then R?" becomes an n-dimensional complex vector space. Let Xj,..., X, be a complex
basis. Then X, JX1,...,X,, JX, is a basis of R?" as a real vector space, and .J is obviously
standard in this basis. O

Remark 15.3. The Newlander-Nirenberg Theorem deals with the following question: when
can we make J standard in a neighborhood of a point? As we will see shortly, this cannot
possibly be true for an arbitrary almost complex structure; there is an integrability condition
which must be satisfied.

All of the linear algebra we discussed above in C" can be done on an almost complex
manifold (M, J). We can decompose

TM®C=T""eT™, (15.2)
where

T = {X —iJX,X € T,M} (15.3)
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is the i-eigenspace of J and
T'={X +iJX,X € T,M} (15.4)

is the —i-eigenspace of J.
The map J also induces an endomorphism of 1-forms by

J (W) (vy) = w(Jvy).

We then have

T*®C =AY @ A% (15.5)
where
AY ={a—iJ o, € Ty M} (15.6)
is the i-eigenspace of JT, and
A ={a+iJ o, € Ty M} (15.7)

is the —i-eigenspace of J7.
Next, we can define A»? C AP ® C to be the span of forms which can be written as the
wedge product of exactly p elements in A'Y and exactly ¢ elements in A%!. We have that

MeC= P A" (15.8)

p+q=Fk
decomposes as a direct sum.

Remark 15.4. This gives a necessary topological obstruction for existence of an almost
complex structure: the bundle of complex k-forms must decompose into to a direct sum of
subbundles as in ([15.8]).

We can extend J : A* @ C — A* ® C by letting
Ja =i a, (15.9)
for a € AP4 p+ q = k. Note we can also extend J to k-forms by
Ja( Xy, ..., Xy) = a(JXy, ..., JX}). (15.10)
Exercise 15.5. Check that these two definitions of J on k-forms agree.

Definition 15.6. A triple (M, J,g) where J is an almost complex structure, and g is a
Riemannian metric is almost Hermitian if

9(X,Y) = g(JX, JY) (15.11)

for all X,Y € TM. We also say that g is compatible with J.
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Proposition 15.7. Given a linear J with J*> = —Id on R*", and a positive definite inner
product g on R®™ which is compatible with J, there exist elements { X1, ... X,} in R*" so that

{X1,J Xy, ..., X, JX, } (15.12)
is an ONB for R*" with respect to g.

Proof. We use induction on the dimension. First we note that if X is any unit vector, then
JX is also unit, and

9(X,JX) =g(JX,J*X) = —g(X, JX), (15.13)

so X and JX are orthonormal. This handles n = 1. In general, start with any X, and let
W be the orthogonal complement of span{ Xy, JX;}. We claim that J : W — W. To see
this, let X € W so that g(X, X;) = 0, and ¢g(X, JX;) = 0. Using J-invariance of g, we see
that g(JX,JX;) = 0 and ¢(JX, X;) = 0, which says that JX € W. Then use induction
since W is of dimension 2n — 2. O]

Definition 15.8. To an almost Hermitian structure (M, J, g) we associate a 2-form
w(X,Y)=g(JX,Y) (15.14)
called the Kdhler form or fundamental 2-form.
This is indeed a 2-form since
wY,X)=g(JY,X) =g(J?Y,JX) = —g(JX,Y) = —w(X,Y). (15.15)
Furthermore, since
w(JX,JY) =w(X,Y), (15.16)

this form is a real form of type (1,1). That is, w € F(Aﬁél), where Aﬁé’l C AY! s the real
subspace of elements satisfying w = w.
In Euclidean space (R?", Jy, ggue), the fundamental 2-form is

i .
Wrwe = 5 Z dz? Nd7 . (15.17)
7j=1
We note the following formula for the volume form:

(%) dz' NdZP A AdZ" AN dET = dat Adyt Ao A da A dy” (15.18)

Note that this defines an orientation on C", which we will refer to as the natural orientation.
Note also that

Whye =0l da! Ady' Ao Ada" Ay (15.19)
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Proposition 15.9. If (M, J) is almost complex, then dim(M) is even and M is orientable.
Proof. 1If M is of real dimension m, and admits an almost complex structure, then
(det(J))? = det(J?) = det(—1) = (—1)™, (15.20)

which implies that m is even. We will henceforth write m = 2n. Next, let ¢ be any
Riemannian metric on M. Then define

WX,Y)=g(X,Y)+g(JX,JY). (15.21)

Then h(JX,JY) = h(X,Y) is J-invariant, so (M, J,h) is almost Hermitian. We then
consider the fundamental 2-form

Ww(X,Y) = h(JX,Y). (15.22)

This is a form of type (1,1), so w™ € A" = A% is a top degree 2n-form. It is nowhere-
vanishing since at any point € M by Proposition we can assume that both J, = Jgy.
and g, = gpue, s0 w"(x) # 0 by (15.19). Therefore, w gives a globally defined orientation on
M. O

Example 15.10. For example, RP" does not admit any almost complex structure, since it
is non-orientable for n even.

Definition 15.11. A smooth mapping between f : M — N between almost complex man-
ifolds (M, Jyr) and (N, Jy) is pseudo-holomorphic if

f*OJM = JNOf* (1523)
We have a useful characterization of pseudo-holomorphic mappings.

Proposition 15.12. A mapping f : M — N between almost complex manifolds (M, Jy)
and (N, Jx) is pseudo-holomorphic if and only if

f (T (M) € T (N), (15.24)
if and only if
frAY(N)) € AM(M). (15.25)

16 Lecture 16

16.1 Complex manifolds
We next define a complex manifold.

Definition 16.1. A complex manifold of dimension n is a smooth manifold of real dimension
2n with a collection of coordinate charts (U,, ¢,) covering M, such that ¢, : U, — C™ and
with overlap maps ¢, o gbgl t 9p(Us NUg) = ¢a(Uy N Upg) satistying the Cauchy-Riemann
equations.
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Example 16.2. Since holomorphic mappings are orientation-preserving by , any
complex manifold is necessarily orientable. For example, RP" does not admit any complex
structure. Note that we knew from Example [15.10| above that there is no almost complex
structure.

Complex manifolds have a uniquely determined compatible almost complex structure on
the tangent bundle:

Proposition 16.3. In any coordinate chart, define J, : T My, — T My, by

J(X) = (da)i ' 0 Jo 0 (¢a)eX. (16.1)

Then J, = Jg on U, NUg and therefore gives a globally defined almost complex structure
J:TM — TM satisfying J* = —1Id.

Proof. On overlaps, the equation

(¢a)s 0 Joo (Pa)s = (5)" 0 Jo o (¢0)- (16.2)

can be rewritten as

Joo ($a)i o (85)." = (da)u 0 (95)." 0 Jo. (16.3)

Using the chain rule this is

JO o (¢a o ¢El)* = (¢a o (bgl)* o JOa (164)

which is exactly the condition that the overlap maps satisfy the Cauchy-Riemann equations.
Obviously,

J2 = <¢a);1 © ']0 © ((boz)* ° (¢a);1 © ‘]0 o (¢0‘)*
= (da):" 0 Jg 0 (da)s
— (Bu) o (=Id) 0 (¢0). = —Id.

O
The next proposition follows from the above discussion on Cauchy-Riemann equations.

Proposition 16.4. If (M, Jy) and (N, Jy) are complex manifolds, then f : M — N is
pseudo-holomorphic if and only if is a holomorphic mapping in local holomorphic coordinate
systems.

Definition 16.5. An almost complex structure J is said to be a complex structure if J is
induced from a collection of holomorphic coordinates on M.

Proposition 16.6. An almost complex structure J is a complex structure if and only if
for any x € M, there is a neighborhood U of x and a pseudo-holomorphic mapping ¢ :
(U, J) — (C", Jy) which has non-vanishing Jacobian at x. Equivalently, there exist n pseudo-
holomorphic functions f7: U — C,j = 1...n, with linearly independent differentials at x.
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Proof. By the inverse function theorem, ¢ gives a coordinate system in a possible smaller
neighborhood of of x. The overlap mappings are pseudo-holomorphic mappings with respect
to Jy, so they satisfy the Cauchy-Riemann equations, and are therefore holomorphic. The
components of ¢ are functions f7,j = 1...n with linearly independent differentials, and
conversely, ¢ = (f1,..., f") is a local coordinate system. O

Proposition 16.7. A real 2-dimensional manifold admits an almost complex structure if
and only if it is oriented.

Proof. We have already proved the forward direction. Let M? be any oriented surface, and

choose any Riemannian metric g on M. Then * : A — Al satisfies > = —Id, and using
the metric to identify A' = T'M, we obtain an endomorphism J : TM — TM satisfying
J? = —Id, which is an almost complex structure. O

Remark 16.8. In this case, any such J is necessarily a complex structure. This is equivalent
to the problem of existence of isothermal coordinates, we will prove this soon.

16.2 The Nijenhuis tensor

When does an almost complex structure arise from a true complex structure? To answer
this question, we define the following tensor associated to an almost complex structure.

Proposition 16.9. The Nijenhuis tensor of an almost complex structure defined by
NX,Y)=2{[JX,JY] - [X,Y]| - J[X,JY] - JJX,Y]} (16.5)

is in D(T*M @ T*M @ TM) and satisfies

N(Y,X) = —N(X,Y), (16.6)
N(JX,JY)=—N(X,Y), (16.7)
N(X,JY)=N(JX,Y)=—J(N(X,Y)). (16.8)

Proof. Given a function f: M — R, we compute

N(fXY) =2{[J(fX), JY] = [fX, Y] = J[fX, JY] = J[J(fX), Y]}
= 2{[fIX,JY] = [fX,Y] - J[fX,JY] = J[fIX,Y]}
=2{f[JX,JY] = (JY(f)JX - fIX, Y]+ (Y )X
= J(f[X, JY] = (JY(f)X) = J(f[JX. Y] = (Y [)JX)}
= fN(X,Y)+2{—(JY ()X + (Y )X+ (JY()IX + (Y f)J*X}.

Since J? = —1I, the last 4 terms vanish. A similar computation proves that N (X, fY) =
fN(X,Y). Consequently, N is a tensor. The skew-symmetry in X and Y (16.6]) is obvious,
and ((16.7)) follows easily using J? = —Id. For ((16.8))

N(X,JY)=—N(JX,J?Y) = N(JX,Y), (16.9)
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and
N(X,JY) =2{[JX, JQY] - [X,JY] = J[X, J2Y] — JJX,JY]}
=2{-[JX,Y]| - [ X, JY|+ J[X,Y] - J[JX,JY]}

=2J{J[JX,Y]|+ J[X,JY]+ [X,Y] - [JX,JY]} (16.10)
= 2J{N(X,Y)}.
O
Proposition 16.10. For a C* almost complex structure J,
Ny eT({(A0 @ T™) @ (A2 ')}, ). (16.11)

Consequently, if dim(M) = 2n, then the Nijenhuis tensor has n*(n — 1) independent real
components. In particular, if n =1, then Ny = 0.

Proof. If we complexify, just using (16.6)), we have
N; e (A ®TM)® C))

_ F((A2’0 o A2 @ Al’l) 2 (T1,0 o T0’1)>. (16.12)
But says that the A'! component vanishes. So we have
Ny e (A0 @ A%) @ (T & 7)), (16.13)
Using (16.8), for X', Y’ € I(T' M), we have
Ny(X —iJX'",Y' —iJY")
= Ny(X',Y') = Ny(JX', JY") —iN,(JX',Y') — iNy (X', JY") 16.14)

= NJ(X',Y')+ Ny (X', Y') + iJN, (X, Y') + i INJ (X, Y)
= INS(X',Y') + 2iJN, (X', Y),

which lies in 7%!. This shows that the A** @ T%° component vanishes, so the A%? @ T%!
component also vanishes, and ([16.11]) follows since N is a real tensor. O

We have the following local formula for the Nijenhuis tensor.

Proposition 16.11. In local coordinates, the Nijenhuis tensor is given by

2n
N =2 (JronTy — JEonT] — Jh0; T3 + 0 J)) (16.15)

h=1

Proof. We compute

1

EN(a],ak) - [Jaj, Jak] - [a],ak] - J[aj, Jak] - J[Jaj,ak]
= [Jj-@l, 0] — 05, 0] — J[0;, JLOl] — J[J]’al, O]
=1+11+1I1+1V.
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The first term 1is

I = JO(Jf"0m) = I3 Om(J;01)
= JHOT) O+ JL T 00 — T (OO — T T2
= T O — (O IO

The second term is obviously zero. The third term is

11T = —J(0;(J})0) = —0;(Jh) " Orm. (16.16)

Finally, the fourth term is
IIT = 8,(J}) J" O (16.17)
Combining these, we are done. O

Definition 16.12. If J is an almost complex structure of class C! satisfying N; = 0, then
we say that J is integrable.

Corollary 16.13. If (M, J) arises from a complex structure, then J is integrable.

Proof. In local holomorphic coordinates J = Jy is a constant tensor, and N(J) = 0 follows

from Proposition [16.11] O]

Next, we have an alternative characterization of the vanishing of the Nijenhuis tensor.

Proposition 16.14. For an almost complex structure J the Nijenhius tensor N(J) = 0 if
and only if for any 2 vector fields X, Y € T'(T'?), their Lie bracket [X,Y] € T(T?).

