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Abstract. We characterize when a subfactorN ⊆ M is oracle computable rela-
tive to a presentation of the ambient factor M in terms of computability of the
Jones basic construction, in terms of computable Pismner-Popa bases, and in
terms of computability of the conditional expectation map. We illustrate our
main theorem with some examples.

1. Introduction

This paper contributes to the recent literature on effective structure theory as
it applies to operator algebras [F, FGH23, G21, GH, GH21] In particular, we
study in a more systematic manner the question first raised in [G21], namely
the complexity (in the sense of computability theory) of a subfactor inclusion.
More precisely, suppose that N ⊆ M is a finite-index inclusion of II1 factors1;
the rough question we wish to study is how much more complicated is the in-
clusionN ⊆ M than just the complexity contained inM itself? In this paper, we
introduce three natural notions of what it means for the inclusionN ⊆ M to be
no more complicated thanM itself and show that these three notions coincide.
Before explaining these three approaches to the complexity of a subfactor in-
clusion N ⊆ M, we must briefly explain how we are to compare its complexity
to the complexity of the ambient factor M. First, the entire discussion is rel-
ative to a given presentation M# of M, which is simply a countable sequence
from the unit ball of M that generates a SOT-dense ∗-subalgebra of M. With
a presentation M# of M in hand, one can then reason about M from an algo-
rithmic viewpoint. The most immediate question is how complicated (in the
sense of Turing degree) must an algorithm be in order to calculate the ∗-algebra
operations and the 2-norm of M from the presentation M#. In general, we do
not expect these operations to be computable (although this is the case for the
standard presentation of the hyperfinite II1 factor R). Instead, our standing as-
sumption is that the presentation M# of M is D-computable, where D is some

Goldbring was partially supported by NSF grant DMS-2054477.
1In this note, all II1 factors are assumed to be separably acting.
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(Turing) oracle that is knowledgeable enough to be able to carry out the afore-
mentioned calculations.
We can now rephrase our main question: if the presentation M# of M is D-
computable, what does it mean to say that the subfactor inclusion N ⊆ M is
also D-computable?
One reasonable interpretation of this question involves the basic construction
of Jones, which is the II1 factorM1 generated byM (viewed as concretely repre-
sented on L2(M) via its standard representation) and the orthogonal projection
eN : L2(M) → L2(N). The presentation M# of M induces a natural presentation
M#

1 ofM1 obtained by simply adding eN to the presentation. One can then inter-
pret our rough question from above as: when isM#

1 alsoD-computable? (From
the definition,M#

1 must be at least as complicated as M#.)
Another perspective on the question comes fromconsideringPimsner-Popa bases
for the inclusion. A Pimsner-Popa basis for the inclusion N ⊆ M leads to an
elegant description of M as a finitely generated projective right N-module. It
is thus reasonable to suspect that the subfactor is D-computable if it has a D-
computable (with respect to M#) Pismner-Popa basis and such that the inclu-
sion of N† into M# is D-computable with respect to some presentation N† of
N. Our main theorem asserts that (given a precise notion of D-computable
Pimsner-Popa basis), this notion coincides with the D-computability ofM#

1.
One final perspective on the D-computability of subfactors comes from con-
sidering the D-computability of the conditional expectation EN : M# → M#.
It turns out that we were not able to show that this is equivalent to the previ-
ous two notions on its own but is equivalent to the previous two notions when
combined with the assumption that the index [M : N] is a D-computable real
number. In certain instances (such as when [M : N] ≤ 4 or when M has finite
depth), the index is simply computable and thus the D-computability of EN is
equivalent to the previous two notions. We consider some examples of ourmain
theorem in action in the final section of the paper.
It follows from our main result that ifM#

1 isD-computable, then so are the iter-
ated basic constructionsM#

n comprising the Jones tower.
Two of the three equivalent conditions in our main theorem involve a conjunc-
tion of two statements. It is natural to wonder if either of those conjunctions
can be simplified to one of their conjuncts. We conclude the paper with two
partial results along these lines. We show that if EN is D-computable, then M#

1

isD ′-computable (soM#
1 is at most one “jump” of complexity higher thanM#).

We also show that if there is some presentation N† ofN such that the inclusion
N† ↪→ M# isD-computable, thenM#

1 isD ′′-computable (so at most two “jumps”
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of complexity higher). It would be interesting to see if these jumps are actually
necessary.
In future work, we plan on studying effective aspects of other objects related to
a subfactor, such as its standard invariant and derived tower.
We assume that the reader is familiar with basic facts about tracial von Neu-
mann algebras but not necessarily basic subfactor theory; we present what we
need about subfactor theory in Section 4. We also assume that the reader is
familiar with very basic computability theory; the uninitiated reader can con-
sult [G21, Section 2], where it was presented with an eye towards the issues
that concern us here. Nevertheless, we do discuss the basic notions concerning
presentations of tracial von Neumann algebras in the next section.
We thank David Penneys for many useful discussions regarding this work.

2. Generalities on Presentations

In this section, we discuss the notion of a presentation of a tracial vonNeumann
algebra and collect some basic facts to be used throughout the paper.

Definition 2.1. Given a tracial von Neumann algebra M, a presentation of M
is a countable sequence (an)n∈N of elements of the unit ball of M that generate
a (SOT-) dense *-subalgebra of M. The elements of the presentation are some-
times called the special points of the presentation.

We use letters likeM# and M† to denote presentations ofM.

Definition 2.2. Given a presentation M# of a tracial von Neumann algebra, the
set of elements of M obtained by closing the elements of the presentation un-
der addition, multiplication, adjoint, andmultiplication by elements ofQ(i) are
referred to as the rational points ofM#.

