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Abstract. We introduce the notion of a computably strongly self-absorbingC˚-
algebra and show that the following C˚-algebras are computably strongly self-
absorbing: the Cuntz algebras O2 and O8, the UHF algebra MnpCq and the
tensor productMnpCq bO8, where n is a supernatural number of infinite type
with computably enumerable support, and the Jiang-Su algebra Z. In connec-
tion with the last example, we show that Z has a computable presentation. The
results above are a special instance of a computable version of the standard
approximate intertwining argument due to Elliott.

1. Introduction

A separable unital C˚-algebra A is called self-absoring if A – A b A 1 while it
is called strongly self-absorbing if there is an isomorphism A Ñ A b A that
is approximately unitarily equivalent to the inclusion idA b1A : A ãÑ A b A.23
The class of strongly self-absorbingC˚-algebras has been intensely studied and,
modulo a positive resolution to theUCT conjecture, a complete list of the strongly
self-absorbing C˚-algebras has been obtained: the Cuntz algebras O2 and O8,
the UHF algebrasMnpCq of infinite type, tensor productsMnpCqbO8 (with the
UHF algebra again of infinite type), and the Jiang-Su algebra Z.
In this paper, we introduce an effective version of strongly self-absorbing C˚-
algebras that we call computably strongly self-absorbing, meaning that there
is a computable isomorphism between A and A b A that is computably approx-
imately unitarily equivalent to idA b1A. In order to state that there is a com-
putable isomorphism between A and A b A, one first has to equip A with a
presentation, which is simply a countable sequence from A that generates A as
a C˚-algebra; this presentation naturally induces a tensor product presentation
on A b A. To say that an isomorphism φ : A Ñ A b A is computable means
that there is an algorithm such that, upon input some ˚-polynomial p in the

Goldbring was partially supported by NSF grant DMS-2054477.
1Unless otherwise stated, b denotes the minimal tensor product of C˚-algebras.
2Two ˚-homomorphisms φ,ψ : A Ñ B between separable unital C˚-algebras A and B are

approximately unitarily equivalent if there is a sequence pvnqnPN of unitaries such that, for all
a P A, limnÑ8 }vnφpaqv˚

n ´ψpaq} “ 0.
3One typically excludes C from the class of strongly self-absorbing C˚-algebras.
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generators of A and some rational tolerance ϵ, returns some ˚-polynomial q in
the generators of A b A such that }φppq ´ q} ă ϵ. To say that φ is computably
approximately unitarily equivalent to idA b1A means that there is a computable
sequence of unitaries punqnPN fromAbA (what this means exactly is explained
in the next section) such that, upon input a ˚-polynomial p in the generators for
A and rational ϵ ą 0, returns n such that }unφpaqu˚

n ´ ab 1} ă ϵ.
The main result of this paper is that the standard presentations of all of the
strongly self-absorbingC˚-algebras satisfying the UCT are computably strongly
self-absorbing, except that in the case of the algebras involving UHF algebras,
our proofs require the additional assumption that the UHF algebra have c.e.4
support, where by the support of a UHF algebra we mean the set of primes for
which, in the supernatural number associated to the algebra, the exponent is
nonzero.
The proof that the algebrasmentioned above are strongly self-absorbing uses an
approximate intertwining argument originally due to Elliott; see also [6, Propo-
sition 2.5.3]. We prove a computable version of this result in Section 3 below
and use it to deduce the aforementioned results about computably strongly self-
absorbing C˚-algebras.
The results in this paper were originally inspired by the following quote of
Blackadar [2]: “...in fact, it is in principle essentially impossible to give an ex-
plicit isomorphism of O2 b O2 and O2 by the results of [1].” In private commu-
nication, Blackadar expanded on this comment by indicating by “explicit” he
meant “algebraic”, given that the main result of [1] states that the ˚-subalgebra
L2 (known as the Leavitt path algebra) of O2 generated by the pair of comple-
mentary isometries is such that L2 fl L2 b L2. The fact that O2 is computably
strongly self-absorbing is a contrast to Blackadar’s sentiment provided that we
change the interpretation of “explicit” from “algebraic” to “computable.”
Section 2 contains the necessary background material on computable presen-
tations of C˚-algebras while the computably approximate intertwining result is
proven in Section 3. Section 4 contains the applications to computably strongly
self-absorbing C˚-algebras while Section 5 provides a proof that the Jiang-Su
algebra has a “standard” presentation that is computable.
We would like to thank Bruce Blackadar, Bradd Hart, Timothy McNicholl, and
Alessandro Vignati for helpful comments concerning this work.

4Here, c.e. stands for computably enumerable; a set X of natural numbers is c.e. if there is an
algorithm which, upon input n, halts and returns “yes” if n P X, while if n R X, the algorithm
either does not halt or halts and returns ”no.” C.e. has replaced the older terminology of r.e.,
which stands for recursively enumerable.
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2. Background on presentations of C˚-algebras

Throughout this paper, to simplify matters, we restrict ourselves to unital C˚-
algebras and unit-preserving ˚-homomorphisms.

