Applications of Idempotents

New idea. Go to ** IN, nonst. extension of *IN. In language for this extension, have symbol for N, so can say * $|N| = (\forall x \in |N) (\forall y \notin |N|) x < y, so$ ** $|N| = (\forall x \in N) (\forall y \notin |N|) x < y, so$ $\frac{1}{N} < \frac{1}{N} \cdot \frac{1}$

*/N C ***/N, so can add elements of */N to elements of ***/N. Also, if ~ E*/N/M, then *~ E ***/N/*IN, so ~ ~ ~.

For de*/N, BEXX, define ∝ B if: for every A⊆IN, we have det A (=) BE**A.

Det de* N is u-idempotent if a+* 2~ a.

Suppose there is a u-idempotent or. Suppose AGIN and a 6*A. Then d+ a E ** A. So $\models (\exists x \in \mathcal{H})(x \in A \land x + \mathcal{A} \in \mathcal{H})$ - F(BXEN) (XEA NX+26*A), all it xo. Xotat A= Xotat A G Since de * ZyelN: XotyEAZ. = (3xe*/N)(xe*AAX+*2e**AAX2+xe*A $\Lambda \times + \times + \times \times \times + A \wedge \times > \times_{0}$. . AXEN, XIEA, XI+QE*A, XO+XIEA, Xotx, tae*A, X,>Xo.

Veep going ... Sps have Xo<X1<...<Xn-15.1. for all FG 20,-, n-13, setting XF:= ZXi, have XFEA, XF+XE*A. Then XF tat * a E * A, so can find Xn > Xn-1

S.t. XF+XnEA YF=20,...,n-13 (F=16 even), XF+Xn+dE*A. Keep going.

Det A = IN is a FS-set if there is (Xn)new from A s.t. XFEA VFEIN finite.

Prop $|f \ \alpha \in \mathcal{H} | N$ is u-idempotent and $\alpha \in \mathcal{A}$, Then A is a FS-set.

This u-idempotent elements of */N exist. (Come back to this...)

Cor (Hindman's Thm) If IN = AILI-LIAN is a finite coloring of IN, then some Ai is a FS-set.

So why do u-idempotents exist?

Uthrafilters Define them on any set S.

IF ses, then get principal ultralitter Us. If de*s, still get an ultralitter Udi= SAS: ac*A3. Say a~B = Us= UB = HA=S[as*AegseA]

BS = set of ultrafitters, a compact space with base given by UA := 2UEBS: AEUJ. Exercise (Assume suff solt.) XH2ULA: *S-JBS onto, *S/~->BS Now suppose S has a semigroup operation. N.L. Om RS Low Define O on BS by A $\in UOU \in \mathcal{F}$ So \mathcal{F} Here, $s^{-1}A := \mathcal{F} \in S$: $s \cdot t \in A \mathcal{F}$. Here, $s^{-1}A := \mathcal{F} \in S$: $s \cdot t \in A \mathcal{F}$.

Note: Uso Ut = Usit for s, tes. What about Uao Up for a, BE*S? A E U O Up € 25ES: 5⁻¹ A E Up 3 E Ua E) x E*25ES: 5⁻¹ A E Up 3 Now S⁻¹ A E Up E) B E*(5⁻¹ A) E) S · B E* A

So a E * ¿SES: 5° · A E Up 3 () a E* E SES: 5. BE* A 3 ∠ * β € ** A So $A \in \mathcal{U}_{\alpha} \cup \mathcal{U}_{\beta} \in \mathcal{A} \cdot \mathcal{B} \in \mathcal{A} \in \mathcal{A} \in \mathcal{U}_{\alpha} \cdot \mathcal{B}$. So $\mathcal{U}_{\alpha} \cup \mathcal{U}_{\beta} = \mathcal{U}_{\alpha} \cdot \mathcal{B}$. : x E*S is u-idemp iff x.* a~a iff Ua. *a = Ua iff UaoUa=Ua. ... det S is u-idemp iff Ud is idempotent. The I dempotent ultradities on S exist. Ph (BS, O) is a compact semitop semigroup (meaning UH) UOV is cts YVEBS.) A theorem of Ellis says any compact semi semi has an idempotent. IF TE BS is a closed subsemigroup, then Talso has an idempotent.

Det TEtS is a u-subsemigroup if Va,BET JOET s.t. d.* B~ V (so image of T in BS is a subsemigroup).

Cor IF TETS is a closed, nonempty usuberni, then T contains a u-idempotent.

Many applications of these idees. Here's one more: Hales - Jewett Theorem

L finite set, $x \notin L$ (variable) $W_{L} := L^{\omega}$ (words) $W_{LX} = (L \cup \lambda x_{2})^{\omega} \setminus W_{L}$. For $w \in W_{LX}$, $g \in L$, $w [a] \in W_{L}$. w [x] = wV W concatenation WL, WLX semigroups

Def (wn) sequence of variable words. D[[wn]]m={wno[ao] ... When[[av-1]: ao, -. av-1 EL} O(1) $V(x) = same with low the formed of the time <math>\lambda_i = x$.

Infinite Hales-Jewett Theorem For every finite coloring of WLU WLX, there is (whi from Wex s.t. [[whi]we and [[whi]we are both monochromatic.

Poverful ! Can derive finitery HJ~>vdW (Gallai)

VE*WL s.t [] w^*v~v~*w~w and 2 E*WL s.t [] w^*v~v~*w~w and 2 w[a]~v YaEL.