Throughout, we let F(k) = C∗⟨c1, . . . , ck : ∥ci∥ ≤ 1⟩ be the universal contraction
C*-algebra on k generators.
Given a presentation M# of M, there is an associated computable enumeration
(xn)n∈N of the rational points of the presentation. Moreover, there is a com-
putable functional ·♭ on the rational pointswhich computes a naïve upper bound
on the operator norm. Specifically, if xn = p(a1, . . . , ak) is a rational point (so
a1, . . . , ak are special points ofM# and p(w1, . . . , wk) is a ∗-polynomial with co-
efficients from Q(i)), then we set

x♭n := ∥p(c1, . . . , ck)∥F(k)
= sup{∥p(z1, . . . , zk)∥A : A is a C*-algebra, ∥zi∥A ≤ 1}.
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In particular, a♭
n = 1 for every special point an of the presentation. Since the

standard presentation of F(k) is computable by [F, Corollary 3.8], it follows
that x♭n is a computable real number, uniformly in n.
A key consequence of our set-up is the following:
Lemma 2.3. For any rational point x ofM# with ∥x∥∞ ≤ 1, there is a sequence (xn)n∈N
of rational points of M# such that ∥xn − x∥∞ → 0 with x♭n < 1 for all n.

Proof. Let x = p(a1, . . . , ak). Let π : F(k) → C∗⟨a1, . . . , ak⟩ ⊆ M be the natu-
ral surjection defined by π(ci) = ai. By [RLL00, 2.2.10], there exists z ∈ F(k)
such that ∥z∥ = ∥x∥∞ ≤ 1 and π(z) = x. Let (zn) be a sequence of rational
*-polynomials in c1, . . . , ck such that ∥zn − z∥ → 0 and ∥zn∥ < 1 for all n. Let
xn = π(zn), so xn is a rational point ofM# and x♭n = ∥zn∥ < 1. It remains to note
that ∥xn − x∥∞ = ∥π(zn − z)∥∞ ≤ ∥zn − z∥ → 0. □

Corollary 2.4. For any x ∈ M with ∥x∥∞ ≤ 1, there is a sequence (xn)n∈N of rational
points ofM# such that ∥xn − x∥2 → 0 with x♭n < 1 for all n.

Proof. ByKaplansky density, there is a sequence of rational pointsyn converging
to x in the 2-norm, each with ∥yn∥∞ ≤ 1. For each rational point yn, by Lemma
2.3, we can choose a rational point xn close enough with x♭n < 1. □

Throughout this paper, D denotes a Turing oracle.
Definition 2.5. If M# is a presentation of M, then x ∈ M is a D-computable
point of M# if there is a D-algorithm such that, upon input k ∈ N, returns a
rational point p ∈ M# with ∥x− p∥2 < 2−k.

The following lemma is clear.
Lemma 2.6. TheD-computable points ofM# are closed under addition, multiplication,
adjoint, and multiplication by rational complex scalars.

Definition 2.7. If M# is a presentation of M and D is an oracle, then M# is a
D-computable presentation if there is aD-algorithm such that, upon input ra-
tional point p ∈ M# and k ∈ N, returns a rational numberq such that |∥p∥2−q| <
2−k.

IfM# is aD-computable presentation, we refer to any code for aD-algorithm as
in the definition as a code for the presentation M#.
Given a presentationM# ofMwhose special points are enumerated by (an)n∈N
and a projection p ∈ M, we let (pMp)# denote the canonical induced presen-
tation of the compression pMp whose special points are (panp)n∈N. Note that
there is a computable function which, upon input a code for a D-computable
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presentation M# and a code for a D-computable projection p in M#, returns a
code for the canonical presentation (pMp)#. Note also that if M# and p are D-
computable, then everyD-computable point of (pMp)# is aD-computable point
ofM#, uniformly in the code for the presentation and a code for the point.
The following lemma is clear:

Lemma 2.8. There is a computable function fcorner : N2 → N such that if x is the code
of a D-computable presentation M# of a tracial von Neumann algebra M and y is the
code of a D-computable projection of M#, then fcorner(x, y) is the code of the canonical
D-computable presentation (pMp)# of pMp.

Definition 2.9. Suppose that M and N are tracial von Neumann algebras with
presentations M# and N† respectively. Further suppose that f : Mm → N is a
Lipshitz map (say with respect to the maximum metric on Mm)2. Then f is a
D-computable map from M# into N† if there is a D-algorithm such that, upon
input a tuple of rational points p⃗ ∈ (M#)m and k ∈ N, returns a rational point
p ′ ∈ N† such that ∥f(p⃗) − p ′∥ < 2−k. (Here, we use an effective numbering of
Nm to effectively enumerate them-tuples of rational points ofM#.)

Throughout the paper,C always has its standard presentation, that is, withQ(i)
as its presentation.

3. Useful technical lemmas

In this section, we collect a number of useful technical lemmas stating that cer-
tain types of elements (such as projections and partial isometries) can, under
certain assumptions, be found effectively.

Fact 3.1. Suppose 0 < ϵ < 1 and 0 < δ < ϵ2/48. Then for any tracial von Neumann
algebra M and x ∈ M, if ∥x∥∞ ≤ 1, ∥x− x∗∥2 ≤ δ, and

∥∥x− x2
∥∥
2
≤ δ, then there is

a projection p ∈ M such that ∥x− p∥2 < ϵ.

Proof. Let z = x∗x. Then 0 ≤ z ≤ 1 and
∥x− z∥2 ≤

∥∥x− x2
∥∥
2
+ ∥x∥∞ ∥x− x∗∥2 ≤ 2δ.

Hence, ∥∥z2 − z
∥∥
2
≤

∥∥z2 − zx
∥∥
2
+ ∥zx− z∥2

≤ ∥z∥∞ ∥z− x∥2 + ∥x∗∥∞ ∥∥x2 − x
∥∥
2

< ϵ2/16.

2The Lipshitz condition can be weakened to having a “computable modulus of uniform con-
tinuity” but we will not need this more general notion in this paper.
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Thus, by [C75, Lemma 1.1.5], there is a projection p such that ∥z− p∥2 ≤ ϵ/2,
whence ∥x− p∥2 < ϵ. □

Definition 3.2. Given a presentation M# of a tracial von Neumann algebra M
and rational ϵ ∈ (0, 1), we say a rational point x of M# is an ϵ-quasi-projection
if x♭ < 1, ∥x− x∗∥2 < ϵ2/48, and

∥∥x− x2
∥∥
2
< ϵ2/48.