2.1. Presentations of C˚-algebras. Let A be a separable C˚-algebra. A presen-
tation of A is a pair A: :“ pA, panqnPNq, where tan : n P Nu is a subset of A that
generates A (as a C˚-algebra). Elements of the sequence panqnPN are referred to
as special points of the presentation while elements of the form ppai1 , . . . , aikq

for p a ˚-polynomial with coefficients fromQpiq (a rational polynomial) are re-
ferred to as rational points of the presentation. By fixing an effective bijection
between the set of rational polynomials and N, we can fix an effective enumera-
tion of the rational polynomials and thus from any presentation of a C˚-algebra
we obtain an effective enumeration of the rational points of the presentation. If
x is the nth rational point of A:, then we call n an code for x.
We say that A: is a computable presentation of A if there is an algorithm such
that, upon input a rational point p of A: and k P N, returns a rational number
q such that |}p} ´ q| ă 2´k. A weaker notion is that of a left-c.e. (resp. right-
c.e.) presentation, which means that there is an algorithm which, upon input
a rational point p of A:, enumerates a sequence of lower bounds (resp. upper
bounds) which converges to }p}. Note that a presentation is computable if and
only if it is both left-c.e. and right-c.e. IfA: is a computable, left-c.e., or right-c.e.
presentation, then by a code for A: we mean a natural number which codes the
finite sequence of strings that describes the algorithm.
An element x P A is a computable point of the presentation A: if there is an
algorithm which, upon input k P N, returns a rational point q of A: such that
}x ´ q} ă 2´k. Once again, one can speak of the code of a computable point of
a presentation.
If A: and B# are presentations of C˚-algebras A and B respectively, a function
φ : A: Ñ B# is computable if φ is a function from A to B for which there is is
an algorithim such that, upon input a rational point p of A: and k P N, returns
a rational point q of B# such that ∥φppq ´ q∥ ă 2´k; in other words, φ is a com-
putable map if the φ-images of rational points of A: are computable points of
B#, uniformly in the code for the rational point, meaning that the code for the
computable point φppq can be computed from the code for p. Once again, one
may speak of the code of a computable map as the code of such an algorithm.
An isomorphism φ : A Ñ B between C˚-algebras is a computable isomor-
phism from A: to B# if it is a computable map with computable inverse. (The
computability of the inverse is automatic if B# is computable.)
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By a computable sequence inA: wemean a sequence pxnqnPN fromA consisting
of computable points of A: for which the function sending n to the code for xn
is computable.

2.2. Universal presentations of C˚-algebras. Operator algebraists might be fa-
miliar with a different notion of a presentation of a C˚-algebra. In this subsec-
tion, we clarify the relationship between these two notions of presentation.
Let G be a set of noncommuting indeterminates, which we call generators. By a
set of relations for G we mean a set of relations of the form }ppx1, . . . , xnq} ď a,
where p is a ˚-polynomial in n noncommuting variables with no constant term,
x1, . . . , xn are elements of G, and a is a nonnegative real number. We also require
that, for every generator x P G, there is a relation of the form }x} ď M in R. A
representation of pG,Rq is a function j : G Ñ A, where A is a C˚-algebra, such
that }ppjpx1q, . . . , jpxnqq} ď a for every relation }ppx1, . . . , xnq} ď a in R.
The universalC˚-algebra of pG,Rq is aC˚-algebraA alongwith a representation
ι : G Ñ A of pG,Rq such that, for all other representations j : G Ñ B of pG,Rq,
there is a unique *-homomorphismφ : A Ñ B such thatφpιpxqq “ jpxq for all x P

G. If the universal C˚-algebra of pG,Rq exists, then it is unique up isomorphism
and will be denoted by C˚xG|Ry. Note that C˚xG|Ry is generated by the image
of the generators. If G is a sequence x̄, then we may write C˚xx̄|Ry instead of
C˚xG|Ry. Given that we remain in the context of unital C˚-algebras throughout
this paper, we implicitly assume that we have a distinguished generator for the
unit and include relations stating that it is a self-adjoint idempotent which acts
as a multiplicative identity.
If the C˚-algebra A is isomorphic to a universal C˚-algebra pG,Rq, we refer to
pG,Rq as a generator-relation presentation of A; note that a given C˚-algebra
might admit many generator-relation presentations. Given a generator-relation
presentationC˚xx̄|Ry ofA, we define the corresponding universal presentation
ofA to be the presentation ofA (in the sense of the previous subsection) with x̄
as the sequence of special points. Sincewe always assume that in any generator-
presentation we have an indeterminate for the identity element, it follows that
the identity is a special point of any universal presentation of a C˚-algebra.
Some C˚-algebras admit “canonical” generator-relation presentations. For ex-
ample, the Cuntz algebraO2 is most commonly defined as the universal (unital)
C˚-algebra generated by two contractions s1 and s2 subject to the following rela-
tions: s˚

