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Abstract. We revisit the postprocessing algorithm and give a justification from a classical
truncation analysis point of view. We assume a perturbation expansion for the high frequency mode
component of solutions to the underlying equation. Keeping terms to certain orders, we then generate
approximate systems which correspond to numerical schemes. We show that the first two leading
order methods are in fact the postprocessed Galerkin and postprocessed nonlinear Galerkin methods,
respectively. Hence postprocessed Galerkin is a natural leading order method, more natural than the
standard Galerkin method, for approximating solutions of parabolic dissipative PDEs. The analysis
is presented in the framework of the two-dimensional Navier–Stokes equation (NSE); however, similar
analysis may be done for any parabolic, dissipative nonlinear PDE.

The truncation analysis is based on asymptotic estimates (in time) for the low and high mode
components. We also introduce and investigate an alternative postprocessing scheme, which we call
the dynamic postprocessing method, for the case in which the asymptotic estimates (in time) do
not hold (i.e., in the situation of long transients, nonsmooth initial data, or highly oscillatory time-
dependent solutions).
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1. Introduction. We revisit the postprocessing algorithm for the Galerkin and
nonlinear Galerkin methods. Postprocessing methods first evolved from the theory of
approximate inertial manifolds (AIMs) (see, e.g., [3], [5], [6], [7], [15], [19], and [21])
and take advantage of the observation that, for dissipative evolution equations, the
Galerkin and nonlinear Galerkin methods do better approximating the low modes of
the exact solution u than approximating the solution itself. AIMs are used to “post-
process” the low modes in order to obtain a more accurate approximation for the high
modes. For a variety of applications, the postprocessed Galerkin has been shown to be
a very efficient algorithm for improving the accuracy of Galerkin/nonlinear Galerkin
methods with very little extra computational cost (see, for example, [8], [10], [11],
[12], and [17]). However, postprocessing is not simply a technique for improving
efficiency. In this paper we show that postprocessing methods arise in a very natural
way through a classical truncation analysis of the dissipative evolution equation. More
specifically, we will show that, to leading order, the correct approximative scheme is
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actually the postprocessed Galerkin method, and not the standard Galerkin method
as is commonly believed.

We present this work in the context of the two-dimensional Navier–Stokes equa-
tions (NSE) in Ω, an open bounded set of R

2, with smooth boundary ∂Ω,

∂u

∂t
− ν∆u + (u · ∇)u + ∇π = f,(1.1)

∇ · u = 0,

u(0, x) = u0(x),

where the unknowns are the vector velocity u and the scalar pressure π; f(x, t) is
a given body forcing, and ν > 0 is the kinematic constant viscosity. The equations
are subject to either nonslip Dirichlet boundary conditions for ∂Ω smooth enough, or
periodic boundary conditions when Ω is a square. To this end, we define the Hilbert
space H as

H = {u ∈ L2(Ω)2,∇ · u = 0, u · �n = 0 on ∂Ω}

in the case of nonslip Dirichlet boundary conditions, where �n denotes the outward
normal unit vector to ∂Ω, or

H =

{
u ∈ L2

per(Ω)2,∇ · u = 0,

∫
Ω

u dx = 0

}

in the case of periodic boundary conditions. The space H is a closed subspace of
L2(Ω)2 and is endowed with the scalar product and norm from L2(Ω)2, denoted
by (·, ·) and ‖ · ‖, respectively. We also define the Hilbert space V as V = {u ∈
H1

0 (Ω)2,∇ · u = 0} or V = {u ∈ H1
per(Ω)2,∇ · u = 0,

∫
Ω
u dx = 0}, depending on the

boundary conditions. Let P be the Leray orthogonal projection from L2(Ω)2 onto
H. Then (1.1) projected onto H may be written as an abstract functional differential
equation of the form

du

dt
+ νAu + B(u, u) = f,(1.2)

u(0) = u0;

see, e.g., [2] or [20].
The Stokes operator A is defined as −P∆ with the appropriate boundary condi-

tions. The domain of A in H, denoted D(A), is either H2(Ω)2 ∩ V or H2
per(Ω)2 ∩ V ,

depending on the boundary conditions. The nonlinear term is B(u, u) and is de-
fined in general as B(u, v) = P [(u · ∇)v]. Finally, f (or f = Pf) is the forcing
term and is assumed to be at least in H. The operator A is a positive, self-adjoint,
densely defined, unbounded operator with compact inverse. The eigenfunctions of
A, {ω1, ω2, . . .}, form a complete orthonormal basis for the space H. The associated
eigenvalues {λ1, λ2, . . .} satisfy 0 < λ1 ≤ λ2 ≤ · · · and the asymptotic formula λj ∼ j.
Properties of the spaces H, V = D(A1/2), and D(A) may be found in [2], [18], or [20].

We decompose the solution u into low mode and high mode components by letting
HN = span{ω1, ω2, . . . , ωN}, the span of the first N eigenfunctions of the Stokes
operator A. Let PN be the orthogonal projection of H onto HN , and QN = I − PN

be the projection onto the orthogonal complement space H⊥
N . Then, for any u ∈ H,

we can uniquely decompose u = p+q, where p = PNu and q = QNu. Projecting (1.2)
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onto HN and H⊥
N , we get an equivalent system for the NSE

dp

dt
+ νAp + PN [B(p, p) + B(p, q) + B(q, p) + B(q, q)] = PNf,(1.3)

dq

dt
+ νAq + QN [B(p, p) + B(p, q) + B(q, p) + B(q, q)] = QNf,(1.4)

p(0) = PNu0 and q(0) = QNu0.