Lemma 3.3. Fix a presentation M# of a tracial von Neumann algebra M and rational
ϵ ∈ (0, 1).

(1) Every ϵ-quasi-projection is ϵ-close (in 2-norm) to an actual projection.
(2) Every projection inM is ϵ-close (in 2-norm) to an ϵ-quasi-projection.
(3) IfM# is D-computable, then the set of ϵ-quasi-projections ofM# is D-c.e.

Proof. Item (1) follows from Fact 3.1 while item (2) follows from Corollary 2.4.
Item (3) is clear. □

Lemma 3.4. Suppose thatM# is aD-computable presentation of a tracial vonNeumann
algebraM. Then (x, y) 7→ tr(x∗y) : (M#)2 → C is aD-computable map, uniformly in
a code forM#.

Proof. This follows from the polarization identity. □

Lemma 3.5. Suppose thatM# is aD-computable presentation of a tracial vonNeumann
algebra M. Then 1 is a D-computable point ofM#, uniformly in a code forM#.

Proof. Given k ∈ N, search for a rational point x such that xx∗x is a 2−2k−3-quasi-
projection with | tr(xx∗x) − 1| < 2−2k−3, where we know x 7→ tr(xx∗x) is D-
computable by Lemma 3.4. Such a rational point must exist by Corollary 2.4
when applied to 1. By Fact 3.1, there is a projection pwith ∥xx∗x− p∥2 < 2−2k−3.
Then

∥p− 1∥22 = 1− tr(p)
≤ |1− tr(xx∗x)|+ ∥xx∗x− p∥2 (by Cauchy-Schwarz)
< 2−2k−2.

Thus ∥xx∗x− 1∥2 ≤ ∥xx∗x− p∥2 + ∥p− 1∥2 < 2−k. □

By the previous lemma, if M# is a D-computable presentation of a tracial von
Neumann algebra M, then we can compute, uniformly in a code for M#, a D-
computable presentation ofMwith 1 as a special point which isD-computably
isomorphic to M#, uniformly in M#. As a result, with no loss of generality, in
the rest of the paper, we always assume that 1 is in fact a special point ofM#.
Corollary 3.6. If M# is a D-computable presentation of tracial von Neumann algebra
M, then tr : M# → C is a D-computable map, uniformly in a code for M#.
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Lemma 3.7. There is a computable function fap : N3 → N such that if x is the code of
a D-computable presentation M# of a II1 factor M and r is the code of a D-computable
real number λ ∈ [0, 1], then fap(x, r, k) is the code of aD-computable projection ofM#

with trace within 1/2k of λ.

Proof. For n ∈ N, let ϵn = 2−n−k−2. We effectively determine a sequence (xn)n∈N
of rational points such that xn is a ϵn-quasi-projection, ∥xn+1 − xn∥2 < ϵn+1+ϵn

and | tr(xn) − λ| < ϵn + 2
∑n−1

i=1 ϵi.
First, search for the first ϵ1-quasi-projection x1 such that | tr(x1) − λ| < ϵ1. Such
a rational point must exist by Corollary 2.4 since M has a projection with trace
λ.
Assuming xn has already beendetermined, search for the first ϵn+1-quasi-projection
xn+1 such that ∥xn+1 − xn∥2 < ϵn+1 + ϵn and | tr(xn+1) − λ| < ϵn+1 + 2

∑n
i=1 ϵi.

Such a rational point must exist by Corollary 2.4 since if q is one of the projec-
tions ϵn-close to xn, then | tr(q) − λ| < ϵn + ϵn + 2

∑n−1
i=1 ϵi by Cauchy-Schwarz,

so any ϵn+1-quasi-projection ϵn+1-close to q suffices.
Now, observe that (xn)n∈N converges to a projection p and

| tr(p) − λ| ≤ 2

∞∑
i=1

ϵi < 2−k.

□

Lemma 3.8. There is a computable function fproj : N2 → N such that if x is the code of
a D-computable presentation M# of a II1 factor M and r is the code of a D-computable
real number λ ∈ (0, 1), then fproj(x, r) is the code of a D-computable projection of M#

with trace exactly λ.

Proof. We effectively determine a decreasing sequence (pn)n∈N ofD-computable
projections ofM# such that trM(pn) ∈ (λ, λ+ 2−n). Set p0 = 1. Assuming pn has
already been determined, we find pn+1. By Lemma 2.8, we can effectively find a
code xpn for theD-computable corner presentation (pnMpn)

#. Find k ∈ N such
that k ≥ n+ 1 and λ/trM(pn) + 2−k < 1. By Lemma 3.7, we can effectively find
a D-computable projection pn+1 of (pnMpn)

# such that

trpnMpn(pn+1) ∈ (λ/ trM(pn), λ/trM(pn) + 2−k),

namely the projection determined by fap(xpn , λ/ trM(pn) + 2−k−1, k + 1). Thus
pn+1 ≤ pn, pn+1 is aD-computable point ofM#, and trM(pn+1) ∈ (λ, λ+ 2−(n+1)).
Observe

∥pn+1 − pn∥22 = tr(pn) − tr(pn+1) < 2−n,
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so (pn)n∈N is a Cauchy sequence of projections, whose limit we denote by p.
Then p is a projection, trM(p) = λ, and ∥pn − p∥2 =

√
tr(pn) − tr(p) < 2−n/2.

Therefore p is a D-computable projection ofM# of trace exactly λ.
□

Lemma 3.9. There is a computable function fop : N3 → N such that if x is the code of a
D-computable presentation of a II1 factorM, r is the code for aD-computable real num-
ber λ ∈ (0, 1) and n is ⌊1/λ⌋, then fop(x, r, n) is the code for a sequence p1, . . . , pn+1 of
mutually orthogonalD-computable projections ofM# with tr(pi) = λ for i = 1, . . . , n
and tr(pn+1) = 1− nλ.