1s1 “ s˚
2s2 “ 1 and s1s˚

1 ` s2s
˚
2 “ 1. When there is no possible confusion,

we call a presentation A: of A the standard presentation of A if it is the univer-
sal presentation corresponding to a canonical generator-relation presentation of
A; we denote the standard presentation of A by Ast.
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A relation }ppx1, . . . , xnq} ď a is called rational if p is a rational polynomial and
a is a nonnegative dyadic rational. A presentationA: of a C˚-algebraA is called
c.e. if for some c.e. set of rational relationsR it is the universal presentation cor-
responding to C˚xx̄|Ry. When x̄ and R are both finite, we say that A: is finitely
c.e. For example, the standard presentation Ost

2 of O2 is finitely c.e.
We will need the following facts, due to Fox [4, Theorems 3.3 and 3.14]:

Fact 2.1. The notions “c.e. presentation” and “right-c.e. presentation” coincide. More-
over, from a code for the c.e. set R, one can compute a code for the algorithm witnessing
that the universal presentation corresponding to C˚xG,Ry is right-c.e.

Fact 2.2. If A is a simple C˚-algebra, then any c.e. presentation A: of A is computable.

2.3. Tensor product and inductive limit presentations. Consider two presen-
tations A: “ pA, panqnPNq and B# “ pB, pbnqnPNq of C˚-algebras A and B. Given
any (C˚-)tensor productAbαB ofA and B, we can consider the tensor product
presentation pA bα Bq:b# of A bα B, given by declaring the nth special point to
be the elementary tensor ambbp, where x¨, ¨y is a computable pairing ofN2 with
N and xm,py “ n.
Call a presentationA: “ pA, panqnPNq bounded if there is a computable function
such that, upon input n, returns an upper bound on }an}. Note that any right-
c.e. presentation is bounded.

Lemma 2.3. If A: is a bounded presentation of A and 1 is a computable point of B#,
then idA b1B : A: Ñ pAbα Bq:b# is a computable map.

Proof. Given a rational point a of A: and k P N, effectively find an upper bound
M on }a} (which is possible since the presentation is bounded) and find a ratio-
nal point b of B: such that }b´ 1} ă 2´kM; it follows that }ab 1´abb} ă 2´k.
It remains to note that a b b is a rational point of pA bα Bq:b# whose code can
be computed from codes for a and b. □

Suppose now thatA: and B# are universal presentations ofA and B. Then there
is a corresponding universal presentation pA bmax Bqup:b#q of the maximal ten-
sor product A bmax B, whose generators are the union of the generators of A
and B (enumerated, as above, via some computable pairing between N2 and N)
and whose relations are the relations defining A and B individually as well as
relations stating that the generators and adjoints of generators of A commute
with the generators and adjoints of generators of B. (Note that the implicit re-
lations defining the identities of A and B individually should be replaced by a
single set of relations defining the identity.) As usual, a generator x of A gets
identified with the element x b 1 of A bmax B and similarly for generators of B.
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Although the tensor product presentation pA bmax Bq:b# and universal presen-
tation pAbmax Bqup:b#q are not literally the same, we nevertheless have:

Lemma 2.4. If A: and B# are universal presentations of A and B respectively, then
idAbmaxB : pAbmax Bq:b# Ñ pAbmax Bqup:b#q is a computable isomorphism.

Proof. We first note that the identity map is computable. To see this, note that
any special point of pA bmax Bq:b# is either a special point of pA bmax Bqup:b#q

(such as x b 1) or a product of two special points of pA bmax Bqup:b#q (such as
x b y). From this observation, it follows easily that the map is computable. To
see that the inversemap is computable, it suffices to note that every special point
of pAbmax Bqup:b#q is a special point of pAbmax Bq:b#. □

The following fact is immediate from the definitions:

Lemma 2.5. Suppose that A: and B# are c.e. presentations of A and B respectively.
Then pAbmax Bqup:b#q is a c.e. presentation of Abmax B.

Throughout this paper, we equipMnpCq with its standard presentationMnpCqst

associated to the generator-relation presentation of MnpCq in terms of matrix
units. We thank Alec Fox for communicating the following fact to us:

Proposition 2.6. Suppose thatA: is a computable presentation ofA. Then the univer-
sal presentation pA b MnpCqqup:bstq is computable. Moreover, from n and a code for
A:, one can compute a code for pAbMnpCqqup:bstq.

Proof. First, since A: is computable, it is right-c.e., hence c.e. by Fact 2.1. Con-
seequently, pA bMnpCqqup:bstq is c.e. by Lemma 2.5 and thus right-c.e. by Fact
2.1 again.
It remains to show that pAbMnpCqqup:bstq is left-c.e. To see this, we recall that,
for any element a “

řn
i,j“1 aij b eij P AbMnpCq, we have

}a} “ sup

›

›

›

›

›

n
ÿ

i,j“1

xiaijy
˚
j

›

›

›

›

›

,

where the supremum is taken over all pairs ofn-tuples px1, . . . , xnq, py1, . . . , ynq P

An satisfying }
řn
i“1 xix

˚
i }, }

řn
i“1 yiy

˚
i } ă 1. Consequently, if a is a rational point

of pAbMnpCqqup:bstq, one can find computable lower bounds for }a} by enumer-
ating all such tuples consisting of rational points (which is possible since the
norm of A: is right-c.e.) and then computably approximating }