Proof. To see this, if X and Y are both sections of T1? then we can write X = X' —iJX’
and Y =Y’ —iJY’ for real vector fields X’ and Y’. The commutator is

(X' —iJX )Y —iJY' = [ XY = [JX, JY'] —i([X', JY' + [JX', Y]). (16.18)
But this is also a (1,0) vector field if and only if
(X JY' |+ [JX) Y =JX, Y] - JJX, JY'], (16.19)
applying J, and moving everything to the left hand side, this says that
[(JX', JY'|— [ XY= JX,JY'T = JJX" Y =0, (16.20)

which is exactly the vanishing of the Nijenhuis tensor. O]
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17 Lecture 17

17.1 The operators 0 and 0 for an integrable almost complex
structure

Recall that on any almost complex manifold (M, J), we can define AP? C APT? ® C to be
the span of forms which can be written as the wedge product of exactly p elements in A%°
and exactly ¢ elements in A%!. We have that

MeC= A (17.1)
pta=k

We define £F, EE, EP4 to be the space of smooth sections of A*, AF @ C, AP4, respectively.
The real operator d : £& — 5{{“, extends to an operator

d:EE — EEM (17.2)
by complexification.
Proposition 17.1. For a C* almost complex structure J
d(gp,q) C gp+2,q—1 D 5p+1,q D gp,q—l—l oy gp—l,q+27 (17'3)
and Ny = 0 if and only if

d(EPT) C EPTLE @ gPAtT (17.4)

if and only iof
d(EW) c 20 p EMt (17.5)

if and only iof
d(E™) c eV @ £ (17.6)

Proof. Let o € P4 and write p 4+ ¢ = r. Then we have the basic formula
do(Xo, ..., X,) = > (-1VX;a(Xo,..., X;,..., X,)
3 (D) (X, X, Xy Ky Xy, X))

i<j
This is easily seen to vanish if more than p 4+ 2 of the X are of type (1,0) or if more than

q + 2 are of type (0, 1), and (17.3)) follows.
Next, assume that ((17.6]) is satisfied. Let a € £%!, then

da(X,Y) = X(a(Y)) - Y(a(X)) — a([X,Y]) (17.8)

then implies that if both X and Y are in T then so is their bracket X, Y]. Proposition|16.14
implies that N(J) = 0. Conversely, if N(J) = 0, then we can reverse the steps in this

argument to obtain ((17.6). Equation (17.5)) is just the conjugate of ((17.6).
Recall that if o € £¥ and 3 € &' then

dlaAB) =daA B+ (=1)FandB. (17.9)
The formula (17.4)) then follows from this. O
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If Ny =0, we can therefore define operators

0: & — gL (17.10)
0: &L — gkt (17.11)
using and
O\era = Mppirad (17.12)
0lgra = Hpparrd. (17.13)

Corollary 17.2. For a C* almost complex structure J with N; =0, d = 0+ 0 which satisfy
P2=0, 9 =0, 00+00=0. (17.14)

Proof. The equation d? = 0 implies that
0=(0+0)(0+0)=0*+00+00+0. (17.15)

If we plug in a form of type (p, q) the first term is of type (p + 2, ¢), the middle terms are of
type (p+1,¢+ 1), and the last term is of type (p,q + 2). Since ((17.1)) is a direct sum, the
claim follows. ]

Remark 17.3. If we assume that (M, J) arises from a complex structure, then we can just
define these operators in local holomorphic coordinates like we did in C" (and the prove that
they define global operators). The point of the above is that we only assumed integrability,
and did not use any local holomorphic coordinates.

17.2 Real form of the equations

Recall that for n = 1, any almost complex structure J satisfies N; = 0, so there is no
integrability condition. Let’s look at various forms of the equations.
We just look in an open set in real coordinates (x,y), and then we have

_ (alz,y) b(z,y)
J_<c($’y> d(x’y)). (17.16)

The only condition is

2
==t el ) 7
If we assume that J is not too far from Jy, then b ~ —1 and ¢ ~ 1, so we must have
a+d=0, a®+bc=—1. (17.18)
Note that since b ~ —1, we can solve ¢ = —(1 + a?) /b, but we won’t need to do this now. So

we just consider

C([I), y) —CL(:L‘, y)

J = (“(‘r’y) b, y) ) . (17.19)
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We want to find a pseudo-holomorphic mapping
¢: (U, J)— (C,Jy) (17.20)
which has non-vanishing Jacobian at 0. So we want to solve
¢y 0 J = Jyo o, (17.21)

If we write

u
(%

o(x,y) = <

then the pseudoholomorphic condition is

(o)) -0 () 20

which yields the 4 equations

x’”) , (17.22)

z,y)

—~

aug + cuy = —v,  buy — au, = —v,
avg + cvy = Uy bv, —avy = u,

(17.24)
This looks like 4 first-order equations for 2 unknown functions, so one wouldn’t expect a
solution. However, the first two equations imply the second two:
av, + cv, = a(—au, — cu,) + c(=buy + au,) = (—a® — be)u, = Uy, (17.25)
and
bu, — av, = b(—au, — cu,) + a(bu, — au,) = (—bc — a*)u, = u,, (17.26)
using the condition that a? + bec = —1.

Example 17.4. Let’s now do an example. Consider

2z -1
J = <1 4 42 _233) ) (17.27)

2 _ 2z —1 2x -1 B —1 0
7= (1 + 422 —21:) (1 + 4a? —21’) - ( 0 _1) 5 (17.28)

so this is indeed an almost complex structure.

From (|17.24)), the pseudoholomorphic equations are

We have

2xu, + (14 42%)u, = —v, (17.29)
— Uy — 2XUy = —Vy,. (17.30)
If a sufficiently smooth solution exists, then we have v,, = v,,, which yields
(22u, + (1 +42%)uy), = —(uy + 27u,), (17.31)
This can be rewritten as
Uy + 420Uz + (1 + 4:52)uyy + 2u, = 0. (17.32)
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Remark 17.5. This is a nice equation, because it looks like
Agu + lower order terms. (17.33)

We will return to this viewpoint later.

For now, we just notice that, by inspection, © = x is obviously a solution. We then return
to the pseudoholomorphic equations, and find that

vy, = =22, v, =1, (17.34)

so we can choose v = —z? +y. So our solution is ¢ = (u,v) = (z,y — 2*?). The Jacobian
at the origin is clearly non-degenerate, so we have found a holomorphic coordinate system.
Note that the mapping ¢ : R? — C is defined everywhere. It is injective: if we have
(1,51 — 23) = (z2,y2 — x3) then the first component says that z; = z, and the second
component then implies that y; = ys. It is also surjective: given any (u,v) € C, we let
29 = u, and then we need to solve y — u? = v, which obviously has a solution y = —u? + v.
Thus we have found that

¢: (R J) — (C,.Jp) (17.35)

is a global biholomorphism! Note that any function of the form f(z,y) = h(z + i(y — 2?)),
where h is a holomorphic function with respect to Jp, is then holomorphic for J, for example

f(z,y) = e*(cos(y — 2?) + isin(y — z%)). (17.36)

18 Lecture 18

18.1 The Beltrami equation
In the basis {0/0x,0/0y} we have J of the form
a(z,y) bz, y) )
J = 18.1
(C(.f? y) —CL(J,’, y) ( )

satisfying a® 4+ bc = —1. Using (13.18) to change to the complex basis {9/9z,0/0z}, then

we have

1 i(c—0 2a+1(b+c
1=3 <2a ! i(b+)c) —i(c(— b) )) (182)

For a complex valued function w, the equation 9w = 0 is Ijoadw = 0, which is

0=dw+iJdw = w,dz + wzdz + iJ (w,dz + wzdz)

18.3
= w,dz + wzdz + 1w, Jdz + twzJdZ. ( )
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Note that we need to use J : A — Al here, which is the transpose matrix of the above .J.
So we have

0 = w.dz + w=dz + %wz(z’(c —b)dz + (2a+i(b+ c))dz) + %wg((Za —i(b+ ¢))dz — i(c — b)dz)

1 1. 1, 1 —
= <wz + 5(6 —cw, + 5(2az +b+ c)wg) dz + (wg + 5(2@2 —b—c)w, + 5(0 - b)wz>(dz. |
18.4

Let’s look only at the second equation which is
1 1. .
<1+§(c—b)>wg: —5(2az—b—c)wz. (18.5)

If b — ¢ # 2, which is certainly the case if J is close to Jy, then the leading coefficient is
non-zero, and we can divide to get

v — 2;z+—cb_—bcwz (18.6)
Note that the first equation is
(1—1— %(b— c))wz = —%(2ai+b+6)wz. (18.7)
If 2ai — b — ¢ # 0, then we can divide to get
T Qiit—bb +chz' (188)
I claim these are the same equation. For this, we would need
20 —b—c 2+b—c
24c—b 2az'++b+c’ (18.9)
which yields
(2ai —b—c)(2ai+b+c)=2+c—b)(24+b—0), (18.10)
which is
—4a®> — (b+c)* =4 — (c—b)~ (18.11)
Expanding this out
—4a* — b* — 2bc — ¢ =4 — * + 2bc — b, (18.12)
which is true since a® + bc = —1!
Definition 18.1. The equation
wz + u(z,Z)w, =0 (18.13)

is called the Beltrami equation.
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18.2 Method of characteristics

This is a general method for solving linear PDE by solving nonlinear ODEs, we just explain
for the Beltrami equation. Let’s solve the nonlinear ODE

0

a_z = u(z,5), 2(0) = w. (18.14)
A solution exists locally provided that u(z,s) is a holomorphic function of 2 complex vari-
ables, or equivalently, p(z,y) is real analytic. The solution will depend on the independent
variable s and the initial conditions w, call the solution ®(s,w), and we write

z = ®(s,w). (18.15)

By the implicit function theorem, we can write w = w(z, s) in a neighborhood of (s,w) =
(0,0), provided that 92|y # 0. But this is

00| . ®(0,h) —0(0,0)
T o = Jm - — 1. (18.16)
So we have
z=®(s,w(z,s)). (18.17)

Taking the partial derivative of ((18.17) with respect to z yields
0% 0w

1=—" . 18.1
ow 0z (18.18)
Taking the partial derivative of (|18.17)) with respect to s yields
0P 0P ow
0= 2= 1 2277 18.19
Os * ow 0s’ ( )
which is
ow\ ~1 0w
_ 7y 2= 18.2
0=nzs)+(57) 5o (18.20)

which is the Beltrami equation upon letting s = Z.
Let’s return to Example ((17.4)), and solve using this method. Recall

2x -1 a b
J = (1+4x2 —Zx) - (c —a)' (18.21)

So we need to solve the Beltrami equation with

NZQai—b—c:4xi+1—1—4x2:m'—xzz_'x . (18.22)
24+c—0 24+1+422+1 1+ 22 i+x
Since z = (z + %) /2, we have
z2+z
Z)= ———. 18.23
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Let’s solve the ODE
— =pu(z,s), 2(0) =w. (18.24)

For our example, this is

dz z+ s
_— = 18.25
ds 20+ 2+ s ( )

To solve this, let’s make a change of variables p = z 4+ s. Then

%_1:_2iip, (18.26)
which gives
%:1_21'];;9: zz‘QJer’ (18.21)
or
(2i + p)dp = 2ids, (18.28)
which integrates to
2ip + %pQ =2is+C, (18.29)
which is
2i(z + s) + %(z + 5)? = 2is + C. (18.30)
Our initial conditions are z(0) = w, so we get
2i(z + s) + %(z + 5)? = 2is + 20w + %w? (18.31)
This is
w? + 4iw — 4iz — (2 +5)* =0 (18.32)
Using the quadratic formula and letting s = Z yields
w=—2i+\/—4+4diz + (2 +2)2, (18.33)

and we take the branch of the square root satisfying v/—4 = 2i. Note that this does not
agree with the above method, but this is because the initial conditions are different. The
above solution satisfies w(z,0) = z, but the solution found in the previous section was

w=z—ir’ =z — %(z +2)?, (18.34)
22.

which satisfies w(z,0) = z — i
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19 Lecture 19

19.1 Equivalence of J and p

The following proposition gives another way to think about almost complex structures for
n=1.

Proposition 19.1. If J is defined in an open set U which induces the standard orientation
on U, then there ezists a unique complez valued function p: U — B(0,1) C C so that

IO ={v+w | veTy'} C TeU. (19.1)

Explicitly, if

J=(¢ "), 19.2
¢ a2

with a® + bc = —1, then

2a1 —b—c

. 19.
2+c—b (19.3)

M:

Conversely, given a function - U — B(0,1) C C, writing p = f + ig, there is a uniquely
determined almost complex structure J given by

_ 1 2g —(1+f)?-9
/= 1— f2—g? (92+(1—f)2 —2g ) (19:4)

which has T})’l giwen by the above.