Proof. We effectively determine a sequence (pi)
n
i=1 of mutually orthogonal D-

computable projections ofM# such that tr(pi) = λ. By Lemma 3.8, we can effec-
tively find a D-computable projection p1 in M# of trace λ. Assuming pk has al-
ready beendetermined, wefindpk+1. Letq = 1−

∑k
i=1 pi, soq is aD-computable

projectionwith tr(q) ≥ λ by Lemma 3.5. By Lemma 3.8, we can effectively find a
D-computable projection pk+1 in (qMq)# with trqMq(pk+1) = λ/ tr(q). It follows
that pk+1 is orthogonal to pi for i = 1, . . . , k and tr(pk+1) = λ. It remains to set
pn+1 = 1−

∑n
i=1 pi. □

As usual, we denote the fact that projections p and q are Murray von Neumann
equivalent by writing p ∼ q, while the notation p ⪯ q signifies that p ∼ q ′ for
some projection q ′ ≤ q. If v is a partial isometry that satisfies v∗v = p and
vv∗ = q, then we say that v is an implement of p ∼ q.
A proof of the non-effective formof the following lemma is essentially contained
in the proof of [C75, Proposition 1.1.3(b)].

Lemma 3.10. Let M be a II1 factor. Let p, q ∈ M be projections such that p ∼ q.
Suppose 0 < ϵ < 1 and 0 < δ < ϵ16/1116. Then for any x ∈ M, if ∥x∥∞ ≤ 1,
∥x∗x− p∥2 ≤ δ, and ∥xx∗ − q∥2 ≤ δ, then there is an implement v ∈ M of p ∼ q with
∥x− v∥2 < ϵ.

Proof. Let x ∈ M be as in the conclusion of the theorem and set y := qxp. Then
∥(1− q)x∥22 = tr((1− q)(xx∗ − q)(1− q)) ≤ ∥xx∗ − q∥2 ≤ δ

and
∥x(1− p)∥22 = tr((1− p)(x∗x− p)(1− p)) ≤ ∥x∗x− p∥2 ≤ δ,

so
∥x− y∥2 ≤ ∥x− qx∥2 + ∥qx− y∥2 ≤ ∥(1− q)x∥2 + ∥x(1− p)∥2 ≤ 2δ1/2.

Furthermore,
∥y∗y− p∥2 ≤ ∥y∗y− y∗x∥2 + ∥y∗x− x∗x∥2 + ∥x∗x− p∥2 ≤ 5δ1/2,
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whence it follows that∥∥(y∗y)2 − y∗y
∥∥
2
=

∥∥(y∗y)2 − y∗yp
∥∥
2
≤ ∥y∗y− p∥2 ≤ 5δ1/2.

Let f : [0, 1] → [0, 1] be defined by f(a) = a−1/2 if 1 −
√
5δ1/4 ≤ a ≤ 1 and 0

otherwise. Set z := yf(y∗y). Then z∗z and zz∗ are projections satisfying

z∗z = y∗yf(y∗y)2 ≤ p and zz∗ = y(f∗y)2y∗ ≤ q.

By construction, (1−y∗y)2(1−z∗z) ≥ (5δ1/2)(1−z∗z) and tr((y∗y)2(1−y∗y)2) ≤
(5)2δ, whence

∥y(1− z∗z)∥42 = tr(y∗y(1− z∗z))2

≤ tr((y∗y)2(1− z∗z))

≤ (5δ1/2)−1 tr((y∗y)2(1− y∗y)2(1− z∗z))

≤ 5δ1/2.

It follows that
∥y− z∥2 ≤ ∥y− yz∗z∥2 + ∥yz∗z− z∥2

≤ ∥y(1− z∗z)∥2 +
∥∥y∗yf(y∗y)2 − f(y∗y)

∥∥∞
≤ 4

√
5δ1/8 +

√
5δ1/4

≤ 5δ1/8.

Furthermore,
∥z∗z− p∥2 ≤ ∥z∗z− z∗y∥2 + ∥z∗y− y∗y∥2 + ∥y∗y− p∥2 ≤ 15δ1/8.

Observe that tr(q) − tr(zz∗) = tr(p) − tr(z∗z) = ∥p− z∗z∥2 ≤ 15δ1/8. Let w be a
partial isometry such that w∗w = p− z∗z and ww∗ = q− zz∗. Then

∥w∥22 = tr(p) − tr(z∗z) ≤ 15δ1/8,

and so ∥w∥2 ≤ 4δ1/16. Finally, set v := z + w. Then v is an implement of p ∼ q
and

∥x− v∥2 ≤ ∥x− y∥2 + ∥y− z∥2 + ∥w∥2 ≤ 11δ1/16 < ϵ.

□

Definition 3.11. Given a presentation M# of a II1 factor M, projections p and
q in M with p ∼ q, and rational ϵ ∈ (0, 1), we say that a rational point x of
M# is an ϵ-quasi-implement of p ∼ q if x♭ < 1, ∥x∗x− p∥2 < ϵ16/1116, and
∥xx∗ − q∥2 < ϵ16/1116.

Lemma 3.12. Fix a presentation M# of a II1 factor M, projections p and q in M with
p ∼ q, and rational ϵ ∈ (0, 1).



10 ALEC FOX AND ISAAC GOLDBRING

(1) Every ϵ-quasi-implement of p ∼ q is ϵ-close (in 2-norm) to an actual imple-
ment of p ∼ q.

(2) Every implement of p ∼ q is ϵ-close (in 2-norm) to an ϵ-quasi-implement of
p ∼ q.

(3) IfM# isD-computable and p, q areD-computable points ofM#, then the set of
ϵ-quasi-implements of p ∼ q is D-c.e.

Proof. Item (1) follows from Lemma 3.10 while item (2) follows from Corollary
2.4. Item (3) is clear. □

Lemma 3.13. Suppose that M# is a D-computable presentation of a II1 factor M and
p, q are D-computable projections ofM#.

(1) If p ∼ q, then there is a D-computable implement of p ∼ q, which can further-
more be computed from codes forM#, p and q.

(2) If p ⪯ q, then there aD-computable partial isometry v ofM# such that v∗v = p
and vv∗ ≤ q, which can furthermore be computed from codes forM#, p and q.