řn
i,j“1 xiaijy

˚
j }

from below, which is possible since A: is left-c.e. and the entries of a are ratio-
nal points of A:. By Fact 2.1 and the algorithm outlined here, this algorithm is
uniform in n and a code for A:. □
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We now turn to presentations of inductive limits. Suppose that pA:m
m qmPN is a

sequence of universal presentations of C˚-algebras pAmqmPN. Suppose further
that Φm : Am Ñ Am`1 is a ˚-homomorphism. If a is the nth rational point
of Am and k ě 1, let bpm,n, kq be the first rational point of A:m`1

m`1 for which
}Φmpaq ´ bpm,n, kq} ă 2´k. We define the corresponding inductive limit pre-
sentation lim

ÝÑ
pA:m

m , Φmq of the inductive limit algebra lim
ÝÑ

pAm, Φmq to be the uni-
versal presentation corresponding to the universalC˚-algebrawhose generators
are the generators of the individualA:m

m ’s together with the relations of the var-
ious A:m

m ’s and relations stating }Φmpaq ´ bpm,a, kq} ď 2´k as above.
The following lemma has a routine proof:

Lemma 2.7. In the notation of the previous paragraph, suppose that the sequence of
maps Φm : A:m

m Ñ A
:m`1

m`1 is uniformly computable, that is, each map Φm : A:m
m Ñ

A
:m`1

m`1 is computable and the function mappingm to a code forΦm is computable. Then:

(1) The map bpm,n, kq is computable.
(2) If the presentations A:

m are right-c.e. uniformly in m, then lim
ÝÑ

pA:m
m , Φmq is

right-c.e.
(3) If the presentationsA:

m are computable uniformly inm and eachΦm is injective,
then lim

ÝÑ
pA:m

m , Φmq is computable.

2.4. Computable unitaries. We begin this subsection with a result on “almost
unitaries” that will be used in the following section.
Fix aC˚-algebraA. Recall that, for each ϵ P p0, 1s, ifa P A is an ϵ-almost unitary,
by which we mean that }a˚a´1}, }aa˚ ´1} ă ϵ, then a is invertible and, letting
a “ ωpaqpa˚aq1{2 denote the polar decomposition of a, we have that ωpaq is a
unitary and }a´ωpaq} ă ϵ.
Recall also the Taylor expansion

x´1{2
“

8
ÿ

k“0

ˆ

k´ 1{2

k

˙

p1´ xq
k, |x| ă 1.

For each n ě 1, set snpxq :“
řn
k“0

`

k´1{2
k

˘

p1 ´ xqk. By Taylor’s theorem, there is
a computable function δ ÞÑ Npδq : Qą0 Ñ N such that }x´1{2 ´ sNpδqpxq} ă δ for
all x P r1{2, 3{2s. Consequently, if a is an ϵ-almost unitary with ϵ ă 1{2 and
}a} ď 1, then sinceωpaq “ apa˚aq´1{2, we have that }ωpaq ´ asNpδqpa

˚aq} ă δ.
The upshot of this discussion is the following:

Lemma 2.8. There is a computable function such that: for any presentation A: of a
C˚-algebra A for which 1 is a computable point, upon input a code for a rational point
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a ofA: with }a} ď 1, a code for 1, and n P N, if }a˚a´ 1}, }aa˚ ´ 1} ă 1, returns the
code for a rational point of A:, denotedωnpaq, such that }ωpaq ´ωnpaq} ă 2´n.

The remainder of this subsection contains results that will be used in the last
section of this paper.

Lemma 2.9. There is a computable map e : N2 Ñ N such that, if x is a code for a
unitary element u ofMnpCq that is a rational point ofMnpCqst, then epn, xq is the code
for a computable self-adjoint element h ofMnpCq for which exppihq “ u.

Proof. Recall that the Schur factorization of a matrix a is a factorization of the
form a “ zbz˚, where z is unitary and b is upper triangular. There are well-
known algorithms for computing the Schur factorization of a matrix with ratio-
nal complex entries. If a is itself unitary, then b must be diagonal (being both
upper triangular and unitary).
Consequently, we can effectively find a diagonalization u “ zbz˚ of the unitary
u coded by x.
Note also that one can compute a rational number θ P r0, 2πq such that exppiθq

is not an eigenvalue of u. Let arg denote the branch of the argument function
taking values in rθ, θ ` 2πq. We can then set h :“ z argpbqz˚, where argpbq

is the result of applying arg to each of the diagonal elements of b; note that
u “ exppihq, h is computable, and a code for h can be found from a code for
b. □

Remarks 2.10. It is unclear to us if a version of the previous proof goes through
if the assumption that u is a rational unitary is replaced by the more general
assumption that u is a computable unitary.

