Omitting types in C* algebras

Isaac Goldbring

University of Illinois at Chicago

UCSD Operator Algebras Seminar October 2015

A D M A A A M M

UCSD 2015

1 C* algebras and logic

2 The omitting types theorem

3 Failure of Finitary Arveson Extension

< 🗇 🕨 < 🖃 🕨

C* algebras

■ In this talk, *H* denotes a complex Hilbert space. A linear operator $T : B(H) \rightarrow B(H)$ is *bounded* if $||T|| < \infty$, where

$$||T|| := \sup\{||Tx|| : ||x|| = 1\}.$$

- A *concrete* C^{*} *algebra* is a *-subalgebra of B(H) that is closed in the operator norm topology.
- An abstract C^{*} algebra is a Banach *-algebra A satisfying the C^{*} equality: $||T^*T|| = ||T||^2$ for all $T \in A$.
- It is not hard to see that every concrete C* algebra is an abstract C* algebra. Conversely, it can be shown that every abstract C* algebra admits a faithful representation as a norm closed subalgebra of some B(H), so these really are the same notion.

• • • • • • • • • • • •

Examples of C* algebras

■ *B*(*H*) (boring!)

- If X is a compact topological space, then C(X) is a unital, commutative C* algebra when equipped with the sup-norm. By Gelfand theory, every unital commutative C* algebra is isomorphic to C(X) for some compact topological space X, whence C* algebra theory is sometimes dubbed noncommutative topology.
- If Γ is a discrete group and one considers the unitary representation $I : \Gamma \to U(\ell^2(\Gamma))$ given by $(I(\gamma)(f))(\eta) := f(\gamma^{-1}\eta)$, the *left-regular representation*, then the C* algebra generated by $I(\Gamma)$ inside of $B(\ell^2(\Gamma))$ is called the *reduced group C** *algebra of* Γ , denoted $C_r^*(\Gamma)$.
- Many, many, many more interesting and exotic examples.

- An *isometry* is a bounded operator T : H → H that is norm preserving (but is not necessarily onto); equivalently, T*T = I.
- (Made-up terminology) Let us call a pair of isometries $T_1, T_2 \in B(H)$ a *Cuntz pair* if $H = T_1(H) \oplus T_2(H)$.
- The Cuntz algebra O₂ is the universal C* algebra generated by a Cuntz pair. So O₂ is generated by a Cuntz pair (T₁, T₂) of isometries and if A is any C* algebra that is generated by a Cuntz pair (S₁, S₂), then there is a *-homomorphism O₂ → A sending T_i to S_i for i = 1, 2. (It is will actually be an embedding.)
- O₂ is a very interesting C* algebra for many reasons. It has played a crucial role in the classification programme for (simple, separable, nuclear) C* algebras.

< ロ > < 同 > < 回 > < 回 >

Continuous logic-The case of C* algebras

- Rather than define the syntax in general, we will just focus on the case of C* algebras.
- Atomic formulae: $\varphi(\vec{x}) := \|p(\vec{x})\|, p(\vec{x}) \text{ a *polynomial (over } \mathbb{C}).$
- Quantifier-free formulae: $\varphi(\vec{x}) := f(\varphi_1(\vec{x}), \dots, \varphi_n(\vec{x}))$, each φ_i atomic, $f : \mathbb{R}^n \to \mathbb{R}$ continuous.
- **Quantifiers:** If φ is a formula, then so are $\sup_{x} \varphi$ and $\inf_{x} \varphi$.
- If *A* is a C^{*} algebra, $\varphi(\vec{x})$ is a formula, and \vec{a} a tuple from *A*, then $\varphi(\vec{a})^A$ is a real number.
- For example, $\varphi(x) := \sup_{y} ||xy yx||$ is a formula. If *A* is a C^{*} algebra and $a \in A$, then $\varphi(a)^{A} = 0$ if and only if *a* is in the *center* of *A*.