Proof. For (1), fix n ∈ N and set ϵn := 2−n. We effectively determine a sequence
(xn)n∈N of rational points of M# such that xn is an ϵn-quasi-implement of p ∼ q
and ∥xn+1 − xn∥2 < ϵn+1+ϵn. First, search for an ϵ1-quasi-implement x1 of p ∼ q.
Assuming xn has already been determined, search for an ϵn+1-quasi-implement
xn+1 of p ∼ q such that ∥xn+1 − xn∥2 < ϵn+1+ϵn. Such a rational point must exist
since if v is an implement of p ∼ q which is ϵn-close to xn, then any ϵn+1-quasi-
implement xn+1 of p ∼ q which is ϵn+1-close to v suffices. It remains to observe
that (xn)n∈N converges to an implement of p ∼ q.
To prove (2), by (1) it suffices to show that we can find aD-computable projec-
tion q ′ ≤ q such that p ∼ q ′, or, equivalently, that tr(q ′) = tr(p). Since p and q
areD-computable elements ofM#, tr(p) and tr(q) areD-computable real num-
bers by Corollary 3.6, whence by Lemma 3.8, we can find a D-computable pro-
jection q ′ ∈ (qMq)# whose corner trace is tr(p)/tr(q), and thus tr(q ′) = tr(p),
as desired. □

4. Preliminaries on subfactor theory

In this section, we present the basic facts from subfactor theory from [J83, PP86]
needed in the rest of the paper. Another good reference for thismaterial is [P94].
Throughout, by a subfactor we mean an inclusion of II1 factors N ⊆ M. We let
eN : L2(M) → L2(N) (or simply e if the context is clear) denote the canonical
orthogonal projectionmap, noting that the restriction EN of eN toM takes values
in N; the linear map EN : M → N is called the conditional expectation map
fromM onto N. We note the following properties of E:
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• EN(x) = x for all x ∈ N.
• EN(xyz) = xEN(y)z for all x, z ∈ N and y ∈ M.
• EN(x

∗) = EN(x)
∗ for all x ∈ M.

• EN(x) is the unique y ∈ N such that tr((x− y)z) = 0 for all z ∈ N.
• EN(x) is the unique y ∈ N such that eNxeN = yeN.
• EN is trace-preserving and contractive with respect to both the operator
norm and the 2-norm.

An important invariant of the subfactor N ⊆ M is the index [M : N] of N in M.
In order to avoid introducing modules over a II1 factor, we give a definition of
the index in terms of the conditional expectation map due to Pimsner and Popa
[PP86], namely

[M : N]−1 := max{λ ∈ R+ : EN(x) ≥ λx for all x ≥ 0}.

This can alternatively be described by

[M : N]−1 := inf
{
∥EN(x)∥22
∥x∥22

: x > 0

}
.

The terminology is inspired by the fact that if L(H) ⊆ L(G) is the subfactor in-
duced by a subgroup H ≤ G, then [L(G) : L(H)] = [G : H]. However, unlike
the case of groups, the index does not necessarily have to be an integer. A land-
mark result of Jones states that [M : N] must always be an element of the set
{4 cos2(π

n
) : n = 3, 4, 5, . . .}∪ [4,∞]. Moreover, all of these values can be realized

as indices of subfactors of R.
Associated to the subfactorN ⊆ M is the Jones basic construction, which is the
von Neumann algebra M1 := (M ∪ {eN})

′′ ⊆ B(L2(M)) generated by M and eN.
We recall the following basic facts aboutM1:

• M+MeNM is a weakly dense ∗-subalgebra ofM1.
• M1 is a II1 factor if and only if [M : N] < ∞.

Assuming [M : N] < ∞, we also have:

• [M1 : M] = [M : N].
• For x ∈ M, we have tr(xeN) = [M : N]−1 tr(x). In particular, tr(eN) =

[M : N]−1 and ∥xeN∥22 = [M : N]−1 ∥x∥22 for any x ∈ M.
• EM(eN) = tr(eN) · 1 = [M : N]−1 · 1.
• For x ∈ M1, y = [M : N]EM(xeN) is the unique element of M such that
xeN = yeN. In particular,M1 = MeNM := span{xeNy : x, y ∈ M}.
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SinceM ⊆ M1 is a subfactor, one can consider the associated basic construction,
which is denotedM2. Continuing this process leads to the Jones tower

N ⊆ M0 := M ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Mn ⊆ Mn+1 ⊆ · · · .

Suppose that [M : N] < ∞ has integer part n. Then there exist elements
m1, . . . ,mn+1 ofM with the following properties:

• EN(m
∗
jmk) = 0 for all distinct j, k ∈ {1, . . . , n+ 1}.

• EN(m
∗
jmj) = 1 for all j ∈ {1, . . . , n}.

• EN(m
∗
n+1mn+1) is a projection of trace [M : N] − n.

(By convention, mn+1 = 0 if [M : N] ∈ N.) Any such family of elements is
called a Pimsner-Popa basis of M over N. The terminology is inspired by the
fact that ifm1, . . . ,mn+1 is a Pimsner-Popa basis ofM overN, then every x ∈ M

can be written uniquely as x =
∑n+1

j=1 mjxj with each xj ∈ N for j = 1, . . . , n and
xn+1 ∈ EN(m

∗
n+1mn+1)N. Other important properties of a Pimsner-Popa basis

are the following:

•
∑n+1

j=1 mjeNm
∗
j = 1.

•
∑n

j=1mjm
∗
j = [M : N].