The truncation analysis is accomplished by using estimates for the low modes
p and high modes q of a solution u. We present the truncation analysis for the
two-dimensional NSE; however, similar analysis may be done for general nonlin-
ear parabolic evolution or elliptic equations, such as reaction-diffusion systems, the
Bénard convection problem, etc. The key to the analysis is understanding the inter-
action of the low and high modes, and estimating the nonlinear term.

The truncation analysis is based on asymptotic (in time) estimates for the low
and high mode components, as was done in [10] and [11] when developing the postpro-
cessing algorithm. These asymptotic estimates hold when solutions of the NSE are on,
or near, the attractor, i.e., for the case of autonomous systems (f time-independent)
and provided that t is large enough. However, these estimates may not hold, for
example, in the case of nonsmooth initial data, long transients, or nonautonomous
systems with highly oscillatory (in time) forcing. In [15] the authors showed that, for
a highly oscillatory time-dependent forcing function, the dominant balance in (1.4)
is between the dq/dt term and the forcing term; hence the dq/dt term should not be
dropped in the AIM construction. This case leads to and justifies an alternate/reform
postprocessing method, proposed in [24] for integrating along transients, which we
call here dynamic postprocessing.

Let us emphasize again that there is a basic difference between the nonlinear
Galerkin methods and the postprocessing Galerkin method. Specifically, unlike the
usual multigrid (in this case two-grid) and the nonlinear Galerkin methods, in the
postprocessing Galerkin methods the evolution/integration on the coarse mesh, i.e.,
low frequencies, does not use at all the information on the fine mesh (small scales
or high frequencies). Only at the end of the calculations does one use the solution
on the coarse mesh to refine the solution. On the other hand, in standard two-grid
methods, including the nonlinear Galerkin methods and their variants, one uses cycles
in which one has to compute the solution on the fine mesh in order to update the time
step integration on the coarse mesh and vice versa. In fact, this occasional updating
of the solutions on the fine mesh is the major source of computational disadvantage
of the nonlinear Galerkin method in comparison to the Galerkin method, as was
demonstrated computationally in, for instance, [10] and [11].

In this paper we first present a classical truncation analysis of the NSE using es-
tablished asymptotic (in time) estimates. In section 2 we present several approximate
systems of varying orders of accuracy based on the truncation analysis results. We
introduce a more general postprocessing algorithm in section 3 for the case in which
the asymptotic estimates no longer hold (i.e., in the presence of long transients, non-
smooth initial data, or highly oscillatory forcing). In section 4 we analyze the accuracy
of the various postprocessing methods for the case of a highly time-oscillatory solu-
tion. In section 5 we present some numerical experiments to support the analysis of
sections 2, 3, and 4 and compare the computational efficiency of the standard and the
more general postprocessing methods. Finally, we give some concluding remarks in
section 6. Preliminary results of this study were reported in [23].
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2. Near-attractor truncation analysis. We first present the truncation anal-
ysis based on asymptotic estimates for u, p, and q. It is well known (see, e.g., [2] or
[18]) that for f ∈ H and independent of time, (1.2) is dissipative in the spaces H, V ,
and D(A). This means that any solution u(t) of (1.2) will, after a certain time, enter
and remain in a ball in H centered at 0 with radius ρ0. The same is true for a ball in
V of radius ρ1, and a ball in D(A) of radius ρ2. The radii ρ0, ρ1, and ρ2 depend on
‖f‖, ν, and λ1. Therefore, we will assume that for t ≥ T0, for some positive T0 that
depends on ν, ‖f‖, λ1, and the initial data ‖u0‖, we have

‖u(t)‖ ≤ ρ0, ‖A1/2u(t)‖ ≤ ρ1, ‖Au(t)‖ ≤ ρ2.(2.1)

Notice that the global attractor for (1.2) is contained in these balls. For solutions
on the attractor, T0 = 0 and the uniform bounds apply for all time t ∈ R, since the
global attractor is invariant (see, e.g., [2] and [18]).

From the above bounds for u, we have that q is also bounded in H, D(A1/2), and
D(A) for t > T0. Using the bound ‖Aq‖ ≤ ρ2 and the fact that ‖Aαq‖ ≤ λ−α

N+1‖q‖,

we quickly obtain estimates for q in terms of λN+1. We denote ε = (λ1/λN+1)1/2.
Then for t > T0 the following estimates for q and dq/dt are at hand:

‖q‖ ≤ λ−1
N+1‖Aq‖ ≤ λ−1

N+1ρ2 = O(ε2),

‖A1/2q‖ ≤ λ
−1/2
N+1 ‖Aq‖ ≤ λ

−1/2
N+1 ρ2 = O(ε),(2.2)

‖Aq‖ ≤ ‖Au‖ ≤ ρ2 = O(1)

as ε → 0. Using the fact that the solutions are analytic in time (see, e.g., [2] and [20]),
one can apply the Cauchy formula for the derivatives of complex analytic functions
to obtain an estimate for ‖dq/dt‖ of the same order as ‖q‖ (again, see, e.g., [2], [5],
and [20]). We have