Proof. Given any such J, then we have previously defined
T ={X eTeU | JX = —iX} = {X'+iJX' | X € TRU}. (19.5)

We next claim that the projection 7 : Tg’l — Tgél is a complex linear isomorphism. These
are two 1-dimensional complex subspaces of the 2-dimensional space TU ® C, so there is a
complex linear projection mapping, which is given by

X' +iJX = X +iJX +ido(X +iJX) = (X — JoJX') +i(J + Jo)X'. (19.6)

Since both spaces are 1-dimensional, and 7 is complex linear, it is an isomorphism provided
it is not the zero map. Obviously, from , if J # —Jy then it is not the zero mapping.
We may therefore write T' 3’1 as a graph over T%l. To do this, we compute like last time:
using to change to the complex basis {9/0z,0/0z}, then we have

1/ i(c—b) 2a+ilb+c)

7=3 <2a —i(b+e)  —i(c—b) ) ' (19.7)
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Then a basis for the 1-dimensional space T?’l is given by

0 0 a i 0 0
— +iJ—=) ==+ =(i(b—c)— + (2 (b — 19.
52+ (5z) = g+ 5 (0 — gz + @arit+ o)) (19.8)
c—by 0 1 0
=(1 — 4+ —(2ai — b —c)—. 19.
<+ 5 >8§+2(al b c)az (19.9)
From this, we find that
2ai —b—c
S — 19.10
as claimed. Using a? + bc = —1, we compute
4(-1—-10 b 2 2+4+b—
pp= ALt bre) _ 24b-c (19.11)

(24 ¢ —b)?  24b—c

To show that |u] < 1, we use the orientation condition. Notice that the condition be =
—1 —a? says that be < 0, so there are 2 components to the set of almost complex structures,
determined by the sign of b: if b < 0, then this is the component inducing the standard
orientation. In this case, we have

2+b—c

— <1 19.12
—-2+b—c ( )

is equivalent to

24b—c>-2+b—c (19.13)

which is obviously true.
Next, given any such function p, we define

0 0
Tg’l = Span{% + ua} (19.14)
Define
0 0
Ti’o = span{& + E%} (1915)

We claim that T, N T' = {0}. To see this, if the intersection was non-zero, then there
would exist o € C so that

0,0 ( 9 172 ) (19.16)

R PR G
This clearly implies that & = p and then |u[*> = 1. But we have assumed that |u| < 1, so
the claim follows. To find the corresponding almost complex structure J, we must have

0 0 P
ot =X +iJX, (19.17)
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for some real tangent vector X’. We then write the real and imaginary parts of the left hand
side:

0 o 1,0 .0 1s0 .0
5 5~ 2l tigy) U 955 ) o
1 0 0 i/ 0 0 '
=5+ ngg+ag) +3log +a-07).
So we must have
0 0 0 0
I+ Ny +og.) =95, + 0= Dg (19.19)
and since J? = —Id,
0 0 3} 0
J(g% (11— f)a_y> - —((1 + 5 +ga—y>. (19.20)
A simple change of basis computation shows that
_ 1 29 —(L+f)? =g
J = T <g2 (1= f “9g . (19.21)
[

This gives another way to understand the Beltrami equation. Given p : U — C with
|| < 1, then since

0 0
01 _
T = span{£ + ’“‘&}’ (19.22)
a function w : U — C is holomorphic if and only if
0 0
— — =0 19.23
((95 i 'u82>w ’ ( )
or
wz + pw, = 0, (19.24)

which is exactly the Beltrami equation. We can just completely forget about the matrix
version of .J, and parametrize almost complex structures by a single function p : U — B(0, 1).

Remark 19.2. This proposition also shows us that the regularity of J : U — GL(2,R) is
the same as the regularity of p: U — B(0,1). That is, J is C*%, C>, C¥ if and only if yu is
also.

Remark 19.3. The complex structures inducing the reversed orientation correspond to
|p| > 1 together with the point at infinity, which corresponds to the complex structure —.J.
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19.2 Another example

This example will be crucial in proving convergence in the analytic case, and is called a
Cauchy majorant.

Proposition 19.4. For p > 0, let
1 z4+7z

u*ZC(

which is analytic in the polydisc P(p/2) = {(z,2) | |z| < p/2,|Z| < p/2}. Then there is a
solution w* of the Beltrami equation w3 + p*(z,Z2)wk = 0 satisfying w*(z,0) = z, and which
is analytic in the polydisc P(p") for some p’ > 0.

Proof. We first observe that

1—(z}|—z Z<Z+Z> (19.26)

k=

which converges uniformly on compact subsets in P(p/2) since
|z +Z| < |z| + 2] < p/2+ p/2 = p. (19.27)

First, if C' = 0, then the solution is w(z,Z) = z. So we assume that C' # 0. To find the
solution w*, we use the method of characteristics from the previous lecture. First, solve the
ODE

dz

it *(z,s) (19.28)
with initial condition z(0) = w. So we need to solve the ODE
d
@ _ g s 2(0) = w. (19.29)

ds p—2—8

Letting p = z + s, and the equation becomes

d C C—-1
oy Cp _p(CoUp gy, (19.30)
ds p—p p—p
This is separable, so we rewrite as
pP—P
———— dp=ds 19.31
p+(C—=1)p (19.31)
If C =1, then we have
(p—p)dp = pds (19.32)
Integrating yields
1
—§p2 + pp = ps + Ch. (19.33)
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Plugging in the initial conditions p(0) = z(0) = w gives

1 1

Using p = z + s and substituting s = Z, we can rewrite this as
w? — 2pw — (2 +2)* + 2p(z + ) — 2pz = 0. (19.35)

Using the quadratic formula, we obtain the analytic solution

w=pt\p?+(z+32)?2 -2z, (19.36)

which is clearly analytic in a sufficiently small polydisc. To finish, we choose the branch of
the square root so that

w(z,0)=pt\/pP?+22—2pz=pt\(z—p2=p+z—p=_=z (19.37)

Next, if C' # 1, then we can write

P+€Cfl)p20i1<_1+%>' (19.38)

So the equation is
( —1+ ﬁ)dp = (C — 1)ds. (19.39)

Integrating yields
Pt CCfl log(p+ (C'—1)p) = (C' = 1)s + Ch. (19.40)

Plugging in the initial conditions gives

¢ C
—p+ c _pl log(p+ (C —=1)p) = (C = 1)s —w + - _'01 log(p + (C — 1w). (19.41)
In terms of z = p — s, this is
Op 0,0
—z+ o1 log(p+(C—1)(z+s)) =Cs—w+ o1 log(p+ (C' — Nw). (19.42)
Rewrite this as
Cp Cp
w — o1 log(p+ (C —1w) =2+ Cs — o1 log(p+ (C = 1)(z+s)). (19.43)

Note that near (z,s) = (0,0), the right hand side is an analytic function of the variables
(z,5). If we let

Cp
C—1

fw) =w— log(p + (C — Nw), (19.44)
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then f is analytic near w = 0. Also,
fo)y=1-C#0, (19.45)

since C' # 1 by assumption. By Proposition (the holomorphic inverse function theorem),
f~! exists and is analytic in some neighborhood of f(0) = 0. So then we have

_ f-1 _ _
w=f (z +Cs o1 log(p+ (C' —1)(z+ s))) (19.46)
is analytic. Setting s = z, we have
C
w = f‘1<z+C’E— P _log(p+ (C — 1)(z+z))) (19.47)
C-1
which is analytic. Note also that
C _
w(z0) = {7 (2 = 5L loglp+ (C=1)2)) = FH(F() =2 (1949)
so the correct initial conditions are indeed satisfied. O]

20 Lecture 20

20.1 The Beltrami equation: analytic case

To make the signs work out nicely, we consider instead the equation
wy = u(z, 2)w,, w(z,0)=z. (20.1)

Note this is equivalent to our original Beltrami equation by letting zZ — —Z, with u(z,%) —
—u(z,—Z). This transformation does not change the initial condition of w(z,0) = z. As-
suming u is analytic, we have a convergent power series expansion

(2,2) = Zuj,;zjik = Z Z iz = Z,ul (20.2)
ik =0 j+k=l

Using Lemma[15.2] we can make the ACS standard at the origin, which implies that o = 0,
that is, © has no constant term. We also write

w = ijkz z° = Z Z w2 zZh = Zwl (20.3)
jik

=0 j+k=I

We want to find a holomorphic coordinate system, so we make the assumption that wy =0
and w, = z.
We then have

=> o (20.4)
=2

w, =1+ d.wy. (20.5)
=2
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We then want to solve
o

=St = = () (14 o) = (L) + X T o

=1 =2 j+k=1,j>1,k>2
(20.6)

We then find the recursion relation

%wlﬂ = Uy + Z /Ljazwk. (207)

JHk=141,j>1k>2

Note that in the sum on the right hand side, we must have k < [, so this in indeed a recursion
relation, provided that we can solve for w;,;.

Fixing [, the right hand side is just a homogeneous polynomial of degree [ in the variables
zand Z. In general, if fy =37, . (150 hype’Z", then

1
Fui= Y, Whﬁk'z]_kﬂ (20.8)

j4k=1,j>0,k>0
is a homogeneous polynomial of degree [ 4+ 1, which satisfies O-F = f.

Remark 20.1. Notice that our “inverse” of the d-operator on homogeneous polynomials of
degree | does not contain any terms proportional to z/+1. Our inverse operator is unique with
this condition. If we had not imposed this condition, one could have chosen w; = 12!+ O(z),
in which case our series would definitely not converge! Also, if we view our series as a power
series in 2 complex variables, then formally w(z,0) = z exactly because of this choice of
inverse to 0.

Proposition 20.2. The coefficients w;;, for j+k =1 are a polynomial of degree [ —1 in the
tpg for p+q <l with all coefficients non-negative rational numbers.

Proof. Let us examine the first few steps of the iteration. We have wgg = 1, wip = 1, and
woi = 0. The term wsy is determined by

Ozwz = pi1 = p152 + HoTZ, (20.9)
SO
I
Wy = 1927 + S Ho1Z" (20.10)
SO
1
wyo =0, Wit = g, Woa = SHoT- (20.11)

To illustrate, let’s do one more step. The term w3 is determined by

Dzws = po + p110,wa = g2’ + Wi2Z + peaZ” + (o2 + HoiZ) (p107)

B " (20.12)
= f1952" + (g1 + M%())ZZ + (f10z + Hoi o)z
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SO

1 _ 1 _
wy = 1252 + 5t + pip) 27 + 3 (ho2 + [101H15)Z" - (20.13)
SO
1 , 1
wyp =0,  wWap = oy, Wiz = 5(#11 + 1), Woz = g(ﬂo? + 1o f15), (20.14)

and the claim is evidently true.
To do the general case, we prove by induction: assume the claim is true up to for 0,...,,
and we prove for [ + 1. Recall that

Ozwi1 = py + Z ;0 W, (20.15)

Jtk=l+1,j>1,k>2

By induction, the coefficients of wy, for k <[ are polynomials with non-negative coefficients
in the p,; with p 4+ ¢ < k <1, so that d,wy, is also of this form. Then since

pi= > e, (20.16)
k4i=j
any term p;0,wy is also a polynomial in the ;7 with non-negative coefficients.
To get w1, recall that if f; = Zj+k:l,j20,k20 hix2?Z*, then
1 .
Fip = Z —— 22 (20.17)
j+k=1,j>0,k>0

is a homogeneous polynomial of degree [+ 1, which satisfies 0;F = f. Clearly, this preserves
non-negativity of the coefficients, and we are done. n

Theorem 20.3. If u(z,z) is analytic in the closed polydisc |z| < p, |Z| < p, there there exists
a unique solution of the Beltrami equation

ws = u(z,Z)w, (20.18)

which is analytic in the polydisc |z| < p,|Z| < p/ for some p' > 0, and satisfies the Cauchy
data

w(z,0) = z. (20.19)
Proof. By assumption, the series
p=> ppre (20.20)
j.k
converges for any point in the polydisc
P(p) = {(2,3) | |2 < p,I7] < p}. (20.21)
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with uniform convergence in the polydisc P(p/), for any p/ < p. So for any (2,%Z) € P(p'),
there exists a constant C' > 0 so that

|1;z2"7"] < C (no summation). (20.22)
Choosing (z,z) = (¢, p), this implies that
Jsel < C() 7, (20.23)

To simplify notation, let’s call p’ by p. Then we define

1 z+z
*:O( —1) _o2TE 20.24
a 1—(z24+2)p! p—2—7Z ( )
which is analytic in the polydisc P(p) = {(z,2) | |z| < p,|Z| < p}. We have
e (B+D
p= C’Z z+z)p Tl =C Z -t Il AL A (20.25)
j>1 (k1)
Since the multinomial coefficients are at least 1, we therefore have
— (j + k) —j— *
il < Cp™7F < TG IR = (20.26)

Recall from Proposition that there is a solution w* of the Beltrami equation for u*
satisfying w(z,0) = z which is analytic in P(p’) for some p’ > 0. Write the power series
expansion for w* as

> wpEh (20.27)
(4,k)#(0,0)
Recall that our formal power series solves
wiz = Pyi(ju.e) (20.28)

where Pj;; is a polynomial with positive coefficients depending only upon f,4 for p+¢q < j+Fk.
Since w* is an analytic solution of the Beltrami equation with p*, we must also have

wii, = Pii(pi), (20.29)
where Pjj is the same polynomial since 1*(0,0) = 0 and w*(2,0) = z. We then estimate
|wjk = [Py (pes)| < Prillps]) < Pip(pis) = wiz. (20.30)

The inequalities hold since Pjj is a polynomial with real non-negative coefficients, and using
(20.26)). This shows that our power series is majorized by the power series of w*, which implies
that the power series for w also converges in the open polydisc P(p’), by the comparison
test. O

This finishes the proof in the analytic case. Soon we will discuss a method to reduce the
finite regularity to the analytic case, due to Malgrange.
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21 Lecture 21

We will next discuss an alternate approach to this problem using elliptic theory, which only
works for n = 1.