Pimsner-Popa bases are unique in a sense made precise in [PP86]. Relevant for
us is how they can be constructed: Let g1, . . . , gn+1 be orthogonal projections in
M1 with tr(gi) = [M : N]−1 for i = 1, . . . , n and tr(gn+1) = 1 − n[M : N]−1. For
j = 1, . . . , n + 1, take partial isometries vj ∈ M1 such that vjv∗j = gj, v∗j vj = eN
for j = 1, . . . , n, and v∗n+1vn+1 ≤ eN. A Pimsner-Popa basis is then obtained by
lettingmj be the unique element ofM such that vj = vjeN = mjeN.
Moving forward, if the inclusion N ⊆ M is clear from context, we simply write
e for the Jones projection eN.
Although we will not study computability of standard invariants in this article,
the notion of the standard invariant will arise in examples below. Jones’ stan-
dard invariant consists of:

• The two towers of higher relative commutants/centralizer algebras
(M ′

0 ∩Mn)n≥0 and (M ′
1 ∩Mn+1)n≥0,

which are finite dimensional by [J83];
• the Jones projections e1 ∈ N ′ ∩ M1, e2 ∈ M ′ ∩ M2 ⊂ N ′ ∩ M2, e3 ∈
M ′

1 ∩M3 ⊂ M ′ ∩M3 ⊂ N ′ ∩M3, etc., which satisfy the Temperley-Lieb-
Jones relations (see Example 8.4 below); and

• the Markov trace tr on M∞ = lim−→Mn restricted to the two towers of
centralizer algebras.
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The standard invariant, and thus the subfactor itself, is called finite depth if
there is a global bound on the dimensions of the centers of the higher relative
commutants.

5. The induced presentation on the Jones basic construction

In this short subsection, we describe how a presentationM# of the ambient fac-
tor M of a subfactor N ⊆ M naturally induces a presentation M#

1 of the Jones
basic construction M1. We then present a few lemmas that will be used in the
next section when proving the main theorem of this paper.

Definition 5.1. Fix a subfactorN ⊆ M and a presentationM# ofM. The induced
presentationM#

1 ofM1 has as its special points the special points ofM# as well
as the element e.

Note that M#
1 is indeed a presentation of M1 as the von Neumann algebra gen-

erated by the special points is contained in M1 and contains both e and the
elements fromM.

Definition 5.2. Given a subfactor N ⊆ M and a presentation M# of M, the in-
duced presentation of N, denoted N#, is the presentation of N whose special
points are those of the form EN(x), where x is either a special point of M# or a
rational point ofM# with x♭ < 1.

Note that N# is indeed a presentation of N as any point in the unit ball of N is
the 2-norm limit of rational points from M# with ♭ < 1 and EN is continuous
with respect to the 2-norm.

Definition 5.3. We say that a rational point of M#
1 is in syntactic normal form

if it is of the form a +
∑

i bieci, where a is a rational point of M#, each bi is a
rational point of N#, and each ci is a rational point ofM#.

Lemma 5.4. There is a computable function which takes as input a rational point of
M#

1 and returns an equivalent rational point in syntactic normal form.

Proof. For each term, apply exe = EN(x)e (x ∈ M) from the left as necessary
until at most a single factor of e remains. Use the linearity of EN and ♭ to write
the factors on the left-hand side of e as a rational point of N#. □

Lemma 5.5. Suppose M# is a D-computable presentation, [M : N] < ∞ is D-
computable, and EN : M# → M# is aD-computable map. Then there is aD-computable
algorithm (uniform in codes for M#, [M : N], and EN) which, when given a D-
computable point v of M#

1 and k ∈ N, returns a rational point w of M# such that
∥w− y∥2 < 2−k, where y is the unique element ofM for which veN = yeN.
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Proof. Find a rational point x of M#
1 such that ∥x− v∥22 < 2−2k−2[M : N]−1. By

Lemma 5.4, we can write x in syntactic normal form as a +
∑

i bieci. Setting
z := a +

∑
i biEN(ci), observe ze = xe and z is a D-computable point of M#.

Find a rational point w of M# such that ∥w− z∥2 < 2−k−1. Then

∥z− y∥22 = [M : N] ∥(z− y)e∥22
= [M : N] ∥xe− ve∥22
≤ [M : N] ∥x− v∥22 .

Hence ∥w− y∥2 ≤ ∥w− z∥2 + ∥z− y∥2 < 2−k.
□

6. The main theorem

In this section, we state and prove the main result of this paper. Before doing
so, we introduce some important terminology.

Definition 6.1. Suppose that [M : N] < ∞ and let m1, . . . ,mn+1 be a Pimsner-
Popa basis ofM overN. LetM# be a presentation ofM. We say thatm1, . . . ,mn+1

is a D-computable Pimsner-Popa basis ofM# over N if

(1) eachmj is a D-computable point ofM#,
(2) each EN(mj) is a D-computable point of M#, and
(3) EN(m

∗
n+1mn+1) is a D-computable point of M#.

Remark 6.2. This definition formalizes the properties of a particular Pimsner-
Popa basis used in [G21, Proposition 2.9]. However, that proof was incorrect as
it did not include the condition (3) in the previous definition. We remedy this
error in the proof of our main theorem below.

Definition 6.3. Suppose thatN is a subfactor ofM, andN andM are equipped
with presentations N† and M# respectively. We say that N† is D-computably
embedded in M# if M# is D-computable and the inclusion map ι : N† ↪→ M# is
D-computable (whence N† is D-computable).

Recalling the definition of the induced presentation of a subfactor (Definition
5.2), the following lemma is clear:

Lemma 6.4. IfM# isD-computable, then EN : M# → M# isD-computable if and only
if N# is D-computably embedded inM#.

We can now state our main theorem:
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Theorem6.5. Suppose thatN is a subfactor ofM such that [M : N] < ∞. Fix a presen-
tation M# of M and let M#

1 be the induced presentation of the Jones basic construction
M1. Let D be a Turing oracle such that M# is D-computable. Then the following are
equivalent:

(1) M#
1 is D-computable.

(2) The following two statements hold:
(a) EN : M# → M# is D-computable.
(b) [M : N] is a D-computable real number.

(3) The following two statements hold:
(a) There is a presentationN† ofN which isD-computably embedded inM#.
(b) There is a D-computable Pimsner-Popa basis ofM# over N.

Proof. We first prove the equivalence of (1) and (2). Suppose that M#
1 is D-

computable. Since e is a special point of M#
1, we have [M : N]−1 = tr(e) = ∥e∥22

is D-computable, and thus so is [M : N]. Furthermore, EN : M# → M# is D-
computable: given a rational point x of M# and k ∈ N, search for a rational
point y ofM# such that ∥ye− exe∥22 < [M : N]−12−2k, in which case

∥y− EN(x)∥22 = [M : N] ∥(y− EN(x))e∥22 = [M : N] ∥ye− exe∥22 < 2−2k.