∥∥∥∥dqdt
∥∥∥∥ = O(ε2) as ε → 0.(2.3)

Let us stress that the constant ρ2, which depends on the physical parameters but not
on N , is quite large in comparison with the constants ρ0 or ρ1 for small values of the
viscosity ν or large values of ‖f‖. It is preferable to avoid using the ρ2 bound and
to derive more delicate estimates for ‖q‖, ‖dq/dt‖, and ‖A1/2q‖ of the same orders as
above involving only ρ0 and ρ1. Indeed, the authors of [5] derive bounds of the type
given in (2.2) and (2.3) involving ρ0 and ρ1 but not ρ2. However, this is done at the
expense of adding a term of the order | log ε|. In practice, this is a more reasonable
bound, since the best available bound for ρ2 is many orders of magnitude larger than
those for ρ0 and ρ1. Moreover, for practical computations, | log ε| will be of order 1
even if ε is very small.

For the low mode component, we have only that p is bounded in H, D(A1/2),
and D(A) for t > T0. Hence, we set

‖p‖, ‖A1/2p‖, ‖Ap‖ = O(1) as ε → 0.(2.4)

For the truncation analysis we consider a perturbation expansion for q of the form

q = q1 + q2 + q3 + q4 + · · · .(2.5)
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To leading order, we have estimates (2.2) and (2.3) for q. Hence, the corresponding
estimates for the first expansion term q1 are as follows:

‖q1‖,
∥∥∥∥dq1dt

∥∥∥∥ = O(ε2),

‖A1/2q1‖ = O(ε),(2.6)

‖Aq1‖ = O(1) as ε → 0.

Each successive term qj is assumed to be of higher order in ε, i.e., ‖dqj/dt‖, ‖qj‖ =
O(εj+1), ‖A1/2qj‖ = O(εj), and ‖Aqj‖ = O(εj−1), for j = 1, 2, . . . . In principle, the
initial value u0 should also be decomposed accordingly, i.e., u0 = PNu0 + QNu0,
with QNu0 = q01 + q02 + · · · such that O(q0j ) = εO(q0j−1). In particular, for solutions

on or near the attractor, we should have ‖q0j ‖ = O(εj+1), ‖A1/2q0j ‖ = O(εj), and

‖Aq0j ‖ = O(εj−1), for j = 1, 2, . . . .
We substitute expansion (2.5) into system (1.3)–(1.4) above and estimate the

order of each term in the system. By keeping terms up to order ε1/2, ε3/2, and so
on, we generate approximate systems for NSEs of increasing orders of accuracy. The
challenge comes with estimating the nonlinear terms. Substituting expansion (2.5)
into the nonlinear terms results in the following:

B(p, q) = B(p, q1 + q2 + q3 + · · ·)
= B(p, q1) + B(p, q2) + B(p, q3) + · · · ,

B(q, p) = B(q1 + q2 + q3 + · · · , p)
= B(q1, p) + B(q2, p) + B(q3, p) + · · · ,

B(q, q) = B(q1 + q2 + q3 + · · · , q1 + q2 + q3 + · · ·)
= B(q1, q1) + B(q1, q2) + B(q1, q3) + · · ·

+B(q2, q1) + B(q2, q2) + B(q2, q3) + · · ·
+B(q3, q1) + B(q3, q2) + B(q3, q3) + · · ·
+ · · · .

We majorize each term using inequalities for the nonlinear term given, for instance,
in [2], [20], or [22] for inequalities (2.9) and (2.10). For convenience we recall the
two-dimensional version of these inequalities. For any u, v ∈ D(A),

‖B(u, v)‖ ≤ c1‖u‖1/2‖A1/2u‖1/2‖A1/2v‖1/2‖Av‖1/2(2.7)

≤ c2‖u‖1/2‖Au‖1/2‖A1/2v‖(2.8)

≤ c3‖A1/2u‖‖A1/2v‖
(

1 + log
‖Au‖2

λ1‖A1/2u‖2

)1/2

(2.9)

and

‖B(u, v)‖ ≤ c4‖u‖ ‖Av‖
(

1 + log
‖A3/2v‖2

λ1‖Av‖2

)1/2

(2.10)

for u ∈ D(A) and v ∈ D(A3/2). The constants c1–c4 are independent of u, v, and
the size of Ω, but might depend on its shape. For each nonlinear term we choose the
inequality that results in the highest order of ε. Using estimates (2.4) for p and (2.6)
for q1, we obtain ‖B(p, p)‖ = O(1), ‖B(p, q1)‖ = O(ε), and ‖B(q1, q1)‖ = O(ε2). For
the B(q1, p) term, inequality (2.7) gives ‖B(q1, p)‖ = O(ε3/2), and inequality (2.10)
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gives ‖B(q1, p)‖ = O(ε2L
1/2
ε ), where Lε = (1 + 2| log ε|). The O(ε2L

1/2
ε ) estimate is

“closer” to being of the order O(ε2) than O(ε). However, in either case, the term is
definitely of the order O(ε3/2). For simplicity of ordering the various terms, we will
consider this term to be O(ε3/2).