21.1 Reduction to an elliptic equation

Theorem 21.1. If (M?,J) is a real 2-dimensional almost complex manifold with J of class
O, then J is a complex 1-manifold. That is, near any point x € M, there exists a neigh-
borhood U and a holomorphic coordinate system f: U — C.

The proof will be given over the next couple of lectures. To begin, given any point x in
M, by Proposition [16.6} we need to find a function f : U — C where U is a neighborhood
of x satisfying d;f = 0 in U, and 9, f(z) # 0. This equation is

0=20,f=df +iJdf. (21.1)

Let us write f = u + iv, where v and v are real-valued. Then we need

0 = du+idv+iJ" (du +idv) = (du — J"dv) + i(dv + J" du). (21.2)

Note that applying JT to du = J'dv, results in dv = —J du, so if we solve the single
equation

du = J'dv, (21.3)

then f = u + v will be pseudo-holomorphic. Note that
Of = (du+ J¥dv) +i(dv — J'du) = 2(J dv + idv), (21.4)
so if dv(z) # 0, then df(x) # 0. To solve (21.3), we apply the exterior derivative d to get
dJ dv = 0. (21.5)

If v solves (21.5)), then J”dv is closed, and by the Poincaré Lemma, we can solve J'dv = du
in any simply-connected neighborhood U of z. To summarize, we have reduced the problem
to finding a simply-connected neighborhood U of z, and a function v : U — R with dv(x) # 0

solving the equation dJ”dv = 0.
Let us write out the above equation (21.5) locally. With respect to the basis {0, 9, }, we

have
a b
J = (c —a) (21.6)

With respect to the dual basis {dz, dy}, we have

JT = (Z _Ca) (21.7)



So the equation is

dJ dv = d (Z ) ( ) d((avx + ev,)da + (buy — avy)dy> (21.8)
( avy + cvy)y — (bug, — avy)x)dy A dzx. (21.9)
So the equation is equivalent to
(avy + cvy)y — (buy, — avy), =0 (21.10)
Let us write this as
Vg + Vyy + (a0 + (¢ — D)vy)y — (0+ vy —avy)y =0 (21.11)

If J=Jy+o0(l) as z — 0, then we see that our equation is a perturbation of the Laplacian,
and we might hope to use perturbation methods to solve.

21.2 Inverse function theorem

The following is a version of the inverse function theorem for linear operators.

Lemma 21.2. Let .% : By — By be a bounded linear mapping between two Banach spaces
such that F (z) = £ (x)+ 2(x), where £ and 2 are both bounded linear mappings. Assume
that

1. £ s an isomorphism with bounded inverse T .
2. 2 satisfies || 2] - |T]] =9 < 1.

Then F is also an isomorphism and
[EZ2 [ 1 7511 (21.12)

Proof. Given f € By, we want to solve the equation #x = f for a unique x € B; with a
bound ||z||z, < C||fl|s,. Writing & = Ty, then the equation we want to solve becomes

F(Ty)=(ZL+2)(Ty) = f, (21.13)
or
y=f—2(Ty) (21.14)
So we would like to find a fixed point of the operator S : By — Bs defined by

Sy=f—2(Ty) (21.15)
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We next claim that under the assumptions, S is a contraction mapping from By to By. To
see this, we compute

1Sy1 — Syall, = |2(Ty1) — 2(Ty2) ||,
< |2l Ty — Ty:l|5, (21.16)

<2170 - lyr = y2lis. = dllyr — w2lls.-

where 0 = || 2||||T|| < 1 by assumption. We then let yo = 0, and define y; 11 = Sy;. If
n > m, we have

n
1y = mlls < D Ny; = yi-1llss
j=m+1

= > 15y = 5 ol
jomi1 (21.17)

< Z &y = yolls,

j=m+1
<y = w0l
=15 Y1 — Yol||Bs-

The right hand side limits to 0 as m — oo, so the sequence y; is a Cauchy sequence in
the Banach space By, which therefore converges to a limit y.,. Since S is continuous, we
therefore have

SYoo = 5 lim y; = lim Sy; = lim y;11 = Y. (21.18)
j—o0 j—o0 j—o0

Take m =1 in (21.17)) to get

o )
lyn — w1l < —=llvs — wolls, = —=|lw1lls, (21.19)
-0 1—-0
Letting n — oo yields
)
lyeollse = lgills. < llyoo = 1lls, < 75191l (21.20)
Then x, = Ty is a solution to F(z) = f and
1
lzecllsy < NTMYollss < 75171 1 fll52, (21.21)

since y; = S(yo) = S(0) = f, which implies (21.12)). Finally, uniqueness then follows from
L) .
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22 Lecture 22

22.1 Holder spaces

Given a subset D CR", 0 < a < 1, and f: D — C, we define

| flleow) = sup [u(z)] (22.1)

[flasp = sup M (22.2)
syeDazy | =Yl

[fllcoawy = [Ifllcow) + [fla,p- (22.3)

The space of continuous functions on D is denoted C°(D), and is a Banach space with the
norm (22.1). The space of Holder continuous functions C%*(D) C C°(D) with the norm
(22.3) is a Banach space. Note that only defines a seminorm.

Given k > 0, and a multi-index § = (ji, ..., Jn) with j, >0, and |B| = j1 + -+ jn = k,
we define the seminorms

[flep = sup |65u(x)\, (22.4)
zeD,|B|=k

[f]k,a;D = sup [86f]a,D' (225)

|Bl=Fk

Then we define norms by
k

| fllewpy = Z[f]j;D (22.6)

=0
| fllerepy = 1 fllcky + [flkasn- (22.7)

The space of k-times continuously differentiable functions on D is denoted CKE), and is
a Banach space with the norm (22.1). The space of functions C**(D) C C*(D) with the

norm (22.3) is a Banach space.
Exercise 22.1. Show that if f;, f, € C*%(D), then so is fifo € C**(D) and

I folloramy < I filleram) - I f2llorem) (22.8)

22.2 Solution of the Beltrami equation

Recall from above, we have reduced the problem to finding a simply-connected neighborhood
U of x, and a function v : U — R with dv(z) # 0 solving the equation dJ”dv = 0, which is

Vo + Uy + (a0 + (¢ — 1Dvy)y — (b4 1)v, — avy), = 0. (22.9)

Since J = Jy + o(1) as (z,y) — (0,0), we have that a — 0, b — —1 and ¢ — 1, so let us
simply redefine b to be b + 1 and ¢ to be ¢ — 1, and rewrite the equation as

Vgz + Uy + (a0 + cvy)y — (bvy — avy), = 0, (22.10)
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where we now have a,b,c — 0 and (x,y) — (0,0). Since we only need a solution in a small
neighborhood, let’s turn on our microscope and write for € > 0

¥ =ex,y = ey, v (2, y) =v(ex!, erf). (22.11)
The equation in the new coordinates is
Uy + Uy, + (a0, + cvy))y — (D0, — d'vy), = 0, (22.12)

where &' (2, y') = a(ex’, ey’), and similarly for ¥', ¢’
Writing v' = 3/ + h, we get

huw + hyy + (a'hy + ' hy)y — (V' hy — a'hy)e = al, + c;. (22.13)
We define
By = C2%(B1(0)) = {u € C**(B,(0)) | w =0 on dB;(0)} (22.14)
By = C**(B,(0)) (22.15)
F(h) = hyy + hyy + (a'hy + hy)y — (V' hy — a'hy) s (22.16)
L (h) = hyy + hyy (22.17)
2(h) = (d'hy + hy)y — (V' hy — a'hy) s (22.18)
So we have

Proposition 22.2. Ifd',V/,c € C%*, then the mappings F, L, 2 are bounded linear map-
PINgs.

Proof. First, for £, we have
| ZLHllcoa = [oe + By lcoe < Cllllcea, (22.20)
just by definition. For 2, consider for example
' hayl|coe < la'llcoe - [hayllcon < Cllhllc2.a, (22.21)
the other terms in 2 are treated similarly. O

Proposition 22.3. There exists a constant C' > 0 so that the operator norm of 2 satisfies
|12 < Ce”. (22.22)
Proof. Take a term in 2 like above, that is
@' hayl|coe < [l o - [[Payllcoe < fla'llcoa - [|A]lc2e (22.23)
Since a € C%*(B;(0)) with a(0) = 0, the Holder assumption on a implies that

la(z,y)| < lallo«]2]*. (22.24)
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So then we have

la'llcogs,) = sup |a(2’,y)| = sup |a(z,y)| < [lalcas,) - € (22.25)
x'eBq r€ B,
Next, we have
|a'(z") — d'(y)]
[d']co.ap,y = sup (22.26)
(B1) 'y By’ Ay |.f17/ _ y/‘a
= ¢ sup kf@ﬁlilfégll (22.27)
Z,YE Be,x#y |I - y|
< €” [a]CO’a(Bé)- (2228)
Other terms are treated similarly to obtain
|2h]|coa(s,) < €*(lallcons,) + [bllcoxs.) + llellcoas))bllczem,). (22.29)
Finally then, the operator norm is
B@h 0, o
2l = sup 2 < o afcnny + bllcnecsy + ilicnea) (22:30)
o ||llcze
]

Now we recall the fundamental result about the Dirichlet problem for the Laplace oper-
ator.

Theorem 22.4. The mapping Ay : Co*(B1(0)) — C%*(By(0)) is an isomorphism with
bounded inverse, that is, there exists a constant C' so that if Aqu = f and u = 0 on the
boundary, then

ullc2.e(B,0)) < Cllfllcoa(s (o)) (22.31)

Proof. We just indicate how this is proved. Any solution is unique by the maximum principle.
There is actually an explicit integral formula for the solution

= | G Wy (22.32)

where G(x,y) is the Green’s function defined by

L (log|z —y| —1 — 2 0
G(W)_{Qf(ogm yl—tog (Iylle —y/lyl) y#0 223
35 log |z] y=0

Then one can just directly verify this is a solution if f € C%*(B;(0)), and also directly verify

the estimate ([22.31)); see [GTO1]. O
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Now, we can use the Inverse function theorem (Lemma [21.2)) to obtain that for e suffi-
ciently small, the operator .% : By — B, is an isomorphism with bounded inverse satisfying

IZ = <l (22.34)
Recall that we need to solve
F(h)=a, +c, (22.35)
Since .Z is an isomorphism, there exists a solution A satisfying
1Bllczamy) < Cllag + ¢ lloae,) < Cellag + ¢yllcos,) < C'e® (22.36)
So then we have that v = y + h satisfies
[0, (0) — 1] < C'e”, (22.37)

So our solution v = y + h satisfies the necessary gradient condition at the origin for e
sufficiently small. This completes the proof of the theorem.

Unfortunately, the trick in this subsection does not help us to solve the Newlander-
Nirenberg problem in higher dimensions. We will next discuss another method which is
more complicated, but has the advantage that it can be extended to the higher dimensional
case.

23 Lecture 23

23.1 Reduction to the analytic case

In the subsection, we will discuss a method of Malgrange, which transforms the smooth
case into the analytic case [Mal69], [Nir73, Section I.4]. We want to change coordinates
€ = £(z,%) so that such that our solution of the Beltrami equation in the z-coordinates

wz + p(z,2)w, (23.1)
transforms into another Beltrami equation,
We + U(E,OWe =0, (23.2)

with U analytic. Note that we want a real change of coordinates, so if we write & = &; + i,
we need

SIS
ox 0
det (@ a_é) (0,0) # 0. (23.3)
ox dy
As we know, after a change of basis, this is
oe  o¢
2: oz o0& 2 0
det [ 2 %) (0,0 :‘—00‘ ~ 1% 0,0
( ><,> 0,0 = |520.,0)

%€ 0
0z 0z

2

£0. (23.4)
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Write

Then
8w ow 85 ow (95

9z ooz oE oz (23.7)
ow OW o  OW O¢
= ) 23.
9z 002 o 0= (23.8)
So the Beltrami equation becomes
ow o¢ oW 8§ oW o0& OW O¢
— 23.
o T ara - U 5)(a§ 2. T oE 5 (23.9)
which we can write as
% 4 y(g. €)%
a_W:_<g§+ (5’5_);)86“/, (23.10)
0 E+UE g ) %%
which is another Beltrami equation with a new right hand side
&+ U(E L
I )5z 23.11
U&= e o, z5.1)
Let us try to find the coordinates so that
21'7(5 £) =0 (23.12)
gel&:8) = 0. .

Then then new U will be anti-holomorphic and therefore analytic by the Cauchy integral
formula. From the chain rule, we have

0 0z0 0z0

%= 55 e (23.13)
and we have
o~ U(€,€)E-
il ==
¢ €8 = ¢ <£z U(&, €& ) ) (23.14)
B &+ U(E 95 |
— (zg?z + 25&2> <m)

By the inverse function theorem, we have

o) (& 52)1:;(52 N
(Eg Ef) (52’ 62 |€Z|2_|£E|2 _é’z 52 ) (2315)
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SO

1

We therefore have
9 -~ 1 : : &+ UL
————(£:0, — £,.07) | ¥—————= 23.18
52069 = gpiep & 80 (e o) 2519
If we multiply through by the leading factor, we want to solve
: &+ U 98
0= (&0, — £.05) | —r—=— 23.19
&0~ 80 (e o) 2519

but keep in mind that we need to find a solution with [£,]*(0,0) — [£z[*(0,0) # 0. Converting
the U(, &) term back to the (z,Z) coordinates, we have

- &+ 1z, 2)E
0= (£, — £.0:) (—_> (23.20)
é-?—i_ :u( ) )éz
The equation (24.20)) is quasilinear of the form
F(D%*, D¢ €, 2,Z) = 0. (23.21)
Definition 23.1. The linearization of F' at a function £ is given by
d
F{(h) = —F(D*(§ +th),D(§ +th),§ + th,2,Z)| . (23.22)

dt t=0

The linearization is too complicated to write down in general, but the following is all
that we really need.