Conversely, suppose that EN : M# → M# is D-computable and [M : N] is D-
computable. Given a rational point x of M#

1, by Lemma 5.4 we can write x∗x in
syntactic normal form as a+

∑
i bieci. Then

∥x∥22 = tr(x∗x) = tr(a) +
∑
i

tr(bieci) = tr(a) + [M : N]−1
∑
i

tr(bici),

which is D-computable by Corollary 3.6 and Lemma 6.4.
We now prove that (1) implies (3). Suppose (1), equivalently (2), holds. Triv-
ially then,N# isD-computably embedded inM# by Lemma 6.4. To finish prov-
ing (3), we apply Lemma 3.9 to find D-computable projections g1, . . . , gn+1 of
M#

1 with
tr(gi) = [M : N]−1 for i = 1, . . . , n, tr(gn+1) = 1− n[M : N]−1.

By Lemma 3.13, we effectively findD-computable partial isometries v1, . . . , vn+1

of M#
1 such that vjv∗j = gj for j = 1, . . . , n + 1, v∗j vj = e for j = 1, . . . , n, and

v∗n+1vn+1 ≤ e. By Lemma 5.5, we can effectively find D-computable points
m1, . . . ,mn+1 of M#, where each mj is the unique element of M that satisfies
vje = mje. It follows that m1, . . . ,mn+1 is a D-computable Pimsner-Popa basis
ofM# over N.
Finally, we prove that (3) implies (2). LetN† beD-computably embedded inM#

and letm1, . . . ,mn+1 be aD-computable Pimsner-Popa basis ofM# overN. The
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statement that EN : M# → M# isD-computable is [G21, Proposition 2.9], but the
argument there is incorrect as it is missing the third item in our definition of a
D-computable Pimsner Popa basis ofM# overN. For that reason, we repeat the
argument again. Fix a rational point x of M# and k ∈ N. By our assumptions,
we can find rational points y1, . . . , yn+1 of N† such that ∥x− y∥2 < 2−k, where
y =

∑n
j=1mjyj +mn+1EN(m

∗
n+1mn+1)yn+1. Then

∥EN(x) − EN(y)∥2 ≤ ∥x− y∥2 < 2−k,

where

EN(y) =

n∑
j=1

EN(mj)yj + EN(mn+1)EN(m
∗
n+1mn+1)yn+1

is a D-computable point of M#, uniformly in y. Thus EN is D-computable. It
remains to show that [M : N] is D-computable. However, this follows from the
fact that [M : N] = tr(

∑n+1
j=1 mjm

∗
j ). □

Definition 6.6. Suppose thatN is a subfactor ofMwith [M : N] < ∞ andM# is
aD-computable presentation ofM. We say thatN is aD-computable subfactor
ofM# if the equivalent conditions of Theorem 6.5 hold.

Remark 6.7. Note that statement (b) in item (2) of the main theorem automat-
ically holds if [M : N] ∈ [1, 4] (where it equals the computable real number
4 cos2(π

n
) for some integer n ≥ 3) or ifN ⊂ M has finite depth, since then it is a

cyclotomic integer [ENO05].

Example 6.8. By Theorem 6.5, if N ⊆ M is a subfactor and [M : N] is not D-
computable, thenN is not aD-computable subfactor ofM† for any presentation
M† of M. In particular, R has subfactors of any possible index, but only for
countably many of those subfactors is there a presentation R† of R for which
it is a D-computable subfactor. On the other hand, it is known there are un-
countably many nonisomorphic subfactors (Nα)α<2ω of R of index 6 [BNP07].3
If we consider the standard presentation R# of R, which is computable, then
only countably many of the conditional expectation maps ENα : R# → R# can be
D-computable, so for all but countably many α < 2ω, the subfactor Nα is not a
D-computable subfactor of R# even though its index is computable.

We can iterate Theorem 6.5 to conclude the D-computability of all the factors
appearing in the Jones tower from theD-computability of the basic construction.
In what follows, we recursively equip the iterated basic constructions Mn with
their canonical induced presentationsM#

n.
3More is true: the non-isomorphic subfactors of index 6 from [BNP07] all share the same

standard invariant. The article [BV15] constructed a family of subfactors at index 6, all with the
same standard invariant A3 ∗D4, which cannot be classified by countable structures.
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Corollary 6.9. Suppose thatN ⊆ M# is aD-computable subfactor. ThenMn ⊆ M#
n+1

is aD-computable subfactor for all n ≥ 0. In other words, ifM#
1 isD-computable, then

M#
n is D-computable for all n ≥ 1.

Proof. SupposeMn−1 is aD-computable subfactor ofM#
n for some n ≥ 0, where

we setM−1 := N. We showMn is aD-computable subfactor ofM#
n+1. By Theo-

rem 6.5 and the fact that [Mn+1 : Mn] = [M : N] is D-computable, it suffices to
show that EMn : M#

n+1 → M#
n+1 is D-computable. By Lemma 5.4, we can write

any rational point x of M#
n+1 in syntactic normal form as a +

∑
i bieci, where a

and each ci are rational points ofM#
n and each bi is a rational point ofM#

n−1, the
presentation on Mn−1 induced by M#

n. Then EMn(x) = a + [M : N]−1
∑

i bici,
which is a D-computable point of M#

n+1, uniformly in x, as M#
n and EMn−1

:
M#

n → M#
n are D-computable. □

Remark 6.10. If n ≥ 1, then Mn has two potential induced presentations: one
induced by M#

n−1 from the Jones basic construction and one induced by M#
n+1

as its subfactor. While these presentations are not the same in general, they
are D-computably isomorphic when M#

n+1 and EMn : M#
n+1 → M#

n+1 are D-
computable.