In the following lemma,we equipCr0, 1swith its standard presentationCr0, 1sst

consisting only of the identity function ι :“ idCr0,1s; we note that this presenta-
tion is computable.
Given any C˚-algebra A, there is a unique isomorphism

ϕA : Cr0, 1s bA Ñ Cpr0, 1s, Aq

for which pϕApf b aqqptq “ fptqa for all f P Cr0, 1s and a P A. If A: is a pre-
sentation of A, then then we let Cpr0, 1s, Aq: be the presentation of Cpr0, 1s, Aq

induced by the presentation pCr0, 1s bAqst b: via ϕA.
Suppose that x, y P N are codes for computable unitaries u and v of MnpCq

respectively. Let hu and hv be the self-adjoint elements coded by epn, xq and
epn, yq. We let u⇝ v P Cpr0, 1s,MnpCqq be defined by

pu⇝ vqptq :“ exppip1´ tqhuq exppithvq.
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Note that pu ⇝ vqptq is a unitary element ofMnpCq for all t P r0, 1s satisfying
pu⇝ vqp0q “ u and pu⇝ vqp1q “ v.
Lemma 2.11. There is a computable function g : N3 Ñ N such that, if x and y are
codes for rational unitaries u and v ofMnpCq, then gpn, x, yq is the code for u ⇝ v
with respect to the presentation Cpr0, 1s,MnpCqqst.

Proof. Since pu ⇝ vqptq “ p1 b uq expptiphv ´ huqq, it suffices to show that, for
any computable self-adjoint element h of MnpCq, the function t ÞÑ exppithq

is a computable element of Cpr0, 1s,MnpCqqst uniformly in n and a code for h.
However, since exppithq “

ř8

m“0
im

m!
tmhm and the function t ÞÑ tmhm equals

ϕMnpCqpι
m bhmq, the desired conclusion follows from a Taylor estimate like that

done earlier in this subsection. □

3. Computable approximate intertwining

In this section, we prove the computable analog of the approximate intertwining
result of Elliott, following Rørdam’s exposition [6].
Definition 3.1. Two computable ˚-homomorphisms φ,ψ : A: Ñ B# are com-
putably approximately unitarily equivalent if there is a computable sequence
pvnqnPN from B: consisting of unitaries such that there is an algorithm for which,
given inputs a code for a rational point a of A: andm P N, returns n P N such
that }vnφpaqv˚

n ´ψpaq} ă 2´m.
Remarks 3.2.

(1) There are ways of altering the previous definition that can lead to dif-
ferent notions of computably approximately unitarily equivalent mor-
phisms. For example, one might not require the sequence pvnqnPN to be
computable. Alternatively, one might not require that φ and ψ be com-
putable maps; however, with the rest of the definition unchanged, note
that, ifφ andψ are computably approximately unitarily equivalent, then
φ is computable if and only if ψ is computable.

(2) If φ,ψ : A: Ñ B# are computable maps, pvnqnPN is a computable se-
quence of unitaries witnessing thatφ andψ are approximately unitarily
equivalent, and the presentation B# is computable, then the last part of
the definition is automatic.

The following is the main result of this section and is the computable analog of
[6, Proposition 2.3.5]:
Theorem 3.3. Let A and B be separable, unital C˚-algebras and let φ : A Ñ B be an
injective ˚-homomorphism. Equip A and B with computable presentations A: and B#

respectively. Suppose the following conditions hold:
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(1) 1 is a computable point of B#.
(2) φ : A: Ñ B# is a computable map.
(3) There is a sequence of unitaries pwnqnPN from B such that

lim
nÑ8

}wnφpaq ´φpaqwn} “ 0 and lim
nÑ8

dpw˚
nbwn, φpAqq “ 0

for all a P A and b P B.

Then there is a computable isomorphismψ : A: Ñ B# that is computably approximately
unitarily equivalent to φ.

Proof. For ease of exposition, we assume that theφ-image of every rational point
of A: is actually a rational point of B#; the general case just involves an extra
approximation step in what follows. Let panqnPN and pbnqnPN be effective enu-
merations of the rational points of A: and B# respectively.
Begin by effectively choosing small rational numbers ϵ1 and η1 (to be deter-
mined below) and searching for the first ϵ1-almost unitary rational point ṽ1 of
B# with }ṽ1} ď 1 and first rational point a1,1 of A: such that

maxp}ṽ˚
1b1ṽ1 ´φpa1,1q}, }ṽ1φpa1q ´φpa1qṽ1}q ă η1.

That such rational points exist follows from assumption (3) and that such com-
putations can be done effectively follows from (1), (2) and the fact that the pre-
sentations are computable. (We will omit such justifications in the sequel.) Set
v1 :“ ωpṽ1q, so }v1 ´ ṽ1} ă ϵ1. It follows that

}v˚
1b1v1 ´φpa1,1q} ă 2ϵ1}b1} ` η1

and
}v1φpa1q ´φpa1qv1} ă 2ϵ1}a1} ` η1.

Consequently, taking ϵ1 ă 1{p23maxp}a1}, }b1}qq and η1 ă 2´2 we have that
maxp}v˚

1b1v1 ´φpa1,1q}, }v1φpa1q ´φpa1qv1}q ă 2´1.