Lemma & Sps ACWL, BCWLX are s.t. VE*A, wt*B. Then there is (wn) from WLX s.t. [(wn)]wr CA, [(wn)]wrx CB. (IHJ follows immediately from Lemma 2.)

PF of Lemma 2 from Lemma) Set C := AUB.

It all, then w[a]~ve*Be*C, while $\omega[x] = \omega e^* A \leq C.$ Also, if a, be Luixi, then
$$\begin{split} & & (\nabla^* \nabla \sim \nabla \mathcal{E}^* A \\ & & (a) \cap^* \omega (b) \sim \begin{cases} \nabla^* \nabla \sim \nabla \mathcal{E}^* A \\ \nabla^* \omega \sim \omega \mathcal{E}^* B \\ & \omega^* \nabla \sim \omega \mathcal{E}^* B \\ & \omega^* \omega \sim \omega \mathcal{E}^* B \end{cases} \end{split}$$
fa, btL if acl, b=x it a=x,beL ifa=b=x So: So (FroeWL)(Harbeluixi) wotale n was wible. Second Condition => w[a] w[b] * w[c] e ** C So get Wi = Wo s.t. for all a, b, CELUIXY, WIGJEC, WIAJ WITHJEC, $V_0[a]^w_1[b]^w[c] \in C$ Keep going ... F) Pf of lemma 1 L= 2ai, , amit By recurson, debre U-idempotents W.,., won of * Wex and Vin, m & * We st. for leidjem: () $\omega_j [a_i] \sim \nu_j$

 $(a) \quad \omega_{j} \sim \omega_{j} \cap^{*} \nu_{i} \sim \nu_{i} \cap^{*} \omega_{j}.$ Then $w = \omega m$ and v = v m work.

Start with we any u-idemp in WLX. Set $v_i := w_0 [a_i]$. Note $\mathcal{V}_1 \xrightarrow{\times} \mathcal{V}_1 = uo[a_1] \xrightarrow{\times} uo[a_1] = [u_0 \xrightarrow{\times} uo][a_1]$ $\sim \omega_{o}[a_{1}] = v_{1}$.

So VI is u-idempotent. Take $p_i \in *$ Wex s.t. $wo^* v_i \sim p_i$. Then $p_i [a_i] \sim wo [a_i]^* v_i = v_i^* v_i \sim v_i$. $\rho_{1}^{\prime} \stackrel{}{}^{*} \mathcal{V}_{1}^{\prime} \mathcal{W}_{1}^{\prime} \stackrel{}{}^{*} \mathcal{V}_{1}^{\prime} \stackrel{}}{}^{*} \mathcal{V}_{1}^{\prime} \stackrel{}}{} \mathcal{V}_{1}^{\prime} \stackrel{}}{}^{*}$

let $T := \frac{1}{2e^*}W_{1x} : 2\overline{a_1}\sqrt{1}, z^*\sqrt{1}\sqrt{2}^{\frac{1}{2}}.$ Then $\rho_1 \in T$ (so $T\neq 0$). If $z_{1,2a}\in T$, then $(z_1^*z_a)[a_1]=z_1\overline{a_1}]^*z_2\overline{a_1}!$ $\sim \sqrt{1}\sqrt{1}\sqrt{1}}$ $(Z_1^*z_a)^{\frac{1}{2}}\sqrt{1} \sim z_1^*(\frac{1}{2a})^{\frac{1}{2}}\sqrt{1})\sqrt{2}(\frac{1}{2a}).$ $\therefore Z_1^*z_a$ is $\sim to$ something in T.

Also, T is u-closed z[ai]~~~i menns z[ai] e* A wherever zi e* A, So ZEZ PEWLX: PTaileA3 Similar for $z^{1} v_{1} \sim z$. :. there is a u-idemp BET. Take w, E*Wex st. v, ABINWI. Then $(u_1^* u_1 \sim v_1^* \beta_1^* \gamma_1^* \beta_1^* \gamma_1^* \beta_1^* \gamma_1^* \beta_1^* \gamma_1^* \beta_1^* \gamma_1^* \beta_1^* \beta_1^* \gamma_1^* \beta_1^* \beta_1^$ NN, *B, (since B, idempl ~ w, so w, u-idemp. $\text{ter [a,]} \sim \mathcal{V}_1 \cap \mathcal{V}_1 \sim \mathcal{V}_1$ $\omega_1^{n} \mathcal{V}_1 \sim \mathcal{V}_1^{n} \mathcal{P}_1^{n} \mathcal{V}_1 \sim \mathcal{V}_1^{n} \mathcal{P}_1 \sim \omega_1$ $\mathcal{V}_{1}^{\prime}\mathcal{W}_{1}^{\prime}\mathcal{V}_{1}^{\prime}\mathcal{W}$ So Uz (B) hold.

The inductive step is similar. Have Wi, Vi for LEiElerm. Vult = Wie [averi]. Vieti Vi ~ Vi * Veti ~ Vieti Pret ~ Wre "Viril. Same as Twith per) Puti [ai] ~ Vuti [Ei = let]

T=&ZE*Wex: ztaiJ~vert, z*vi~z léiéletli. novempty, cluxed u-subsemigrop, so contains u-idemp Breti. Take were ~ Verti * Brett.