A (1) > A (2) > A

Continuous logic-The case of C* algebras

- Rather than define the syntax in general, we will just focus on the case of C* algebras.
- Atomic formulae: $\varphi(\vec{x}) := \|p(\vec{x})\|, p(\vec{x}) \text{ a *polynomial (over } \mathbb{C}).$
- Quantifier-free formulae: $\varphi(\vec{x}) := f(\varphi_1(\vec{x}), \dots, \varphi_n(\vec{x}))$, each φ_i atomic, $f : \mathbb{R}^n \to \mathbb{R}$ continuous.
- **Quantifiers:** If φ is a formula, then so are $\sup_{x} \varphi$ and $\inf_{x} \varphi$.
- If *A* is a C^{*} algebra, $\varphi(\vec{x})$ is a formula, and \vec{a} a tuple from *A*, then $\varphi(\vec{a})^A$ is a real number.
- For example, $\varphi(x) := \sup_{y} ||xy yx||$ is a formula. If *A* is a C^{*} algebra and $a \in A$, then $\varphi(a)^{A} = 0$ if and only if *a* is in the *center* of *A*.

Continuous logic-The case of C* algebras

- Rather than define the syntax in general, we will just focus on the case of C* algebras.
- Atomic formulae: $\varphi(\vec{x}) := \|p(\vec{x})\|, p(\vec{x}) \text{ a *polynomial (over } \mathbb{C}).$
- Quantifier-free formulae: $\varphi(\vec{x}) := f(\varphi_1(\vec{x}), \dots, \varphi_n(\vec{x}))$, each φ_i atomic, $f : \mathbb{R}^n \to \mathbb{R}$ continuous.
- **Quantifiers:** If φ is a formula, then so are $\sup_{x} \varphi$ and $\inf_{x} \varphi$.
- If *A* is a C^{*} algebra, $\varphi(\vec{x})$ is a formula, and \vec{a} a tuple from *A*, then $\varphi(\vec{a})^A$ is a real number.
- For example, $\varphi(x) := \sup_{y} ||xy yx||$ is a formula. If *A* is a C^{*} algebra and $a \in A$, then $\varphi(a)^{A} = 0$ if and only if *a* is in the *center* of *A*.

1 C* algebras and logic

2 The omitting types theorem

3 Failure of Finitary Arveson Extension

< 🗇 🕨 < 🖻 🕨

The Omitting Types Theorem

Theorem

Suppose that \mathcal{K} is a class of separable C^* algebras for which there exists a family of existential formulae ($\varphi_{m,n}(\vec{x}_n)$) such that a separable C^* algebra A belongs to \mathcal{K} if and only if, for all m, we have

$$\left(\sup_{\vec{x}_n}\inf_n\varphi_{m,n}(\vec{x}_n)\right)^A=0.$$

Further suppose that: for each satisfiable condition $p(\vec{x})$, each m, and each $\epsilon > 0$, there is a C^* algebra A and a tuple \vec{a} from A such that $p(\vec{a})$ holds and $(\inf_n \varphi_{m,n}(\vec{a}))^A < \epsilon$. (*) Then there is a separable existentially closed C^* algebra A that belongs to \mathcal{K} .

Note the existence of such an A implies (*).

イロト イ団ト イヨト イヨト

The case of nuclearity

When *K* is the class of nuclear C* algebras, we call (*) the existence of *good nuclear witnesses*: for every satisfiable condition *p*(*x*) and every *ε* > 0, there is a C* algebra *A* and a tuple *ā* from *A* that satisfies *p*(*x*) and for which Δ_{nuc}(*ā*) < *ε*.

Theorem (G.-Sinclair)

There is an existentially closed nuclear C^* algebra if and only if *Kirchberg's embedding problem* (KEP) has a positive solution, namely every C^* algebra embeds into an ultrapower of \mathcal{O}_2 .

Corollary

KEP is equivalent to the existence of good nuclear witnesses.

< ロ > < 同 > < 回 > < 回 >

UCSD 2015

Continua

Definition

A continuum is a connected, compact space.

- Bankston studied the model-theory of continua in an unusual way that was supposed to be "dual" to ordinary model theory.
- It is more natural to study the class C(X) for X a continuum as an axiomatizable class of C* algebras as they are simply the projectionless abelian C* algebras.
- From now on, we always work relative to this class.

UCSD 2015

The pseudo-arc

Definition

Let X be a continuum. We say that X is:

- *indecomposable* if *X* cannot be written as the union of two proper subcontinua;
- *hereditarily indecomposable* if every proper subcontinuum of X is indecomposable;
- 3 *chainable* if, for any finite open cover U_1, \ldots, U_n of X, there is a refinement V_1, \ldots, V_m with the property that $V_i \cap V_j = \emptyset$ if and only if |i j| > 1.