Next effectively choose small rational numbers ϵ2 and η2 and a sufficiently large
integer kp2q (again, to be determined below) and search for the first ϵ2-almost
unitary rational point ṽ2 of B# with }ṽ2} ď 1and first rational points a1,2, a2,2 of
A: such that:

‚ maxj“1,2 }ṽ˚
2pωkp2qpṽ1q

˚bjωkp2qpṽ1qqṽ2 ´φpaj,2q} ă η2.
‚ }ṽ2φpa1,1q ´φpa1,1qṽ2} ă η2.
‚ maxj“1,2 }ṽ2φpajq ´φpajqṽ2} ă η2.

Set v2 :“ ωpṽ2q, so }v2 ´ ṽ2} ă ϵ2. For j “ 1, 2, we then have:

‚ }v2pv
˚
1bjv1qv2q ´φpaj,2q} ă p2ϵ2 ` 2´kp2q`1q}bj} ` η2.
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‚ }v2φpa1,1q ´φpa1,1qv2} ă 2ϵ2}a1,1} ` η2.
‚ }v2φpajq ´φpajqv2} ă 2ϵ2}aj} ` η2.

One can computably choose ϵ2 and η2 sufficiently small and kp2q sufficiently
large so that all of the bounds in the previous three bullets can be taken to be
2´2.
Inductively suppose that, for j “ 1, . . . , n ´ 1 and k “ 1, . . . , j, one has found
ϵj-almost unitary rational points ṽj of B# with }ṽj} ď 1 and rational points ak,j of
A: in the manner above. Once again, effectively choose small rational numbers
ϵn and ηn and a sufficiently large integer kpnq and search for the first ϵn-almost
unitary rational point ṽn of B# with }ṽn} ď 1 and first rational points ak,n of A:

with k “ 1, . . . , n such that the following quantities are bounded by ηn, for all
1 ď j ď n and 1 ď k ď j:

‚ }ṽ˚
npωkpnqpṽn´1q

˚ ¨ ¨ ¨ωkpnqpṽ
˚
1qbjωkpnqpṽ1q ¨ ¨ ¨ωkpnqpṽn´1qqṽn ´φpaj,nq}

‚ }ṽnφpak,jq ´φpak,jqṽ2}
‚ }ṽnφpajq ´φpajqṽn}.

Set vn :“ ωpṽnq so }vn ´ ṽn} ă ϵn. We then have the following inequalities for
all 1 ď j ď n and all 1 ď k ď j:

‚ }v˚
npv˚

n´1 ¨ ¨ ¨ v˚
1bjv1 ¨ ¨ ¨ vn´1qvn ´φpaj,nq} ă p2ϵn ` 2´kpnq`1q}bj} ` ηn.

‚ }vnφpak,jq ´φpak,jqvn} ă 2ϵn}ak,j} ` ηn.
‚ }vnφpajq ´φpajqvn} ă 2ϵn}aj} ` ηn.

One can computably choose ϵn and ηn sufficiently small and kpnq sufficiently
large so that all of the bounds in the previous three bullets can be taken to be
2´n.
For each a P A and n P N, set wnpaq :“ v1v2 ¨ ¨ ¨ vnφpaqv˚

n ¨ ¨ ¨ v˚
2v

˚
1 . Note that

}wnpaq ´wn`1paq} “ }φpaq ´ vn`1φpaqv˚
n`1} ă 2´pn`1q for all rational points a

of A: and consequently for all a P A. Setting ψpaq :“ limnÑ8wnpaq, the proof
of [6, Proposition 2.3.5] shows that ψ : A Ñ B is an isomorphism. We claim
that ψ is a computable map.
Fix j,m P N. Notice that for any p ě 1, we have

}wm`1pajq´ωppṽ1q ¨ ¨ ¨ωppṽm`1qφpajqωppvm`1q
˚

¨ ¨ ¨ωppv1q
˚
} ă pm`1q2´p`1

}aj}.

Consequently, takingp such that 2p´m ą pm`1q}aj}, and noting that }wm`1paq´

ψpaq} ă 2´pm`1q, we have thatωppṽ1q ¨ ¨ ¨ωppṽnqφpajqωppvnq˚ ¨ ¨ ¨ωppv1q
˚ is a ra-

tional point of B# within 2´m of ψpajq. It follows that ψ is a computable map.
It is clear from construction that the sequence pv1 ¨ ¨ ¨ vnqnPN is computable; as
shown in the proof of [6, Proposition 2.3.5], the sequence also witnesses that φ
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and ψ are approximately unitarily equivalent. By Remark 3.2(2), the sequence
witnesses thatφ andψ are computably approximately unitarily equivalent. □

4. Computably strongly self-absorbing C˚-algebras

In this section, we apply the result of the previous section to the study of strongly
self-absorbingC˚-algebras. We first recall that aC˚-algebraA is said to have ap-
proximately inner half-flip if the two inclusions idA b1A, 1A b idA : A ãÑ AbA
are approximately unitarily equivalent. A proof of the following fact can be
found in [6, Theorem 7.2.2]. In what follows, U always denotes a nonprincipal
ultrafilter on N, AU denotes the ultrapower Awith respect to U, and

A 1
XAU :“ tx P AU : xy “ yx for all y P Au

denotes the relative commutant of A inside of AU, where we identify Awith its
image in AU under the diagonal embedding.
Fact 4.1. Suppose that A and B are separable C˚-algebras and B has approximately
inner half flip. Further suppose that B embeds into A 1 X AU. Then the map idA b1B
satisfies (3) in Theorem 3.3.