Proposition 23.2. Assuming u € C*, then the linearization of F at £ = z is
Fi(h) =0, <hz + pu(h. — hz — M%)) + s, — hepiz. (23.23)
If 1(0,0) = 0, then we have
F.(h)(0,0) = iAh + c1h, + eah, + c3hz + cihs. (23.24)

for some constants cy,c, cs,cq. If pi has sufficiently small CY®, norm then F! is an elliptic
operator with Holder coefficients bounded in C*.
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Proof. We write out

F(D*(& +th), D(€ + th), & + th, 2, %) (23.25)
— (€ h):0. - €+ 1h).0:) (g j: Zi) j: Z Ez?(g 1 EZ;) (23.26)
Letting & = z, this becomes
F(D*(z +th), D(z +th), z + th, 2, Z) (23.27)
_ ((1 +th,)d, — tﬁzc%) (E}fﬁg()z f)ﬁfé;?ﬁ)) (23.28)
We also see that
FU(h) = 0. (b= + pu(he = b = ph.) ) + hep — hepis (23.29)
Noting that
2
3z = 2z~ 1ay) (3 + i) = 380 (2830)
the proposition follows from this. O

We next need the inverse function theorem in Banach spaces.

Lemma 23.3. Let F : By — By be a C'-map between two Banach spaces such that F (x) =
F(0)+ Z(x)+ 2(x), where the operator £ : By — By is linear and 2(0) = 0. Assume that

1. Z is an isomorphism with inverse T satisfying || T|| < Cy,
2. there are constants r > 0 and Cy > 0 with r < m such that
(a) |2(x) = 2(y)lls, < Co - ([lzlls, + lylls,) - [l = wlls, for all z,y € B,(0) C B,
() 1Z0)s, < 55
Then there ezists a unique solution to F (x) =0 in By such that
z]l5, < 3C1 - [|.F(0)||s,- (23.31)
Proof. Writing x = T'f, we can write the equation .#(x) = 0 as
FO0)+f+2(Tf)=0, (23.32)
that is
f==-2(Tf)— Z(0). (23.33)
So we would like to find a fixed point of the operator S : B, — By defined by

Sf=—2TFf) — Z(0). (23.34)
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We next claim that under the assumptions, S is a contraction mapping from B, ¢, (0) C Bs.
To see this, we compute

|Sf1 = Shalls, = |2(Tf1) — 2(T f2)l 5,
< Co([IT fullsy + 1T folls )T f1 — T fa 5, (23.35)

< Gy (2Cir/Cr)Ch| f1 = falls. < 3(||f1 falls,)-
We then let fy = 0, and define f;;1 = Sf;. If n > m, we have
o = Fmllss < D Nfi = fizallss
Jj=m+1
= > IS A= folls,
i (23.36)
<> (5) Ia— sl
j=m+1
2/3
S I

The right hand side limits to 0 as m — oo. This proves that the sequence f; is a Cauchy
sequence in the Banach space B, which therefore converges to a limit f.. Since S is
continuous, we therefore have

Sfe =S5 lim f; = lim Sf; = lim fji1 = fu. (23.37)
j—o0 j—o0 j—o0

Take m =1 in (23.36|) to get
1fn = fills, < 2|f1 = folls, = 2| fills, (23.38)

Letting n — oo yields

1 foollg, = 1f1lls. < [l foo = fill, < 2 /il .- (23.39)

Then 2., = T'fy is a solution to % (z) = 0 and
[2osllBy < ChllfoollB, < 3C1[7(0)]|, (23.40)
which implies (29.5)). If = is any solution satisfying (129.5)), then letting f = £z, we estimate

1 T
< — — 23.41
Hf”BQ — Cl H‘/I;”Bl — 01301301 Cl ( 3 )

and uniqueness then follows from ([23.35]). m
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24 Lecture 24

24.1 Remarks on scaling

For the original Beltrami equation ws = u(z,Z)w,, we can assume that p(0,0) = 0. By
scaling the coordinates z = €2/, and letting w'(2',Z") = w(ez’, €z'), then we have
wl = (2, 2wl (24.1)

z

where

Wz 7)) = p(e, €z'). (24.2)
Lemma 24.1. We have

16 lcoyy = llielloos. (
1 asBy = € [1]asB. (24.4

IV' 1 lcogmy) = €l Viullcogs,) (

V't oz = €T Vaillcogs,)- (

In general, we have
[:u/]k,a;B1 = €k+a [N]k,a;Bé (247)
Proof. The first (24.3)) is trivial. For (24.4)), we have

W' (@) — W (y)]

[Nl]a;B = sup
1 Sy |SBI _ y/|a
ex’) — uley
— swp |1 ,) L/L(ay)|
vyeBazy | =Y (24.8)
l‘ —_—
— sup |u(_1) u(_y1)|a
z,y€ Be,x#y |1‘6 — Yye |
= Ea[ﬂl]a;Be'

For ([24.5)), we need to relate d..u’' and 0., and similarly for the barred derivative. For this
we have

(1) (2, Z') = ed (e, €2'), (24.9)
we can write as
V' (2, Z') = eVu(e, ez'), (24.10)

from which ([24.5)) follows immediately.

89



For ([24.6)), we have

Vil (2 — Vi (v
V'ilos, = sup V'u (fvl) V't )]
@' .y €B1,x' £y’ |$ — Y |
eVu(ex') — eVuley
— s eVl ,) ,au( y)l
o/ €Br.al Ay’ 2" — /| (24.11)
eV(z) — eV
— sup | u(ﬁ 1) j&yﬂ
:r7y€B€’I7£y ‘xe - ye ‘

= e Vulloos,.-

The general pattern should be obvious, and ([24.7)) follows from similar computations. H

Remark 24.2. It is sometimes convenient to define alternative norms as follows. First,
define the semi-norms

[k o0 = (diam(D)/2)"* i (24.12)

which then give the norms |[4||¢x,«(py, like in the above definitions. If the domain is a ball,
then the new norms are scaling invariant:

11 [ eracsyy = NElloras,)- (24.13)

Back to our problem, we have

[ lerasy) = 11 loras) = 11llcres,) (24.14)
= [lllcosy + ellValleos.) + €+ [wh,am.- (24.15)

Since u € C*(B,) C C"*(B,), we have that
() = p(y)| < Clo —y|*. (24.16)
Since p(0) = 0, we have an estimate for = € B,
|u(z)] < Cla|* < Ce. (24.17)

Combining these estimates, we obtain that there exists a constant C, depending only upon
|1l c1a(s,,) for some fixed radius 7o, so that

||Ml||cl,a(31) S Ce”. (2418)
Consequently, we can just assume that our original p is defined in B; and satisfies

||,UJ||C'17°‘(B1) < OGOC. (2419)

90



24.2 Solution of the Malgrange equation

We want to find a solution of the equation

§E + ,LL(Z, E)é:z > )
52 + M(Za z)é»z

with |£,[%(0,0) — |&]%(0,0) # 0. From the scaling above, we can assume that the C''® norm
of p in By is arbitrarily small. The equation (24.20)) is quasilinear of the form

0 = (&0. — £&.05) (24.20)

F(D?*¢, D¢ €, 2,%Z) = 0. (24.21)
We define
By = C2*(B1(0)) = {u € C**(B,(0)) | u =0 on dB;(0)} (24.22)
By = C**(B,(0)) (24.23)
F(h)=F(z+h) (24.24)
Z(h) = F.(h) (24.25)
2(h)=F(z+h)— F(z) — F.(h) = #(h) — Z(0) — Z(h). (24.26)
Recall from the linearization formula in Proposition [36.2
Fl(h) = 0. (b= + plh. — hs — ph.) ) + hep. — hepis, (24.27)
and
F;(h) (O, O) = iAh + Clhz + CQ}_lZ + C3hg + 64}_13. (2428)

Since (0,0) = 0 and p has arbitrarily small C'** norm, the operator .Z is a small perturba-
tion of the Laplacian. By the inverse function theorem for linear operators (Lemma|21.2)), we
can define the mapping T : C%* — C’g "* to be the unique solution to the Dirichlet problem

Z(Tf)=fin B(0,1), Tf=0o0n9dB(0,1). (24.29)
Also from Lemma there exists a constant C' so that

1T fllezes,1) < Cllfllcoaso,1))- (24.30)

Let us recall that

F(h) = F(z+h) = F(D*(z +th), D(z + th), z + th, 2, %)
- hz 4+ pu(z,2)(1 + h,) (24.31)
N <(1 +he)0 - hz(%) <(1 +hz) + u(z,z)h)'

In particular,

F(0) = 0., (24.32)



which has arbitrarily small norm in B,.
We need to estimate

Q(hy) — 2(hy) = F(z 4 hy) — Fi(hg) — (F(2 4+ h1) — F.(h1)). (24.33)
Consider f(t) = F(z + thy + (1 — t)hy). Since F(z + h) = EF(D?h, Dh, h, z), where F is

a smooth function of these variables (for C*-norm of h sufficiently small), then using the
fundamental theorem of calculus

F(z + hy) — F(=+h1) = f(1) — £(0) = /0 F()dt. (24.34)
We note that

P = LF( 4 shy+ (1= 8)hy)| oy = %F@ Fthy 4 (1= t)hs + 5(hs — h1))ses

ds (24.35)
= F;+th1+(l—t)h2<h2 - hl)'
This gives the expression
1
(1) = 2(h) = ([ Fliansoopalhe = hde) = Fi(ha — o)
o (24.36)
= (/ (F;—i-thl—i-(l—t)hz - Fz,>dt> (h2 - hl)-
0
We next claim that for any y and h, we have the estimate
I(FZin = FDyllco < Cllhllezllyllce. (24.37)
To see this, note the linearized operator is of the form
F!(h) = d F(u+th)|
T dt =0 (24.38)

= a”(D*u, Du,u, 2)Dyih + b’ (D*u, Du,u, 2) Dih + e(D*u, Du, u, 2) D;h.

If F'(D2h, Dh, h,z) is C? in the D?h, Dh, h variables, and continuous in the z variable, then
the coefficients a¥, b¢, ¢ are C*' as functions of D?u, Du,u, and we have for example

c(D*(z+h),D(z+ h),z + h,z) = ¢(D*2, Dz, z, z) + O(|D*h| + | Dh| + |h|), (24.39)

so the estimate (24.37)) follows. This implies the quadratic estimate for the C%-norm.
For the Holder norm, similar to the above arguments, we see that any y and h, we have
the estimate

I(FLn = Fylle < Cllhllc2ellyllc., (24.40)

provided that F is C%“ in the D2h, Dh, h variables and Holder continuous in the z variable.
This finishes the quadratic estimate.
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As mentioned above, by taking e sufficiently small, we can always arrange so that condi-
tion (b) is satisfied. The implicit function theorem yields a solution h with

17l c2a(B,) = ole), (24.41)
as € — 0. Obviously, we have
|h(0)] = o(e),  [Vh[(0) = o(e), (24.42)
as € — 0. Then if € is sufficiently small, then condition ([23.4)) will also be satisfied.

Remark 24.3. The minimal regularity required in the above arguments is © € C*®. One
can actually get away with only assuming pu € C%*, but one needs a different method to see
this. The Beltrami equation can be solved locally for ;i € C%“ by inverting the 0 operator
using the Cauchy-Pompeiu formula, and a solution can be produced by an iteration method.
However, this is a bit technical (it takes around 30 pages), so we will omit. There are many
great references for this method, see for example [Spi79|, [Ber58|, [ALIG6].

25 Lecture 25

In the next few lectures, we will give a review of Riemannian geometry

25.1 Review of theory of vector bundles

We will next define real vector bundles, but note that everything we will say works for
complex bundles, by replacing R with C.

Definition 25.1. A smooth real vector bundle of rank k& over a smooth manifold M" is a
topological space E together with a smooth projection

m:E—M (25.1)
such that
e For p e M, m1(p) is a vector space of dimension k over R.
e There exists local trivializations, that is, there are smooth mappings
®,: U, xR - F (25.2)
which maps p x R¥ linearly onto the fiber 7=1(p) for every p € U,.
The transition functions of a bundle are defined as follows.
Yap 1 Us NUsg — GL(k,R) (25.3)
defined by

Pas() (V) = (@ 0 Dg(,v)), (25.4)
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for v € RF.
On a triple intersection U, N Uz N U, we have the cocycle condition

oy = Pap © Ppy- (25.5)

Conversely, given a covering U, of M and transition functions ¢,z satisfying , there is
a vector bundle 7 : £ — M with transition functions given by ¢,s. (It turns out this bundle
is uniquely defined up to bundle equivalence, which we will define below.) If the transitions
function p,g are C*°, then we say that E is a smooth vector bundle.