2.1. Near-attractor approximate systems. To produce approximate schemes
for the Navier–Stokes system, we keep only terms in (1.3)–(1.4) to certain orders in
ε. Below, we list the approximate systems produced by keeping terms to order ε1/2

and ε3/2. We will set nonlinear terms of the order O(ε2L
1/2
ε ) and O(ε3L

1/2
ε ) to be of

the order O(ε3/2) and O(ε5/2), respectively.

O(ε1/2):

dp

dt
+ νAp + PN [B(p, p)] ≈ PNf,(2.11)

νAq1 + QN [B(p, p)] ≈ QNf,(2.12)

p(0) = PNu0.(2.13)

Equation (2.11) is an evolution equation for the low mode component p. Equa-
tion (2.12) is coupled to (2.11); it defines q1, the leading order approximation term
of the high modes, in terms of the low modes and is therefore a postprocessing step.
From (2.12) one can verify that ‖Aq1‖ = O(1), which is consistent with our assump-
tions.

O(ε3/2):

dp

dt
+ νAp + PN [B(p, p) + B(p, q1) + B(q1, p)] ≈ PNf,(2.14)

νA(q1 + q2) + QN [B(p, p) + B(p, q1) + B(q1, p)] ≈ QNf,(2.15)

νAq2 + QN [B(p, q1) + B(q1, p)] ≈ 0,(2.16)

p(0) = PNu0.(2.17)

Equation (2.14) is the evolution equation for p with q1 in the nonlinear term defined
by (2.12); it is a nonlinear Galerkin method as defined in [5], [13], [14], and [16].
Equation (2.15) defines q1 + q2, which is a higher order approximation of the high
modes. Equation (2.16) defines q2; it is derived from (2.15) and the definition of q1
given in (2.12). From (2.16) one can show that ‖Aq2‖ ≤ ‖B(p, q1)‖ + ‖B(q1, p)‖ =
O(ε). Hence ‖q2‖ = O(ε2), which is consistent with our assumptions.

Similarly, we may obtain an approximate system for the NSE valid to order
O(ε5/2), O(ε7/2), and in general, valid to order O(εj+1/2). In the general case, the low
mode equation is evolved with linear combinations of q1 through qj in the nonlinear
term; the high mode equation involves linear combinations of q1 through qj+1, where
(q1 + q2 + · · · + qj+1) is used to approximate q. Thus the high modes of the solution
u should be approximated to one order higher in ε than the order of the high mode
terms used in the low mode equation. The term qj+1 is not used to evolve the low
modes; it needs to be evaluated only once, at some final time T , and may therefore
be considered a postprocessing step. The approximate systems above, produced with
a classical truncation analysis, demonstrate that the postprocessing step is a very
natural and significant part of approximating the original system.

2.2. Standard (near-attractor) postprocessing schemes. For each approx-
imate system from the previous section, we may generate a postprocessed Galerkin
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or nonlinear Galerkin scheme of increasing order of accuracy. From the truncation
analysis we know that, to approximate the low and high modes of a solution u to the
same order in ε, we must include the postprocessing step. In general the solution of
the evolution equation is sought as an approximation of the low modes of the exact
solution u, and the solution of the high mode equation is sought as an approximation
of the high modes of the solution u. The goal for each εj+1/2 postprocessing scheme is
to produce a more accurate approximation of the low and high modes as j increases.

From system (2.11)–(2.12), i.e., keeping terms to order O(ε1/2), we obtain the
postprocessed standard Galerkin method

duN
dt

+ νAuN + PN [B(uN , uN )] = PNf,(2.18)

νAφ1 + QN [B(uN , uN )] = QNf,(2.19)

uN (0) = PNu0,(2.20)

where uN ∈ HN is the solution of the evolution equation and is an approximation
of the low modes p, and φ1 ∈ QNH is an approximation of the high modes q (i.e.,
φ1 ≈ q1). Note that φ1(t) = Φ1(uN (t)), where Φ1 is exactly the Foias–Manley–Temam
(FMT) AIM first introduced in [5]. This is the same postprocessed Galerkin method
originally defined in [10] and [11]. Solving for uN (t) does not depend on φ1, and
hence one does not need to evaluate φ1(t) = Φ1(uN (t)) at all times, but only when
an approximate solution is needed. This is typically done once at some final time
T . It is therefore a postprocessing step. The approximate solution at time T is then
uN (T ) + φ1(T ) = uN (T ) + Φ1(uN (T )), and not uN (T ) as is traditionally used with
the standard Galerkin method. This scheme indicates that, to leading order in ε, the
correct approximation method is the postprocessed Galerkin method.

The approximation properties of the postprocessed Galerkin method (j = 0) are
well understood. We know, for instance, that Φ1 is Lipschitz continuous, ‖φ1(t)‖ =
O(ε2), ‖q(t) − φ1(t)‖ = O(ε3), and ‖p(t) − uN (t)‖ = O(ε3). Proofs of the first three
properties may be found, for example, in [4] and [5]. The fourth property is proven
in [11], specifically for the two-dimensional NSE.