Using Lemma 2.3, we have:
Corollary 4.2. Suppose that A: and B# are presentations of C˚-algebras A and B.
Suppose that the following conditions hold:

(1) B has approximately inner half flip.
(2) B embeds into A 1 XAU.
(3) A: and pAb Bq:b# are computable presentations.
(4) 1A and 1B are computable points of A: and B# respectively.

Then there is a computable isomorphism ψ : A: Ñ pA b Bq:b# computably approxi-
mately unitarily equivalent to idA b1B.

As stated in the introduction, aC˚-algebraD is strongly self-absorbing if it is not
isomorphic to C and there is an isomorphism D Ñ D bD approximately uni-
tarily equivalent to idD b1D. Strongly self-absorbing C˚-algebras have approxi-
mately inner half-flip [7, Section 1]. IfD is a strongly self-absorbingC˚-algebra,
then a C˚-algebra A is called D-stable if A – A b D. If A is D-stable, then D
embeds in A 1 XAU [6, Theorem 7.2.2]. Consequently, we have:
Corollary 4.3. Suppose that A: and D# are presentations of C˚-algebras A and D.
Suppose that the following conditions hold:

(1) D is strongly self-absorbing.
(2) A is D-stable.
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(3) A: and pAbDq:b# are computable presentations.
(4) 1A and 1D are computable points of A: and D# respectively.

Then there is a computable isomorphism ψ : A: Ñ pA b Dq:b# computably approxi-
mately unitarily equivalent to idA b1D.

Every strongly self-absoring algebraD isD-stable. Since strongly self-absorbing
algebras are simple, any c.e. presentation of D is automatically computable.
Moreover, if D: is a c.e. presentation of D, then so is pD b Dqup:b:q by Lemma
2.5, whence this presentation is also computable.
We say that a presentation A: is computably strongly self-absorbing if there is
a computable isomorphismA: Ñ pAbAq:b: that is computably approximately
unitarily equivalent to idA b1A. Note that, since our definition of computably
approximately unitarily equivalent morphisms requires that the morphisms be
computable, the definition of computably strongly self-absorbing presentation
presupposes that the map idA b1A : A: Ñ pA b Aq: is computable, which hap-
pens, for example, when A: is bounded and 1 is a rational point of A: (see
Lemma 2.3). The previous discussion and Lemma 2.4 imply:

Corollary 4.4. Suppose that D is a strongly self-absorbing C˚-algebra and D: is a
c.e. (and thus computable) presentation of D. Then D: is computably strongly self-
absorbing.

The standard presentations of theCuntz algebrasO2 andO8 are clearly c.e. Con-
sequently, we have:

Corollary 4.5. Ost
2 and Ost

8 are computably strongly self-absorbing.

As mentioned in [7, Examples 1.14], a UHF algebra MnpCq is strongly self-
absorbing if and only if the supernatural number n is of infinite type, that is, if
all of its nonzero exponents are infinite (and at least one exponent is nonzero),
in which case MnpCq b O8 is also strongly self-absorbing. By the support of
a supernatural number n, we mean the set of primes which appear in n with
nonzero exponents. By [3], a UHF algebra MnpCq of infinite type has a com-
putable presentation if and only if its support is c.e., in which case it admits
a computable “standard presentation”MnpCqst. Together with Lemma 2.5, we
have:

Corollary 4.6. Suppose that n is a supernatural number of infinite type with c.e. sup-
port. ThenMnpCqst and pMnpCq b O8qst b st are computably strongly self-absorbing.

Any strongly self-absorbing C˚-algebra satisfying the UCT must be isomorphic
to MnpCq, O8, MnpCq b O8, Z, or O2, where n is of infinite type and Z is the
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Jiang-Su algebra. In the next section, we show that Z has a “standard presenta-
tion” that is computable, whence it is also computably strongly self-absorbing.
Consequently, with the possible exception of the UCT strongly self-absorbing
algebras involving UHF algebras without computable presentations, all of the
known UCT strongly self-absorbing C˚-algebras are computably strongly self-
absorbing.
IfD is any strongly self-absorbingC˚-algebra, thenDbZ – D andDbO2 – O2.
Consequently, we have:
Corollary 4.7. Suppose that D is a strongly self-absorbing C˚-algebra that admits a
c.e. presentation D:. Then:

(1) There is a computable isomorphism D: Ñ pD b Zq:bst computably approxi-
mately unitarily equivalent to idD b1Z.

(2) There is a computable isomorphism Ost
2 Ñ pD b O2q

:bst computably approxi-
mately unitarily equivalent to idO2

b1D.