Definition

The *pseudo-arc* \mathbb{P} is the unique chainable, hereditary indecomposable, metrizable continuum.

・ロト ・四ト ・ヨト ・ヨト

э

11/18

UCSD 2015

Bankston's Question

Theorem

If X is a continuum for which C(X) is existentially closed, then X is hereditarily indecomposable.

Question

Is $C(\mathbb{P})$ existentially closed?

Theorem (Eagle-G.-Vignati)

 $C(\mathbb{P})$ is existentially closed.

< ロ > < 同 > < 回 > < 回 >

UCSD 2015

1 C* algebras and logic

2 The omitting types theorem

3 Failure of Finitary Arveson Extension

< 🗇 🕨 < 🖃 🕨

UCSD 2015

Arveson's Extension Theorem

Theorem

Let A be a C^{*} algebra, E an operator system contained in A, and $\phi : E \to \mathcal{B}(H)$ a u.c.p. map. Then there is a u.c.p. map $\psi : A \to \mathcal{B}(H)$ extending ϕ .

Question

Is there a *finitary version* of Arveson Extension? More precisely: Is it true that given an operator system $E \subseteq M_n$, $k \in \mathbb{N}$, and $\epsilon > 0$, there exists $I \in \mathbb{N}$ and $\delta > 0$ such that, for any unital map $\phi : E \to \mathcal{B}(H)$ with $\|\phi\|_I < 1 + \delta$, there is a unital map $\psi : M_n \to X$ with $\|\psi\|_k < 1 + \epsilon$ and $\|\psi|E - \psi\| < \epsilon$?

FAE is false

Let FAE denote the statement that the finitary version of Arveson Extension mentioned above is true.

Theorem (G.-Sinclair; Ozawa)

FAE is false.

Using work of Choi-Effros, it turns out that FAE is equivalent to $\mathcal{B}(H)^{\omega}$ having WEP. So:

Corollary

 $\mathcal{B}(H)^{\omega}$ does not have WEP.

UCSD 2015

Sketch of the proof

- We first show that if FAE held, then the class of 1-exact operator systems is omitting types.
- We then consider two spaces: *m*_n is the space of "codes" for *n*-dimensional operator systems, equipped with the logic topology; and *OS*_n, the space of (isomorphism classes of) *n*-dimensional operator systems, equipped with its weak topology. Both are Polish spaces.
- There is a "forgetful" map $F : \mathfrak{M}_n \to \mathcal{OS}_n$.
- Let \mathcal{E}_n denote the 1-exact elements of \mathcal{OS}_n . We show that the class of 1-exact operator systems being omitting types implies that $F^{-1}(\mathcal{E}_n)$ is G_{δ} , so Polish.
- By the Open Mapping Theorem for Polish spaces, we get that *E_n* is weakly Polish. But this contradicts fundamental work of Junge and Pisier.

A model-theoretic application

Definition

 \mathbb{GS} is the unique operator system with the property that, given any finite-dimensional 1-exact operator spaces $E \subseteq F$, $\epsilon > 0$, and unital complete isometry $\phi : E \to \mathbb{GS}$, there is an injective linear map $\psi : F \to \mathbb{GS}$ extending ϕ with $\|\psi\|_{cb} \cdot \|\psi^{-1}\|_{cb} \leq 1 + \epsilon$.

Theorem (G. and Lupini)

GS does not have quantifier-elimination. Consequently, the class of existentially closed operator systems is not axiomatizable.

The analog of the last statement for tracial vNas is due to myself, Hart, and Sinclair and for C^{*} algebras is due to Eagle, Farah, Kirchberg, and Vignati. The statement is unkown for operator spaces.

イロン イボン イヨン 一日

- C. Eagle, I. Farah, E. Kirchberg, A. Vignati, *Quantifier elimination* in C* algebras, preprint.
- I. Goldbring and T. Sinclair, On Kirchberg's Embedding Problem, to appear in the Journal of Functional Analysis. arXiv 1404.1861

18/18

UCSD 2015