In general, keeping terms of order εj+1/2 for j ≥ 1, we obtain a postprocessed
nonlinear Galerkin scheme with successively more accurate approximation properties
as j increases. In particular, for the scheme generated from system (2.14)–(2.16), i.e.,
the case j = 1, we can show that the low and high mode approximation errors are
of the order O(ε4) using the techniques as in [11] and [17]. Though more accurate,
the O(εj+1/2) systems are not computationally competitive for j ≥ 1. We know from
numerical experiments presented in [10], [11], and [17] that the more computationally
efficient schemes are the postprocessed Galerkin method (2.18)–(2.19) and variants
thereof, such as the postprocessed filtered Galerkin method. Hence, for the purposes
of this paper, we will concentrate on the postprocessed Galerkin method, system
(2.18)–(2.20).

3. A more general truncation analysis. The standard postprocessing scheme
and systems in the previous section were generated based on asymptotic (in time) es-
timates for the low and high mode components. These estimates hold for autonomous
systems when solutions of the NSE are on or near the attractor, i.e., for t large enough.
However, these estimates may no longer hold, for instance, in the case of nonsmooth
initial data, long transients, or nonautonomous systems with highly oscillatory time-
dependent forcing. For these cases, the leading order approximation for system (1.3)–
(1.4) is no longer clear. In particular, the dq/dt term may no longer be small in
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comparison with the other terms in (1.4). For instance, in the case of a highly oscilla-
tory time-dependent force, the authors of [15] presented an analytic example showing
that the dominant balance in (1.4) is between the dq/dt term and the forcing term,
and not between the dissipative term and the forcing and nonlinear terms. In this
case they concluded that the dq/dt term should not be dropped in the AIM construc-
tion. In this section we consider the special case in which the forcing f is a highly
oscillatory time-dependent function.

We start with the nonautonomous Navier–Stokes system (1.3)–(1.4) with highly
oscillatory forcing. We assume that the force remains bounded (i.e., f ∈ L∞((0,∞);H)
but oscillatory in time (defined later in Theorem 4.4). Furthermore, we assume that
the solution u(t) is bounded in D(A) for t ≥ 0 and that the initial condition is smooth,
i.e., u0 ∈ D(A). As before, we observe that ‖Au(t)‖ = O(1) since ‖Au(t)‖ is bounded
uniformly. Then for all t ≥ 0 we have

‖p(t)‖, ‖A1/2p(t)‖, ‖Ap(t)‖ = O(1) and ‖Aq(t)‖ = O(1).

Again using the fact that ‖q‖ ≤ λ−α
N+1‖Aαq‖, we obtain that ‖q(t)‖ = O(ε2) and

‖A1/2q(t)‖ = O(ε) as before. Since the forcing is highly oscillatory in time, we cannot
assume that the time derivative of the solution u, and hence q, is necessarily small.
In this situation we will suppose that ‖dq/dt‖ = O(1), the same order as the ‖Aq(t)‖
term or larger. We have the following bounds for q,

‖q(t)‖ = O(ε2),

‖A1/2q(t)‖ = O(ε),(3.1)

‖Aq(t)‖, ‖dq/dt‖ = O(1).

Without assuming that the forcing term is real analytic in time with values in H, one
could not show that the solution u(t) is real analytic in time with values in D(A).
Therefore, it would not be possible to employ the techniques used in [5] to get tight
estimates on the constants involved in the bounds given in (3.1).

3.1. More general approximate systems. For the truncation analysis, we
again assume a perturbation expansion for q of the form q = (q1 + q2 + q3 + · · ·).
Since q1 is the leading order approximation for q, the above estimates hold for q1 as
well. We then substitute the perturbation expansion for q into system (1.3)–(1.4) and
estimate the orders of the various terms as before. The only differences are the orders
of the d(q1 + q2 + · · ·)/dt terms.

Keeping terms up to order ε1/2, we have the following leading order approximate
system:

dp

dt
+ νAp + PN [B(p, p)] ≈ PNf,(3.2)

dq1
dt

+ νAq1 + QN [B(p, p)] ≈ QNf,(3.3)

p(0) = PNu0,(3.4)

q1(0) = QNu0.(3.5)

Equation (3.2) is the usual evolution equation for the low mode component; it is the
standard Galerkin method. Equation (3.3) is used to define q1, the leading order
approximation of the high modes, only now it is an evolution equation. Here q1
is not needed for the evolution of the low modes; hence (3.3) may be considered a



POSTPROCESSING GALERKIN VIA TRUNCATION ANALYSIS 703

postprocessing step. This is the same postprocessing step introduced in [24] for the
case of nonsmooth initial data and long transients, and justifies the postprocessing
method given therein. It is worth noting that one can think about the above system
(3.2)–(3.5) as a two-level multigrid method, where one integrates (3.2) on the coarse
mesh and then postprocesses on the fine mesh using (3.3).

Keeping terms up to order ε3/2, we have the following approximate system:

dp

dt
+ νAp + PN [B(p, p + q1) + B(q1, p)] ≈ PNf,(3.6)

d(q1 + q2)

dt
+ νA(q1 + q2) + QN [B(p, p + q1) + B(q1, p)] ≈ QNf,(3.7)

p(0) = PNu0,(3.8)

(q1 + q2)(0) = QNu0.(3.9)

Equation (3.6) is the same evolution equation for p as in (2.14), but with q1 now
defined by (3.3). It is a nonlinear Galerkin method. Equation (3.7) defines q1 + q2,
the high mode approximation. From (3.3), (3.6), and (3.7) one concludes

dp

dt
+ νAp + PN [B(p, p + q1) + B(q1, p)] ≈ PNf,(3.10)

dq1
dt

+ νAq1 + QN [B(p, p)] ≈ QNf,(3.11)

dq2
dt

+ νAq2 + QN [B(p, q1) + B(q1, p)] ≈ 0,(3.12)

p(0) = PNu0,(3.13)

q1(0) = q01 ,(3.14)

q2(0) = q02 .(3.15)

Equation (3.12) is a postprocessing step since q2 is not used in the evolution equation
for the low mode component p. Here again one can think about the above scheme as
a two-level multigrid method.