A vector bundle mapping is a mapping F' : F; — FE, which is linear on fibers, and covers
the identity map, that is, the following diagram commutes

E, L F,
l”El l% (25.6)
M 4 M.
Assume we have a covering U, of M such that F; has trivializations ®, and F5 has trivial-
izations W,. Then any vector bundle mapping gives locally defined functions

E,: U, — Hom(RF R™) (25.7)
defined by
Fo(2)(v) = (¥, o F o ®,(z,v)). (25.8)
It is easy to see that on overlaps U, N Usg,
Fo = 023 Fppge, (25.9)
equivalently,
P Fo = Fapft. (25.10)

We say that two bundles are E; and FEy are equivalent if there exists an invertible bundle
mapping F': E; — FE5. This is equivalent to non-singularity of the local representatives, that
is, det(F,) # 0. A vector bundle is trivial if it is equivalent to the trivial product bundle.
That is, E' is trivial if there exist functions

fo : Uy = GL(k,R) (25.11)
such that

Poa = fofa " (25.12)

Definition 25.2. A section of 7 : £ — M is a smooth mapping ¢ : M — E such that
Too = Idy.

In terms of local trivializations, we define
Sq =mgr 0 @ 1o s: U, — RF, (25.13)

which yield the defining relation for a section
So = Pupsp- (25.14)

The space of sections of a vector bundle is denoted by I'(M, E), which is a vector space.
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25.2 Operations on bundles

Note that if f; : R¥ — R* and f, : R® — R! are linear maps then there is an obvious induced
mapping f1 @ fo : RF @ R — R¥ @ R defined by

(f1 @ fo)(v1,v2) = fi(v1) @ fo(va). (25.15)

The direct sum E; @ Es of bundles E; and F, is a vector bundle with transition functions

Cap” = Py ® P, (25.16)

Note that if f; : R¥ — R¥ and f, : R' — R! are linear maps, then there is an obvious induced
mapping f1 ® fo : R¥ @ R — R* @ R! defined on indecomposable tensors by

(/L ® fo)(n @ v3) = fi(v1) ® fa(va), (25.17)

and extended by linearity to the tensor product. The tensor product £} ® Fy of bundles F;
and Fs is again a bundle, and has transition functions

s = P @ l2. (25.18)

The dual E* of any bundle F, is a bundle, and has transition functions

0Z = ((WZ)™)" = (VBT (25.19)

Note that the inverse is necessary in order to have the cocycle condition satisfied. In general,
if £y and Fy are vector bundles, then we define Hom(E,, Ey) = Ef ® E5, which in terms of
transition functions is

pasE ) = (057" @ o, (25.20)
Note that for any linear map f : R¥ — R*, there is a naturally induced mapping
APf : AP(RY) — AP(RY) (25.21)

therefore for any vector bundle E, the pth exterior power AP(FE) is defined to be the bundle
with transition functions

phet? = AP(py). (25.22)

For a complex vector bundle 7w : E — M, there is another operation called the conjugate
bundle E which is the complex vector bundle obtained by replacing each fiber of F with the
complex conjugate vector space. The transition functions are simply

pZ; = ga_gﬁ. (25.23)

Remark 25.3. In the above, we only defined morphisms in the category of vector bundle to
be mappings covering the identity map. We could have instead morphisms to cover arbitrary
diffeomorphisms. This would lead to a coarser notion of equivalence, and is not usually used
for vector bundle equivalence.
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25.3 Riemannian metrics on real vector bundles

If : E — M is a real vector bundle, a Riemannian metric on E is a choice of smoothly
varying positive definite symmetric inner product on each fiber. That is g € I'(E* ® E*)
satisfying

gle1,es) = g(ea, e1), (25.24)
g(e,e) >0 for e # 0. (25.25)

Proposition 25.4. If E is any real vector bundle, then E admits a Riemannian metric.

Proof. Take the Euclidean metric on trivializations, and patch together using a partition of
unity. O

Corollary 25.5. For any real vector bundle E, E* = F.

Proof. Choose a Riemannian metric g on E. Then the mapping b : £ — E* defined by

b(e1)(ea) = gler, ea) (25.26)
is an ismorphism on fibers, and covers the identity map. O
Remark 25.6. The inverse of b is usually denoted by b™' =4: E* — E.

In the special case that £ = TM is the tangent bundle, the pair (M, g) is called a
Riemannian manifold, with the metric g € T'(S?*(T*M)). In coordinates,

g = Z gij(x)d:vi & diL‘j, 9ij = Gij, (25.27)

ij=1

and g;; > 0 is a positive definite symmetric matrix.
Note that a vector field X € I'(T'M) in coordinates X = X2 then

8$i Y

VX = (bX)ida' = g;; X da? (25.28)
and similarly if w = w;da?, then
L0 0

So the flat operator lowers an index, and the sharp operator raises an index, which explains
the notation for anyone familiar with reading music.

(25.29)

25.4 Connections on vector bundles

A connection is a mapping I'(T'M) x ['(E) — ['(E), denoted by V xo, such that
i Vf1Xl-i-sz2$ = fle15 + f2vX23>
e Vx(fs)=(Xf)s+ fVxs.
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Note the first condition, linearity over C'*° functions, implies that the value of (Vxs)(p) only
depends on the value of X,,. But the second condition means that it does depend on the
values of the section in a neighborhood of p. In coordinates, letting s;,2 = 1...p, be a local
basis of sections of F,

Vasj = Lijsi, (25.30)

which defines the Christoffel symbols Ffj of a connection, which are not tensorial. If £ carries
an inner product, then V is compatible if

X<81,82> = <VX81,82> + <81,sz2>. (25.31)
For a connection in T'M, V is called symmetric if
VxY - VyX =[X)Y], VXY eT(TM). (25.32)

Theorem 25.7 (Fundamental Theorem of Riemannian Geometry). There erists a unique
symmetric, compatible connection in T M.

Invariantly, the connection is defined by

(VxY, Z) = %(X(Y, Z)+Y(Z,X) — Z(X,Y)

(25.33)
~(V,[X, Z]) = {Z, [V, X]) + (X, [2,Y])).
Letting X = 0,,Y = 0;, Z = O, we obtain
I g = (U0, k) = (Vo,0;, 0k)
= %(aigjk + 0igik — ak:gij)a (25.34)
which yields the formula
F?j = %gkl (aigjl + 0591 — algij> (25.35)

for the Riemannian Christoffel symbols.

26 Lecture 26

26.1 Covariant derivatives of tensor fields

Let £ and E’ be vector bundles over M, with covariant derivative operators V, and V',
respectively. The covariant derivative operators in £ ® E’ and Hom(E, E') are

Vx(s®s)=(Vxs)®s +s® (Vs (26.1)
(VxL)(s) = Vx(L(s)) = L(Vxs), (26.2)
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for s € I'(F),s € I'(F'), and L € I'(Hom(E, E")). Note also that the covariant derivative
operator in A(F) is given by

Vx(si A= NAsp) = Zsl/\ AN(VxSi) N NSy, (26.3)

for s; € I'(E).
These rules imply that if 7" is an (r, s) tensor, then the covariant derivative VT is an
(r,s + 1) tensor given by

VT(X,Yy,....Y)) =Vx(T(Ys,...Y, ZTYl,..., Y;,...,Y,). (26.4)

We next consider the above definitions in components for (7, s)-tensors. For the case of a
vector field X € T'(T'M), VX is a (1,1) tensor field. By the definition of a connection, we
have

VX =V, X =V, (X70;) = (0,X7)0; + X'T}, ;0 = (Vi X' + X'T},))0;. (26.5)
In other words,
VX =V, X (d2™ ® 0;), (26.6)
where
VX' =0, X"+ X'TE . (26.7)
However, for a 1-form w, implies that
Vw = (V,w;)ds™ @ d’, (26.8)
with
Vonwi = Opw; — wilh . (26.9)

The definition (26.1]) then implies that for a general (r, s)-tensor field S,

V Szl g = a Szl K +Slm zrrzl +SZ1 A 1l1—w Szl g Fl L Szl A le

J1---Js J1--Js J1--Js J1---Js ljo...js— mj1 J1--Js—1l™ mjs®

(26.10)

Notice the following calculation,
(Vo) (X, Y, Z)=Xg(Y,Z) — g(VxY,Z) —g(Y,VxZ) =0, (26.11)

from the compatbility condition. So the metric tensor is parallel, i.e., Vg = 0.
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26.2 Double covariant derivatives

For an (r, s) tensor field T', we will write the double covariant derivative as
VT = VVT, (26.12)
which is an (7, s + 2) tensor.
Proposition 26.1. IfT is an (r, s)-tensor field, then the double covariant derivative satisfies
VAT(X,Y, Zy,...,Zs) = Vx(VNyT)(Z1,..., Zs) — (Voo T)(Z1, ... Z,). (26.13)
Proof. The left hand side of is

VT(X,Y,Zy,...,Z) =V(VNT)(X,Y, Z,,...,Z,)
- VX(VT(K Zl7 ceey ZS)) - VT(VXY7 Zl7 R ZS)

> 26.14
=N VT(Y,....VxZ ... Zy). (26.14)
i=1
The right hand side of (26.13)) is
Vx(VyT)(Zy, ..., Zs) — (VouwT)(Zh, ... Zs)
=Vx(WT(Zy,...,2)) = > (W) Z,...,VxZi,..., Z.)
i=1 (26.15)

—VT(VxY, Zy,...,Z,).

The first term on the right hand side of is the same as first term on the right hand
side of . The second term on the right hand side of is the same as third term
on the right hand side of . Finally, the last term on the right hand side of is
the same as the second term on the right hand side of . O]

For illustration, let’s compute an example in coordinates. If w € Q'(M), then

ViV = 0i(Vjwy) — T Vpwe — I Viw,

. . . (26.16)
= 0i(Ojwr — D) — T (Opwn — D) — T (Ojwp — T 001).-
Expanding everything out, we can write this formally as
Viw = wp +Tx 0w+ (OT + T+ ) * w, (26.17)
where * denotes various tensor contractions. It appears that in general
V.V,w# V,;V,w. (26.18)

The obstruction to commuting covariant derivatives leads to the concept of curvature.
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26.3 Gradient, Hessian, and Laplacian

As an example of the above, we consider the Hessian of a function. For f € C'(M,R), the
gradient is defined as

Vf=1tdf), (26.19)

which is a vector field. This is standard notation, although in our notation above, V f = df,
where this V denotes the covariant derivative. The Hessian is the (0,2)-tensor defined by
the double covariant derivative of a function, which by Proposition is given by

VEA(XY) = Vx(Vyf) = Vo f = XY )= (VxY)/[. (26.20)
In components, this formula is
V2[(0;,0;) = ViV, f = 0,0, f — T} (0 f). (26.21)
The symmetry of the Hessian
V2f(X,Y) = V2f(Y, X), (26.22)

then follows easily from the symmetry of the Riemannian connection. Notice that no curva-
ture terms appear in this formula, which happens only in this special case.

The Laplacian of a function is the trace of the Hessian when considered as an endomor-
phism,

Af =tr(X = 8(Vf(X,)), (26.23)
so in coordinates is given by
Af = g"V,V,;f. (26.24)
This turns out to be equal to
1 -

Exercise 26.2. Prove (26.25) (hint: use Jacobi’s formula for the derivative of a determi-
nant).

27 Lecture 27

27.1 Curvature in the tangent bundle

The curvature tensor is defined by

R(X,Y)Z =VxVyZ —VyVxZ — VixnZ, (27.1)
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for vector fields X, Y, and Z. We define
Rm(X,Y, Z, W)= —(R(X,Y)Z,W). (27.2)

We will refer to R as the curvature tensor of type (1,3) and to Rm as the curvature tensor
of type (0,4).
The algebraic symmetries are:

R(X,Y)Z =-R(Y,X)Z (27.3)
0=R(X,)Y)Z+R(Y,Z)X +R(Z,X)Y (27.4)
Rm(X,Y,Z,W)=—-Rm(X,Y,W, Z) (27.5)
Rm(X,Y,W,Z) = Rm(W,Z,X,Y). (27.6)
In a coordinate system we define quantities Rijkl by
R(0:,0;)0k = R0, (27.7)
or equivalently,
R = R;;,'d2' ® da’? @ dz* ® 0. (27.8)
Define quantities R;;i; by
Rijr = Rm(0;,0;, 0k, 0), (27.9)
or equivalently,
Rm = Rijuda’ ® da’ @ da* @ da'. (27.10)
Then
Rij = —(R(0;,0;)0k, O) = — (R4 Oy O1) = — Ry 31" Gt (27.11)
Equivalently,
Rijik = Ry gmi, (27.12)

that is, we lower the upper index to the third position. In coordinates, the algebraic sym-
metries of the curvature tensor are

Rijkl — _Rjikl (27.13)
0= Rijkl + Rjkil + Rkijl (27.14)
Rijw = —Riju (27.15)
Rijri = Ryij- (27.16)
Of course, we can write the first 2 symmetries as a (0,4) tensor,
Riji = —Rjinl (27.17)
0= Riju + Rjkir + Riiji- (27.18)
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Note that using ([27.16)), the algebraic Bianchi identity (27.18)) may be written as
0= Riji + Rty + Rij- (27.19)

We next compute the curvature tensor in coordinates.