5. A computable presentation of the Jiang-Su algebra

In this section, we show how the original construction of the Jiang-Su algebra
Z given in [5] yields a “standard” computable presentation Zst of Z, whence,
by the results of the previous section, shows that Z is also computably strongly
self-absorbing.
Given integers p, q ě 2, we let Zp,q denote the functions f P Cpr0, 1s,MppCq b

MqpCqq such that fp0q P MppCq b 1MqpCq and fp1q P 1MqpCq bMqpCq; Zp,q is a C˚-
subalgebra ofCpr0, 1s,MppCqbMqpCqq called a dimension drop algebra; when
p and q are relatively prime, Zp,q is called a prime dimension drop algebra.
By [5, Proposition 7.3], Zp,q admits a generator-relations presentation consist-
ing of finitely many generators and relations; as usual, we let Zst

p,q denote the
associated standard presentation of Zp,q. The exact details of the presentation
are not relevant for us; the only thing we will need is the following:
Lemma 5.1. Viewing Zp,q as a subalgebra ofCr0, 1sbMppCqbMqpCq, the generators
of Zst

p,q are computable points of pCr0, 1s bMppCq bMqpCqqupst b st b stq, uniformly in
p and q.

Proof. The generators of Zp,q are ai :“ p1 ´ ιq1{2 b e
ppq

1i b 1q, i “ 1, . . . , p, and
bj :“ ι1{2 b 1p b e

pqq

1j , j “ 1, . . . , q. The result follows from the fact that ι1{2 and
p1´ ιq1{2 are computable points of Cr0, 1sst. □

The Jiang-Su algebra Z is a particular inductive limit lim
ÝÑ

pZpm,qm , Φmq of prime
dimension drop algebras, which we now describe. Begin by setting p0 “ 2
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and q0 “ 3 and setting A0 :“ Zp0,q0 . Supposing that the prime dimension
drop algebra Am “: Zpm,qm has been constructed, we now construct a new di-
mension drop algebra Am`1 :“ Zpm`1,qm`1

and an injective ˚-homomorphism
Φm : Am Ñ Am`1. Let km and lm denote the first two prime numbers larger
than 2pmqm.5 We set pm`1 :“ kmpm and qm`1 :“ lmqm. Note that pm`1 and
qm`1 are relatively prime, so Am`1 is a prime dimension drop algebra. We now
construct the morphismΦm.
Set rm to be the remainder of kmlm modulo qm`1 and set sm to be the remainder
of kmlm modulo pm`1. For i “ 1, . . . , kmlm, we define functions ξi P Cr0, 1s
as follows: for i “ 1, . . . , rm, set ξiptq “ t{2; for i “ rm ` 1, . . . , k ´ sm, set
ξiptq “ 1{2; for i “ k´ sm ` 1, . . . , kmlm, set ξiptq “ pt` 1q{2.
As noted in the proof of [5, Proposition 2.5], both rmqm and kmlm ´ rm are
divisible by qm`1, say rmqm “ αmqm`1 and kmlm ´ rm “ βmqm`1. Let um P

Mpm`1qm`1
pCq be the unitary matrix taking

diagpfpξ1p0qq, . . . , fpξkmlmp0qqq

to the block diagonal matrices with blocks
diagpfp0q, . . . , fp0q, fp1{2q, . . . , fp1{2qq,

where fp0q is repeated αm times and fp1{2q is repeated βm times. Moreover, um
is a rational point ofMpm`1qm`1

pCqst for which the map
f ÞÑ u˚

m diagpfpξ1p0qq, . . . , fpξkmlmp0qqum

is a ˚-homomorphism Am Ñ Mpm`1
b 1Mqm`1

. Similarly, there is a computable
unitary vm such that f ÞÑ v˚

m diagpfpξ1p1qq, . . . , fkmlmp1qqvm is a ˚-homomorphism
Am Ñ 1Mpm`1

pCq bMqm`1
pCq.

Then the map Φmpfq “ pum ⇝ vmq˚ diagpf ˝ ξ1, . . . , f ˝ ξkmlmqpum ⇝ vmq is the
desired injective ˚-homomorphismΦm : Am Ñ Am`1.
Proposition 5.2. The map Φm : Zst

pm,qm
Ñ Zst

pm`1,qm`1
is computable, uniformly in

m.

Proof. By Lemma 5.1, it suffices to show that
Φm : Zst

pm,qm
Ñ pCr0, 1s bMpm`1

pCq bMqm`1
pCqq

upst b st b stq

is computable uniformly inm. This follows from Lemmas 2.11 and 5.1, the fact
that the map f ÞÑ diagpf ˝ ξ1, . . . , f ˝ ξkmlmq is a computable map
pCr0, 1sbMpmpCqbMqmpCqq

upst b st b stq
Ñ pCr0, 1sbMpm`1

pCqbMqm`1
pCqq

upst b st b stq,

and that the unitariesum and vm are rational points ofMpm`1
pCqst andMqm`1

pCqst

respectively, uniformly inm. □

5N.B. Our notation is slightly different than that in [5].
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SetZst :“ lim
ÝÑ

pZst
pm,qm

, Φmq, a so-called “standard presentation” ofZ. Combining
the above discussion with Fact 2.2 and Lemma 2.7, we arrive at:

Theorem 5.3. The presentation Zst is computable and thus computably strongly self-
absorbing.
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