We may continue this process as before, keeping terms to higher and higher or-
ders in ε to generate a general postprocessing scheme. However, for computational
efficiency, we are interested only in the leading order postprocessing algorithms.

3.2. A dynamic postprocessing scheme. Motivated by the approximate sys-
tem (3.2)–(3.5), we introduce the dynamic postprocessing scheme

duN
dt

+ νAuN + PN [B(uN , uN )] = PNf,(3.16)

dφ̃1

dt
+ νAφ̃1 + QN [B(uN , uN )] = QNf,(3.17)

uN (0) = PNu0,(3.18)

φ̃1(0) = QNu0,(3.19)

where the approximation for the high modes φ̃1 is obtained as the solution of evolution
equation (3.17). Notice that φ̃1 = φ̃1(t;uN (t)).

4. Error analysis. In the following, we will compare the accuracy of the stan-
dard postprocessing method, system (2.18)–(2.20), with the dynamic postprocessing
method, system (3.16)–(3.19), in the case of a highly oscillatory forcing function.
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Since the approximation for the low mode component is exactly the same in each
case, namely the Galerkin approximation, we will compare only the postprocessing
approximation of the high mode component.

For comparison purposes we will use the uniform bounds

‖Au(t)‖ ≤ ρ2, ‖AuN (t)‖ ≤ ρ∗2, t ≥ 0,(4.1)

where ρ2 and ρ∗2 are constants which depend on the data of the problem (i.e., ν, f ,
‖u0‖, and λ1) but are independent of N . Let us observe that usually ρ∗2 = ρ2. We
will also utilize a low mode accuracy estimate, which we restate below without proof
(see [11], Theorem 1).

Theorem 4.1. Let T > 0 be fixed. Let u = p + q be the solution of (1.2) on
[0, T ] such that the bounds in (3.1) and (4.1) hold. Then, there exists a constant
C = C(T, ρ1, ρ2) such that for any t ∈ [0, T ] the solution uN (t) of (2.18) and (2.20)
satisfies

‖p(t) − uN (t)‖ ≤ C
L2
ε

λ
3/2
N+1

= O(ε3L2
ε),(4.2)

where Lε = 1 + 2| log ε| = 1 + log(λN+1/λ1).
The theorem is proven in the case of f time-independent. However (see [11,

Remark 2]), f plays no role in the estimates, and hence the result is valid for f = f(t)
as well.

We first work with the leading order postprocessing method presented in section 2,
whose corresponding scheme is given by (2.18)–(2.19). Here uN is the Galerkin low
mode approximation. The high mode approximation is given by φ1 = Φ1(uN ), where
Φ1 is the FMT AIM introduced in [5] and is defined in general as

Φ1(v) = (νA)−1(QNf −QNB(v, v)), v ∈ HN .

A common approach for estimating the error ‖q(t)−Φ1(uN (t))‖ is to first bound
‖q−Φ1(p)‖ using asymptotic estimates for p, q, and dq/dt, where u(t) = p(t) + q(t) is
the exact solution. Since we no longer assume that ‖dq/dt‖ is small, we first reexamine
the ‖q−Φ1(p)‖ estimate in the case of a highly oscillatory forcing function. We have
the following theorem.

Theorem 4.2. Let f(t) ∈ L∞((0,∞);H) and u0 ∈ D(A). Then for any solution
u(t) = p(t) + q(t) of (1.2), and uN (t) the solution of (2.18) and (2.20) such that
estimates (3.1) and (4.1) hold, we have

‖q(t) − Φ1(p(t))‖ ≤ C

νλN+1

(∥∥∥∥dqdt
∥∥∥∥+ λ

−1/2
N+1 ‖Aq‖

)
,(4.3)

‖q(t) − Φ1(uN (t))‖ ≤ L‖p(t) − uN (t)‖ +
C

νλN+1

(∥∥∥∥dqdt
∥∥∥∥+ λ

−1/2
N+1 ‖Aq‖

)
(4.4)

for every t ≥ 0. Here L is the Lipschitz constant for Φ1, which is known to be of the
order o(1) as λN+1 → ∞ (see, e.g., [4], [5], and [21]).