R(0;,0;)0k = Ry 00
= Vaiv(ajak - Vaj Vaiak
= Vai (Fékzal) - Vaj (Fikal) (27.20)

= 0i(L5) 00 + T35 0 — 0;(0iy )0y — T30
= (%) + T3, — 0,(Th) — DRTY,, )0

which is the formula

R, = 0,(T%,) — 0;(Tly) + T4, I — T T (27.21)

ijk im= jk jm~ ik

Fix a point p. Exponential coordinates around p form a normal coordinate system at p.
That is gi;(p) = i, and Okgi;(p) = 0, which is equivalent to I'};(p) = 0. The Christoffel
symbols are

1
Fé'k = §glm (akgjm + ajgkm - am!]jk)- (27.22)

In normal coordinates at the point p,
1
o), = 5o (aiakgjm + 0:0; Gim — aiamgjk). (27.23)
We then have at p
1

Lowering an index, we have at p
1
Riji = —3 (3@'5&%‘1 — 0i019j, — 0;0kgu + ajalgik)

o)

The ® symbol is the Kulkarni-Nomizu product, which takes 2 symmetric (0, 2) tensors and
gives a (0,4) tensor with the same algebraic symmetries of the curvature tensor, and is

defined by

(27.25)

A® B(X,Y,Z, W) =A(X,Z)B(Y,W) — A(Y, Z)B(X, W)
— A(X,W)B(Y, Z) + A(Y,W)B(X, Z).

To remember: the first term is A(X, Z)B(Y, W), skew symmetrize in X and Y to get the
second term. Then skew-symmetrize both of these in Z and W.
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27.2 Sectional curvature, Ricci tensor, and scalar curvature

Let II C T,M be a 2-plane, and let X,,, Y, € T,M span II. Then

Rm(X,Y,X)Y) B g(R(X, Y)Y, X)
g(X,X)g(Y, Y) - g(X, Y>2 B g(X,X)g(Y, Y) - g(X, Y>2’

K(IT) = (27.26)

is independent of the particular chosen basis for II, and is called the sectional curvature of
the 2-plane II. The sectional curvatures in fact determine the full curvature tensor:

Proposition 27.1. Let Rm and Rm’ be two curvature tensors of type (0,4) which satisfy
K(IT) = K'(IT) for all 2-planes 11, then Rm = Rm/.

From this proposition, if K (II) = kg is constant for all 2-planes II, then we must have

Rm(X, Y, 2,W) = ko (9(X, Z)g(Y, W) = g(¥, Z)g(X,W)). (27.27)
That is
ko
Rm = 59 D g. (27.28)

In coordinates, this is
Rijii = ko(Gikgj1 — 9jxGit)- (27.29)
We define the Ricci tensor as the (0, 2)-tensor
Ric(X,Y) =tr(U — R(U, X)Y). (27.30)
We clearly have
Ric(X,Y) = Ric(Y, X), (27.31)
so Ric € T(S*(T*M)). We let R;; denote the components of the Ricci tensor,
Ric = R;dz' ® da? (27.32)
where R;; = Rj;. From the definition,
Rij = Ry;' = ¢ Rijm;. (27.33)
Notice for a space of constant curvature, we have
Ry = 9" Rijin = kog™ (gingjt — gjx90) = (n — Vkogju, (27.34)
or invariantly

Ric = (n — 1)kog. (27.35)
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The Ricci endomorphism is defined by
Re(X) = ﬁ(ch(X, -)).
The scalar curvature is defined as the trace of the Ricci endomorphism
R =tr(X — fRic(X,")).
In coordinates,
R = g¢"R,, = gpqgllepmq.
Note for a space of constant curvature ko,
R =n(n—1)k.
Exercise 27.2. If n = 2, then we necessarily have
Rijii = K(9ik9j1 — 9jx9a)
Rij = Kgij
R =2K,

(27.36)

(27.37)

(27.38)

(27.39)

(27.40)
(27.41)
(27.42)

for a function K : M — R, which is called the Gaussian curvature. So the scalar curvature

determines the full curvature tensor in dimension 2.

Remark 27.3. It turns out that if n = 3, then the Ricci tensor determines the full curvature
tensor. If n > 4, then the curvature tensor is not determined by the Ricci tensor. There is

another component called the Weyl curvature, which we will discuss later.

27.3 Commuting covariant derivatives

Let X,Y,Z € T(TM), and compute using Proposition [26.1]
V2Z(X,)Y) = V?Z(Y,X) =Vx(VyZ) = Vy.wwZ — Vy(VxZ) — Vv, xZ
=Vx(VyZ) = Vy(VxZ) = Vyyv-vyxZ
= Vx(VyZ) — Vy(VxZ) — Vixw Z
— R(X,Y)Z,

which is just the definition of the curvature tensor. In coordinates,

ViV;ZF =N,V 2"+ R, F 2.

We extend this to (p, 0)-tensor fields:
V(2@ @ Z,)(X,)Y) = V(21 ® Z,)(Y, X)
=Vx(Vy(Z1® - ® 7)) = Vo (Z1® - ® Z)
- Vy(Vx(Z1®--®Z,) = Vo, x(Z1® ... Z,

p p
V(Y ze  Wahe ©2) -3 Lo VewZie 07,
=1 i=1
p

p
V(Y zie  ViZio 02+ L@ VoL @7,

i=1 i=1
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With a slight abuse of notation, this may be rewritten as

VAZi®®Z,)(X)Y) = V21 @ ® Z,)(Y, X)

p p
:Z Z Zl®vXZj®"'VYZi®"'®ZP

J=1 i=1i#]

PP
_Z Z Zl®VYZj®"'VXZi®"'®Zp
IS (27.46)

P
+ZZ1®"‘®(VXvY—VYvX—V[X,Y})Zi@)‘“@Zp

=1

_Zzl CRORX,Y)Zi® - ® 7,

In coordinates, this is

p
Vivjzil..,ip — VJVlZ“Zp + Z RZ]mZk Zil‘..ik,lmikJrl...ip. (2747)

k=1

Proposition 27.4. For a 1-form w, we have
Vi(X,Y,Z) - V(Y X, Z) = w(R(Y, X)Z). (27.48)
Proof. Using Proposition we compute
V2w(X,Y,Z) - Vw(Y, X, Z)
= Vx(Vyw)(Z) = (Vyyyw)(Z) = Vy(Vxw)(Z) = (Vv xw)(Z)
= X(Vyw(Z)) - Vyw(VXZ) - VXy(CU(Z)) + W(VVXyZ)
— Y(V)dx)(Z)) + wa(VyZ) + VyX(w(Z)) — w(VvaZ)
= X(Vyw(Z)) =Y w(VxZ)) +w(VyVxZ) = VxY(w(Z)) + w(VvyvZ)
— Y(VX{U<Z)) + X(W(VYZ)) - W(VXVYZ) + VYX(W(Z)) — W(VVY)(Z>
- w<vyvxz VA VyZ o+ V[Xy}Z) X (Vyw(2)) - Y(w(VxZ)) — ViY (w(2))
—Y(Vxw(Z2))+ X (w(VyZ)) + VyX(w(Z)).

(27.49)
The last six terms are
X(Vyw(2)) =Y (w(VxZ)) — VxY(w(2))
—Y(Vxw(Z))+ X(w(VyZ2)) + VyX(w(2))
— X (Y(w(2)) - w(Vy2)) = Y (@(Vx2)) - [X,Y](@(Z) (27.50)
=Y (X((2)) = w(Vx2)) + X(w(Ty2))
= 0.
[
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Remark 27.5. It would have been a lot easier to assume we were in normal coordinates,
and ignore terms involving first covariant derivatives of the vector fields, but we did the

above for illustration.

In coordinates, this formula becomes

Viijk = VjViwk - Rijkpwp'

(27.51)

As above, we can extend this to (0, s) tensors using the tensor product, in an almost identical
calculation to the (r,0) tensor case. Finally, putting everything together, the analogous

formula in coordinates for a general (r, s)-tensor T is

Ji---Js J1---Js J1---Js

' S
) Lty ) L ik ’i1...7;k_1mik+1...i7«_
ViV T = v T 4 SR, T S Ry,
k=1 k=1

J1e-Jk—1MJk+1--Js "
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28 Lecture 28

28.1 Conformal geometry and complex geometry

In real dimension 2, there is a close relation between complex geometry and conformal
geometry.

Definition 28.1. Given a manifold M, Riemannian metrics g and g are conformal if there
exists v : M — R such that § = e 2%g. The conformal class of a Riemannian metric g is

lg] = {e™"g | u € C*(M,R)} (28.1)

A mapping between manifolds f : (M, g1) — (Ma, g2) is a conformal transformation if f*g,
is conformal to g;.

In real dimension 2, there is a close relation between complex geometry and conformal
geometry.

Proposition 28.2. A almost complex structure on a Riemann surface (J : TM — TM, J? =
—1d) is equivalent to an oriented conformal structure. More precisely, let (M, J) be a Rie-
mann surface with almost complex structure J. Choose any Riemannian metric g which is
compatible with J, that is, g(JX,JY) = g(X,Y). Then (M, |g]) with the complex orientation
is an oriented conformal structure. Conversely, given an oriented conformal class (M, [g])
then there 1s a unique almost complex structure J with the property that any metric in the
respective conformal class is compatible with the complex structure J.

Proof. For one direction, we need to show that any 2 compatible metrics are conformal. If
9(JX,JY)=g(X,Y)and h(JX,JY) = h(X,Y). Choose an basis {ey, ea} of T, M such that
J(e1) = e9 and J(ez) = —ep. Then

gu(p) = g(er, e1) = g(Jer, Jer) = g(es, €2) = g22(p), (28.2)
and
912(p) = gle1, €2) = g(Jer, Jea) = glez, —e1) = —gu2(p). (28.3)
Since g11(p) = g22(p) and g12(p) = g21(p) = 0, we have
9(p) = gu(p)((e")* + (¢*)?), (28.4)
where {e!, €?} is the dual basis to {e, eo}. This argument equally applies to h, to show that
h(p) = hu(p)((e')? + ()?). (28.5)

Since this is true at any point, it shows that g and h are conformal.

Conversely, given an oriented conformal class [g], let w be an oriented volume form, which
is a nowhere-vanishing 2-form. We can choose a metric g € [g] uniquely with the property
that the volume form of g, dV;, = w. Then we define J : TM — T'M by

g(X,Y) = w(X, JY). (28.6)
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Note that this defines J uniquely since w is a non-degenerate 2-form. If we do the same
procedure for § = e ?“g, then dV; = e ?g (since the volume form is like \/det(g)dz A dy),
so we obtain the same J. To see that J?> = —Id, choose an oriented orthonormal basis
{e1,e2} for T,M. Then w = dV,, = e; A eo. This implies that

1 =g(er,er) =wler, Jeq) (28.7)
0=g(e1,er) =wler, Jes) (28.8)
0= g(eg,e1) = w(eq, Jey) (28.9)
1 = g(eq,es) = w(eq, Jea), (28.10)
which implies that Je; = ey and Jey = —eq, so J?> = —I is an almost complex structure. [

We also have the following result for mapping under this correspondence.

Proposition 28.3. Complex structures (M, J1) and (Ms, Jo) on Riemann surfaces are bi-
holomorphic if and only if the corresponding conformal structures (M, [g1]) and (Ma, [go]) are
orientation preserving conformally equivalent.

Proof. Given (M, J), choose a holomorphic coordinate system {x,y}. As seen in the above
proof, the conformal class of a compatible metric in this coordinate system is the Euclidean
conformal class [ggue]. So the statement reduces to proving that for U C C, f : U — C
is holomorphic if and only if it is orientation-preserving and conformal (with respect to the
Euclidean metric). Writing f = u + v, then Cauchy-Riemann equations are

Uy = Uy, Uy = —Us. (28.11)
The equations for conformality are
S 9Bue = €2 guc- (28.12)

The Jacobian of f is given by

fo= (“x “y) (28.13)

The left hand side is

f*gEuc(8x7 6z) = gEuc(f*axa f*ax) = gEuc(uxaz + VxPy, ul‘ax + Uxay) = Ui + Ug (2814)
f*gEuc(aata ay) - gEuc(f*axa f*ay) - gEuc(umaa: + Ve Py uyasc + Uyay> = Uz Uy + VypVy (2815)
I 98uc(0y, 0y) = gpuc(fo0y, f:0y) = gpuc(uyOr + vy0y, 1y 0y + v,0,) = “12/ + Uz' (28.16)

If f is holomorphic, then this clearly implies that f is conformal. Conversely, if f is conformal
and orientation preserving, we obtain

2, .2 _ .2 2
uy + v, = U, + v, (28.17)
UzUy + V0 = 0 (28.18)
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This says that the vectors v = (u,,v,) and W = (u,,v,) are orthogonal and have the same
norm; they must differ by a 90 degree rotation. So there are 2 possibilities:

(U, V) = (vy, —uy) Or (Uy,vy) = (—vy,uy), (28.19)
which is
o up oy (uy oy
e () e () e

The mapping f being orientation preserving is equivalent to the Jacobian determinant being
positive, so we see that we must be in the first case, which are exactly the Cauchy-Riemann
equations. [

Remark 28.4. The second case corresponds to anti-holomorphic 9f = 0. That is, orientation-
reversing and conformal is equivalent to anti-holomorphic.

