Nonstandard Analysis Basics

Basic idea For any set inder investigation les. IN, IR, graph G = (V,E)), we extend it to its nonstandard extinsion *X, so X < *X, which is a proper extension unless X is finite. Functions $f: X \rightarrow Y$ also get extended to functions $f: *X \rightarrow *Y$.

This extension is "logic-preferring" (Transfer Phrijde). e_{X} *(AUB) = *AU*B,... ex $N \subseteq *N$ draw picture ex $IR \subseteq *IR$ ordered field extension

Infinite elements, infinitesimal elements

Im If xE*IR is finite, there is a unique yEIR s.t. XXY; y is called the standard partolx, denoted st(x).

Our nonstandard extensions need to be suff. "rich". If X is a basic set, also assume P(X) is a basic set and $E \subseteq X \times P(X)$. Then *ES *Xx *P(x).

Fact (an view * $\mathcal{P}(X) \subseteq \mathcal{P}(*X)$ and * $\mathcal{E} = \text{membeship restricted to *<math>XX^*\mathcal{P}(X)$. Internal sets

Similarly, have Pfin(x); elements of * Pan(X) are colled hyperbrite subsets of X. They are internal. The map $|\cdot|: Prin(X) \rightarrow IN$ extends to $|\cdot|: *Prin(X) \rightarrow *IN$, internal cardinal Fly

If BEAE*X are internal, A hyp, then Bis hyp. by transfer. <u>ex</u> For NE*IM have hyp mt [I,N], [[I,N]]=N.

Def Our nonst. ext. is countably saturated if: whenever (An) new is a sequence of 1ht. ints w/FIP, then (InAn 70. hisat

example Sps (Bn)ntin is a collection of int. subsets of *X. For nEN, set $A_n := \{f: */N \rightarrow *P(\chi): f(m)=A_m \text{ for } m \ge n\}$. Then An is internal (Internal definition principle) and hes FIP (An CAN+1 and An +\$ since we can just set f(m)=*X \m>n). By countable sat, If E (nAn. Write it suggestively as (An)ne*/N.

Overflow IF BS*IN internal & BAIN inhuite, then Br (*IN/IN) = 1: If not B bounded above, So max (B) exists.

Underflow If BC*/N int. contains arth small elts of *ININ, then BrIN + \$.