7. Improvements to the main result?

It becomes natural to wonder if any of the conditions in the main theorem are
redundant. While we are unable to accomplish this at the moment, we do men-
tion some partial results in this regard.
Given item (2) in Theorem6.5 above, onemay askwhether or notEN : M# → M#

beingD-computable automatically implies that [M : N]must beD-computable.
This is the best we are able to do at this point:4

Proposition 7.1. If EN : M# → M# isD-computable, then [M : N] isD ′-computable,
whence M#

1 is D ′-computable and a D ′-computable Pimsner-Popa basis of M# over N
exists.

Proof. By the equation [M : N]−1 = inf
{
∥EN(x)∥22 ∥x∥

−2
2 : x > 0

}
, we can

compute a decreasing sequence which converges to [M : N]−1 from D. Thus
[M : N]−1 is D ′-computable. □

Question 7.2. IfEN : M# → M# isD-computable,must [M : N] beD-computable?
In otherwords, isM#

1 D-computable if and only ifEN : M# → M# isD-computable?

4Recall that D ′ is the Turing jump of D, which is the Turing degree which can compute the
halting problem relative to D.
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One might also wonder if N† being D-computably embedded in M# for some
presentationN† ofN implies thatN# isD-computably embedded inM#, that is,
if EN : M# → M# is D-computable. In general, the following is always true:

Proposition 7.3. If N† is D-computably embedded in M#, then EN : M# → N† (and
hence EN : M# → M#) is D ′-computable.

Proof. Given a rational point x of M# and k ∈ N, search for a rational point y of
N† such that | tr((x− y)z)| < 2−2k for all rational points z ofN†; this can be done
effectively with D ′. Let z = (EN(x) − y)∗ and observe

∥EN(x) − y∥22 = tr((EN(x) − y)z)

= tr((EN(x) − x)z) + tr((x− y)z)

= tr((x− y)z)

< 2−2k.

□

Remark 7.4. The main result of [G21] shows that, under certain extra assump-
tions, the fact thatN† isD-computably embedded inM# implies that EN : M# →
N† isD-computable. The context of that paper is quite different as the extra hy-
potheses there imply that the index is necessarily infinite.

Propositions 7.1 and 7.3 immediately imply:

Corollary 7.5. If N† is D-computably embedded in M#, then [M : N] is always D ′′-
computable (whence M#

1 is D ′′-computable and a D ′′-computable Pimsner-Popa basis
ofM# over N exists).

8. Examples

In this final section, we mention a few examples illustrating our main result.

Example 8.1. Let N be any II1 factor and let M := Mn(N) = N⊗̄Mn(C). Fix
a presentation N# of N and let M# be the presentation of M given by matrices
of rational points of N#. Note that if N# is D-computable, then so is M#. Then
[M : N] = n2 is clearly computable and the conditional expectation map EN :
M# → M# mapping a matrix to its diagonal part is clearlyD-computable. Thus
N is a D-computable subfactor ofM#.

Example 8.2. Suppose thatN is a II1 factor and G is a finite group. Consider an
action G ↷α N by outer automorphisms. Set M := N ⋊α G. Fix a presentation
N# of N and suppose that N# is D-computable. Let M# be the presentation of
M obtained by adding as special points the canonical unitaries ug for g ∈ G. If,
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in addition, each αg is aD-computable automorphism ofN#, then the presenta-
tionM# isD-computable. Note also that the index [M : N] = |G| is clearly com-
putable and the conditional expectation map EN : M# → M# mapping a sum∑

g∈G xgug to xe isD-computable. Consequently,N is aD-computable subfactor
ofM#.

Example 8.3. Suppose once again that we have an action G ↷α M of a finite
group by outer automorphisms. Let MG be the fixed point subalgebra. The
conditional expectation EMG : M → MG is given by EMG(x) := 1

|G|

∑
g∈G αg(x).

The index [M : MG] = |G| is clearly computable. Under what conditions is
EMG : M# → M# D-computable (that is, when is MG a D-computable sub-
factor of M#)? This is indeed the case when each αg : M# → M# is a D-
computable automorphism. Is the D-computability of each αg necessary? For
example, if G = Z2 and α is the unique nontrivial automorphism of M, then
the D-computability of EMG : M# → M# clearly implies the D-computability of
α : M# → M#.
In regards to this question, we recall that, in the current context, M1

∼= M⋊ G,
where the isomorphism is given by mapping M identically to itself and map-
ping eN to the projection e := 1

|G|

∑
g∈G ug. Moreover, this map is computable

whenM1 is equippedwith its inducedpresentation andwhenM⋊G is equipped
with the presentation obtained by adding the above projection e to the presen-
tation ofM. Note that this presentation differs from the presentation ofM⋊G
described in the previous example. Assuming that EMG is M#-computable, it
appears that the condition that each αg be M#-computable is equivalent to the
above two presentations ofM⋊G being computably isomorphic.

Example 8.4. We consider the construction of subfactors ofR due to Jones [J83].
Fix a tracial von Neumann algebra M and suppose that (ei)i≥1 are projections
in M satisfying:

(1) eiei±1ei = tei for some t ≤ 1.
(2) eiej = ejei if |i− j| ≥ 2.
(3) tr(wei) = t tr(w) for any word w on 1, e1, . . . , ei−1.

Letting P := {ei : i ≥ 1} ′′ be the von Neumann subalgebra of M generated by
the ei’s for i ≥ 1 and Pt := {ei : i ≥ 2} ′′ denote the subalgebra of P generated
by the ei’s for i ≥ 2, we have that P ∼= R and that Pt is a subfactor of P of
index [P : Pt] :=

1
t
. Moreover, this construction is only possible if t ≤ 1

4
or if

t = 1
4
sec2(π

n
) for n = 3, 4, 5 . . .

We equip P and Pt with the presentations P# and Pt# consisting of the set of the
appropriate set of ei’s. It is immediate from [J83, Lemma 4.1.6] that P# and P#

t

are D-computable, where D is any oracle for which t is D-computable.



20 ALEC FOX AND ISAAC GOLDBRING

Weclaim that, for any suchD, the subfactorPt is aD-computable subfactor ofP#.
Since t is D-computable and [P : Pt] =

1
t
, we have that [P : Pt] is D-computable.

It remains to see that EPt : P# → P# is D-computable, which follows from the
fact that EPt(e1) = t · 1.
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