28.2 Conformal transformation of Gauss curvature

Proposition 28.5. Under the conformal change § = e~ g, the Christoffel symbols trans-
form as

I = gil( — (05u) gu — (Ou)gij + (@u)gjk) + T (28.21)
Invariantly,
VxY =VxY — du(X)Y — du(Y)X + g(X,Y)Vu. (28.22)
Proof. Using , we compute
fék = %gil (@'ﬁkl + Okgji — 8l§jk)
= %€2u9il (aj(e_%gkl) +O(e™gp) — 35(6_2“9jk)>
_ %emgu( — 2e720(u) gy — 262 (Fpu)e g + 22 (D) gy (28.23)
+ e 20 (gm) + e O(gj0) — e 20, (%k))
= g" (= Ow)gu — (Dw)gz + ()gsi ) + T
This is easily seen to be equivalent to the invariant expression. O

Proposition 28.6. If n =2, and § = e~ ?"g, the conformal Gauss curvature equation is
Agu+ K, = Ke ™, (28.24)

where K = Kj;.
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Proof. We will use the following formulas

I = 9”( — (Oju)gix — (Oku) gy + (3116)gjk) + I (28.25)
and
Ryl = (%) — 9;(Tyy,) + T3, T — 15, ik (28.26)

Recall that if n = 2, then we necessarily have
Riji = K(gixgsi — gikgir)- (28.27)

Choose a normal coordinate system {z!, x?} for the g metric at a point p, then

Ry912 = K(p). (28.28)
The above formulas then yield
K(p) = Rizia = Ry5y' = 01(T3,) — %a(T},). (28.29)
Next, we have
Ri1z = K(p) (G122 — Go1n2) (28.30)
But
Gij = 6_2u9ij7 (28.31)
so we get that
Rigp = K(p)6_4u, (28.32)
or
K(p) = Rigioe™ (28.33)
But from above,
Risia = GikRypst = e 2Ryt (28.34)
Combining these,
K(p) = Ry, (28.35)

Now we use the above curvature formula
3_2u[~((p) = R1221 = 81(@2) - 62@%2) + f‘%mf% - fémfg (28.36)
Using the fact that the coordinates are normal for g, we compute the first term

A1 (T),) = Pu + oI, (28.37)

110



The second term 1is

—05(I'y) = B3u — BT, (28.38)
The third term is
1,05 = (—01ugim — Ontigin + 01ugim)(—0xtgms — atigmz + Ouga) (28.39)
= —Opu(—02UGm2 — O2UGm2 + OmUgas) (28.40)
= —(01u)* + (Dau)*. (28.41)

The fourth term is

—f%mf% = —(—0auG1m — Opugi2 + O1ugam ) (—O1UGm2 — O2Ugm1 + OmUgia) (28.42)

= —(—0ugim + Orugam)(—O1ugm2 — Orugm1) (28.43)
= —(Dou)? + (D1w)? (28.44)
Adding all these up yields
e K (p) = 0%u + 02u + 0TS, — DTy, (28.45)
Since the coordinates are normal, we have
(Au)(p) = g7 ViVju = g” (p)(0;0;u — T} (p)Opu) = OFu + 3u, (28.46)
which yields the formula
e MK = Au+ K, (28.47)
and we are done. ]

29 Lecture 29

29.1 Structure group reduction

We give another fancier proof of the equivalence between almost complex geometry and
conformal geometry in real dimension 2.

Proposition 29.1. A Riemann surface (M, J) with an almost complex structure J is equiv-
alent to an oriented conformal structure (M, [g]).

Proof. A complex structure is a reduction of the structure group of the frame bundle to
GL(1,C) € GL(2,R). The explicit map is

. a b
a+ib— (—b a) . (29.1)
An oriented conformal class is a reduction to CO(2,R) C GL(2,R), where
CO(2,R) =R, x SO(2,R) ={\- AN e R, A € SO(2,R)}, (29.2)

and it is easy to see that this is the same as image in (29.1)) (hint: divide the matrix in (29.1)

by va? + b?). O
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29.2 Isothermal coordinates

Definition 29.2. Let (M, g) be a Riemannian surface. A coordinate system ¢ : U — R? is
called isothermal if

¢rg = "V (d2® + dy?), (29.3)

for some function A : ¢(U) — R. Equivalently, (U, g) is conformally equivalent to a domain
in R? with the Euclidean metric.

We can alternatively describe this as follows.

Proposition 29.3. Fiz p € M. Then there exists an isothermal coordinate system around
p iff and only if there exists a neighborhood U of p and u : U — R such that

Au+ K, =0. (29.4)

Proof. 1f there exists an isothermal coordinate system, then the claim follows from the
conformal transformation formula for the Gauss curvature. Conversely, given a solution of
locally, then metric g = e~?"g satisfies K; = 0, that is, it is a flat metric. From basic
Riemannian geometry, there exists a local chart ¢ : U — R? so that ¢,§ = da? + dy?, and
we are done. [

Corollary 29.4. Let (M, J) be an almost complex structure on a oriented Riemann surface.
Choose any compatible metric g. Then an oriented isothermal coordinate system for g near
a point p is a holomorphic coordinate system.

Proof. If ¢ : (U,g) — (R? gpu) is isothermal, then ¢ is conformal. Then ¢, is pseudo-
holomorphic by Proposition [28.3 O

Remark 29.5. Consequently, the Newlander-Nirenberg problem in real dimension 2 is equiv-
alent to the local solvability of (29.4)). We will discuss the solution of this next.

29.3 Negative scalar curvature
Let’s first recall the inverse function theorem in Banach spaces.

Lemma 29.6. Let Z : By — By be a C'-map between two Banach spaces such that F (x) =
F(0)+Z(x)+ 2(x), where the operator £ : By — By is linear and 2(0) = 0. Assume that

1. 2 is an isomorphism with inverse T satisfying ||T|| < C4,

2. there are constants r > 0 and Cy > 0 with r < m such that

(@) 1:2(2) = 25, < Cs - (fells, + lylls,) - e = s, Jor all 2,y € B.(0) € By,
) |17 O)s, < 7

Then there ezists a unique solution to F (x) =0 in By such that

[z][5, < 3C1 - [|F(0)] |, (29.5)
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Using this, we will prove the following.

Proposition 29.7. If (M, g) is compact, and R < 0, then there exists conformal metric
g =e g with R = —1.

Proof. We would like to solve the equation
Aju+ K, = —e 2" (29.6)

Let us first assume that there exists a C? solution of (29.6). Let p € M be a point where u
attains a its global maximum. Then Vu(p) = 0, so

Ayu(p) = 9" (8;0;u — Ffj@ku) (p) = g7 0;0;u <0, (29.7)
since g is positive definite and p is a maximum point. Then (29.6) evaluated at p becomes
Ky(p) = —e20) (208)
This implies that
1
up) < =5 log(=K,(p)). (29.9)

which gives an a priori upper bound on w. Similarly, by evaluating a a global minimum
point g, we obtain

u(g) > — 3 loa(~ K,(a)), (29.10)

which gives an a priori strictly positive lower bound on u. We have shown there exists a
constant Cj so that [|v]|co < Cy. The standard elliptic estimate says that there exists a
constant C, depending only on the background metric, such that (see [GT01, Chapter 4])

1,a < C A —l—
[ullor.e < C(l|Aul|co H_T;!Jco) (20.11)
<SCO(l—Kyg—e™)[leo + CCo < Cy,
where C] depends only upon the background metric. Applying elliptic estimates again,
[ullcze < C(|Au|goa + [[ullcoa) < Cs, (29.12)

where (3 depends only upon the background metric.
Let t € [0, 1], and consider the family of equations

Au+ Ky, = ((1—t)K, —t)e ™ (29.13)

Define an operator F, : C** — C by
Fy(u)=Au+ K, — (1 —t)K, —t)e " (29.14)
Let u; € C%° satisfy Fy(u;) = 0. The linearized operator at u;, L; : C** — C, is given by

Li(h) = Ah+2((1 — t)K, — t)e " h. (29.15)
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Notice that the coefficient h is strictly negative. If L;h = 0, then

0= / h(Ah +2((1-t)K, — t)e_Quth>dVg
M
(29.16)
_ _/ |Vh|2dVg+2/ (1 - 0K, — t)e 12V,
M M

this implies that h = 0, so L; is injective. Since L is formally self-adjoint, some Fredholm
Theory implies that L; is also surjective (details to be discussed later, since this needs some
Sobolev space theory). Consequently, the linearized operator is invertible. Next, define

S = {t € [0,1] | there exists a solution u; € C** of F;(u;) = 0}. (29.17)

Since the linearized operator is invertible, the implicit function theorem implies that S is
open. To see this, we assume that there exists a solution u; € C*%(M) of Fy(u;) = 0. Then
we want to solve

F’t+€(Ut+5) =0 (2918)

for all ¢ sufficiently small. Let us write us. = u; + he, and define

Fere(h) = Fre(ue + h), (29.19)
and consider as a mapping
Fire : C(M) — C**(M). (29.20)
We write out
Fie(0) = Frie(0) + L(h) + Q(h), (29.21)

where L is the lineariozed operator. First, we have

Fire(0) = Frre(w) = Aw) + Ky — (L=t —e)Ky —t — €)e "

29.22
=e(K, + 1)e” ", ( )

Note that this has arbitrarily small C%® norm provided e is sufficiently small. Next, we have
L(h)=Ah+2((1—t—€eK,—t—¢)e "h. (29.23)

Note that this is invertible by a similar argument to above, with elliptic estimates showing
the inverse is uniformly bounded. Finally, we obtain

Qh)=—(1—t—e)K,—t—e€)e (e " —1+2h). (29.24)
We need to verify that

1Q0h) = Qha) e < Cllnllcoa + [llcne)lln — hllce. (20.25)
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But this follows from
le™2h 1 2n — 1| < CR?, (29.26)

if h is sufficiently small in C°norm. So then we can apply the implicit function theorem
from above (Lemma to conclude that S is open.

To show that S is closed: assume wu;, is a sequence of solutions with ¢; — ¢y as i — oo.
The above elliptic estimates imply there exist a constant Cj, independent of ¢, such that
|ug, || o2 < C4. By Arzela-Ascoli, there exists u;, € C*® and a subsequence {j} C {i} such
that u;; — uy, strongly in C%? for o/ < a. The limit U, is a solution at time ¢3. By
elliptic regularity, u;, € C*“. This shows that S is closed. Note that u = 0 solves Fy(0) = 0.
Since the interval [0, 1] is connected and S is nonempty, this implies that S = [0, 1], and
consequently there must exist a solution at ¢t = 1. O]

30 Lecture 30

30.1 Spaces of constant curvature

Let us recall some basic facts from Riemannian geometry. The following holds in any di-
mension.

Proposition 30.1. If (M, g1) and (Ms, go) have constant sectional curvature K1 = Ko = kg
where ko 1s a constant, then g, and gy are locally isometric.

Proof. By an analysis of Jacobi fields, a metric of constant curvature in radial normal coor-
dinates the metric has the form

d?”2 + 7’29571—1 ]{?0 =0
g=<dr’+ % sin?(v/ko - 7)ggn—1 ko> 0. (30.1)
dr2+‘k—lo|sinh2(\/]k0| ‘T)ggn—1 ko <0

So then obviously any 2 such metrics are locally isometric. O

Obviously, by scaling the metric, there are really just 3 cases, K =0, K =1, and K = —1
The case of K = 0 is just (R", gguc). The case of K = 1 is the round metric on the unit
sphere S™ C R™"!. Since sinh(r) # 0 for r > 0, and lim,_,, sinh(r) = oo, the case of K = —1
is a complete metric on R". We denote this as H™ and call this the hyperbolic metric.

Proposition 30.2. Let U be a domain in R™. Then the metric
G= (a!x\z + bt + c)_QQEuc (30.2)
has constant curvature Ky = 4ac — |b]>.

Proof. This is just a calculation, and left as an exercise. ]
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If K > 0, then g is defined on all of R”. The metric

4
9= 0+ 22!

represents the round metric with K = 1 on S™ under stereographic projection. If K < 0
then the solution is defined on a ball, or the complement of a ball, or a half space. The
metric

(30.3)

4

g = 4

9= APy’ (30.4)
is the usual ball model of hyperbolic space, and
. 1

g= :C—%g (30.5)

is the upper half space model of hyperbolic space.
In general, we have the following:

Theorem 30.3. If (M, g) is complete, simply-connected, and has constant sectional curva-
ture K =0,1,—1 then (M, g) is isometric to Euclidean space, S™ with the round metric, or
hyperbolic space H™.

Proof. We use some basic Riemannian geometry: the exponential mapping exp,, : T,M — M
is surjective due to completeness. If K' < 0, there are no conjugate points, so exp, has no
critical points, so this mapping is a covering space. If M is simply connected, then this must
be a diffeomorphism. So then the metric is given by the above model metrics globally. In
the case of K =1, since K > 0, M must be compact by Meyer’s Theorem. It is not hard to
show that exp, will give a local isometry ¢ : S™ — M where S™ has the round metric. This
must be a covering mapping, so will be a diffeomorphism since M is simply connected. [

30.2 Uniformization on 52

Since the conformal group of (52, gs), where gg is the round metric, is noncompact, we
cannot hope to prove existence of a constant curvature metric by a compactness argument
as in the £ > 1 case. However, there is a t