Proof. Let t ≥ 0. Subtracting (2.11) from (1.4) and taking the L2 norm, we
obtain

‖νA(q(t) − Φ1(p(t)))‖ ≤
∥∥∥∥dqdt

∥∥∥∥+ ‖B(p, q)‖ + ‖B(q, p)‖ + ‖B(q, q)‖.
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Using inequalities (2.7)–(2.10) to bound the nonlinear terms, we have

‖νA(q − Φ1(p))‖ ≤
∥∥∥∥dqdt

∥∥∥∥+
c1‖Ap‖
λ

1/2
N+1

‖Aq‖ +
c1‖Ap‖
λ

3/4
N+1

‖Aq‖ +
c1

λN+1
‖Aq‖2,

and hence

‖q − Φ1(p)‖ ≤ (νλN+1)−1

(∥∥∥∥dqdt
∥∥∥∥+

C

λ
1/2
N+1

‖Aq‖
)
,(4.5)

where C = C(c1, ρ1, ρ2). This proves estimate (4.3). To obtain estimate (4.4), first
apply the triangle inequality,

‖q(t) − Φ1(uN (t))‖ ≤ ‖q(t) − Φ1(p(t))‖ + ‖Φ1(p(t)) − Φ1(uN (t))‖.
Then use the Lipschitz continuity of Φ1 (see [5]) and estimate (4.3).

In this section we assume that ‖dq/dt‖, ‖Aq‖ = O(1), and thus ‖q − Φ1(p)‖ =

O(ε2), rather than of the order O(ε3) = O(λ
−3/2
N+1 ) for the solutions on or near the

attractor in the case of autonomous systems. Different asymptotic estimates for the
q and dq/dt terms result in different accuracy estimates for ‖q − Φ1(p)‖ and for
the total accuracy estimate of the standard postprocessing algorithm. In particular,
using Theorem 4.1 to bound the ‖p(t) − uN (t)‖ term, the bounds for ‖dq/dt‖ and
‖Aq‖ dominate the error in estimate (4.4). The accuracy estimate for the high mode
approximation using the standard postprocessing method is given below.

Corollary 4.3. Let f(t) ∈ L∞((0,∞);H), u0 ∈ D(A), and T > 0. Then for
any solution u(t) = p(t) + q(t) of (1.2), and uN (t) the solution of (2.18) and (2.20)
such that the estimates (3.1) and (4.1) hold, we have

‖q(t) − Φ1(uN (t))‖ = O(ε2)(4.6)

for t ≥ 0.
Note that, without a better estimate for the ‖dq/dt‖ term, we could easily have

obtained the same estimate for ‖q − Φ1(p)‖ by first applying the triangle inequality
to get

‖q − Φ1(p)‖ ≤ ‖q‖ + ‖Φ1(p)‖.
Then, under the assumptions of Theorem 4.2, one can show that ‖Φ1(p)‖ = O(λ−1

N+1) =
O(ε2). Since ‖q‖ = O(ε2) as well, we obtain ‖q−Φ1(p)‖ = O(ε2). Hence, Corollary 4.3
only indicates that q and Φ1(p) are of the same order.

With additional assumptions on f(t), the above estimate for ‖q−Φ1(p)‖ may be
improved. In particular, in [15] the authors show that ‖q − Φ1(p)‖ = O(ε1+2θ) for f
Hölder continuous in time (with exponent θ), with values in H for N large enough.
For convenience we restate the theorem.

Theorem 4.4. Let f(t) be Hölder continuous (i.e., ‖f(t1) − f(t2)‖ ≤ L1|t1 −
t2|θ) and satisfy supt≥0 |f(t)| ≤ f∞ < ∞. Furthermore, impose sufficient conditions
on f(t) so that ‖Au‖ is uniformly bounded and, hence, the solution p(t) of (1.3) is
uniformly Lipschitz in time, (i.e., ‖p(t1) − p(t2)‖ ≤ L2|t2 − t1|, where L2 depends on

ν, f∞, and λ1). Let ‖q(0) − Φ1(p(0))‖ = O(λ
(1/2+θ)
N+1 ). Then, for N sufficiently large

and t ≥ 0, any solution u(t) = p(t) + q(t) of (1.2) satisfies

‖q(t) − Φ1(p(t))‖ ≤ 4α5

λ
1/2+θ
N+1

,
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where α5 = α4(1 + (1 +e)−1), α4 = λ
−1/2
N+1 2ν−1(α3L2λ

1/2
N +L1) +α2L2 +ν−1L1λ

−1/2
N+1 ,

L1 is the Hölder constant for f , and L2 is the Lipschitz constant for p.
Proof. We refer the reader to [15, Theorem 5.11] for specific conditions on N ,

definitions of α2, α3, α4, and the proof of the above theorem.
If θ > 1/2, then Theorem 4.4 represents an improvement from the previous O(ε2)

estimate for ‖q−Φ1(p)‖, where f was only assumed to be bounded. Using the Lipschitz
continuity of Φ1 and Theorem 4.1, we have an improved estimate for ‖q − Φ1(uN )‖
in the case in which f is Hölder continuous.

Corollary 4.5. Let f(t) satisfy the conditions of Theorem 4.4, u0 ∈ D(A),
T > 0, and N sufficiently large. Then for any solution u(t) = p(t) + q(t) of (1.2),
and uN (t) the solution of (2.18) and (2.20) such that estimates (3.1) and (4.1) hold,
we have

‖q(t) − Φ1(uN (t))‖ ≤ L‖p(t) − uN (t)‖ +
4α5

λ
1/2+θ
N+1

= O(ε2+2(θ−1/2))(4.7)

for t ∈ [0, T ]. Here L = o(1) is the Lipschitz constant for Φ1.
We now examine the dynamic postprocessing method, system (3.16)–(3.19), and

obtain an estimate for ‖q(t) − φ̃1(t;uN (t))‖.
Theorem 4.6. Let f(t) ∈ L∞((0,∞);H), u0 ∈ D(A), and T > 0. Let u(t) =

p(t) + q(t) be a solution of (1.2), and uN (t) and φ̃1(t;uN (t)) be a solution of system
(3.16)–(3.19) such that estimates (3.1) and (4.1) hold. Then, for t ∈ [0, T ], we have

‖q(t)−φ̃1(t;uN (t))‖ ≤ C

νλ
1/2
N+1

(
max

s∈[0,T ]
‖p(s) − uN (s)‖ + λ−1

N+1 max
s∈[0,T ]

‖Aq(s)‖
)
,

(4.8)
where C = C(ρ2, ρ

∗
2); ρ2 and ρ∗2 are defined in (2.1) and (4.1), respectively.

Proof. We subtract (3.17) from (1.4). Letting ∆(t) = q(t)− φ̃1(t;uN (t)), we have

d∆

dt
+ νA∆ = QN [B(p + q, q) + B(q, p) + B(p, p− uN ) + B(p− uN , uN )] .

Taking the inner product of ∆ and the above equation, we obtain

1

2

d

dt
‖∆‖2 + ν‖A1/2∆‖2 ≤ |(B(p + q, q),∆)| + |(B(q, p),∆)|

+ |(B(p, p− uN ),∆)| + |(B(p− uN , uN ),∆)|.

We apply the Cauchy–Schwarz inequality and Young’s inequality to get a factor of
ν‖A1/2∆‖ from each term on the right-hand side. Combining all ‖A1/2∆‖ terms with

the left-hand side of the inequality and using the fact that λ
1/2
N+1‖∆‖ ≤ ‖A1/2∆‖, we

have

d

dt
‖∆‖2 + νλN+1‖∆‖2 ≤ 5

νλN+1

(‖B(p, q)‖2 + ‖B(q, p)‖2 + ‖B(q, q)‖2

+ ‖B(p, p− uN )‖2 + ‖B(p− uN , uN )‖2
)
.

Estimating the nonlinear terms using estimates (2.7)–(2.10) as before,
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d

dt
‖∆‖2 + νλN+1‖∆‖2 ≤ 5

νλN+1

(
c22‖p‖‖Ap‖‖A1/2q‖2

+ c24(1 + log(λN/λ1))‖Ap‖2‖q‖2 + c22‖q‖‖A1/2q‖2‖Aq‖
+ c22‖p‖‖Ap‖‖A1/2(p− uN )‖2 + c24(1 + log(λN/λ1))‖AuN‖2‖p− uN‖2

)
≤ 5

νλN+1

(
c22‖Ap‖2

λN+1
‖Aq‖2 +

c24Lε‖Ap‖2

λ2
N+1

‖Aq‖2 +
c22‖Aq‖2

λ2
N+1

‖Aq‖2

+λNc
2
2‖p‖‖Ap‖‖p− uN‖2 + c24Lε‖AuN‖2‖p− uN‖2

)

≤ C

ν

(‖p− uN‖2 + λ−2
N+1‖Aq‖2

)
,

where C = C(c2, c3, c4, ρ2, ρ
∗
2). We then apply Gronwall’s inequality to obtain

‖∆(t)‖2 ≤ ‖∆(0)‖2e−νλN+1t +
C

ν2λN+1

(
max
[0,T ]

‖p− uN‖2 + λ−2
N+1 max

[0,T ]
‖Aq‖2

)

for t ∈ [0, T ]. Finally, by initializing φ̃1(0;uN ) = QNu0 = q(0), we have estimate
(4.8).

Corollary 4.7. Let f(t) ∈ L∞((0,∞);H), u0 ∈ D(A), and T > 0. Let u(t) =
p(t) + q(t) be a solution of (1.2), and uN (t) and φ̃1(t;uN (t)) be a solution of system
(3.16)–(3.19) such that estimates (3.1) and (4.1) hold. Then, for t ∈ [0, T ], we have

‖q(t) − φ̃1(t;uN (t))‖ = O(ε3).(4.9)

Proof. Since ‖Aq‖ = O(1) and ‖p(t) − uN (t)‖ = O(ε3) from Theorem 4.1, the
‖Aq‖ term dominates the right-hand side of (4.8). Thus ‖q − φ̃1(t;uN (t))‖ = O(ε3)
as ε → 0.

In this case, the dynamic postprocessing method produces a more accurate high
mode approximation. In particular, the dynamic postprocessing method produces a
high mode approximation of the same order as the low mode approximation.

5. Numerical experiments. In this section we present some numerical exper-
iments to support the above accuracy analysis and compare the efficiency of the two
leading order methods. Opting for a one-dimensional calculation, we integrated Burg-
ers equation with homogeneous Dirichlet boundary conditions on the interval [0, π].
That is, we used the equation

∂u

∂t
− ν

∂2u

∂x2
+ u

∂u

∂x
= f(x, t),

u(0, t) = u(π, t) = 0,

u(x, 0) = u0(x).

Using notation similar to the NSE, the above equation is equivalent to the functional
differential equation

du

dt
+ νAu + B(u, u) = f,

where, in this case, A = − ∂2

∂x2 with domain D(A) = H2(0, π) ∩H1
0 (0, π). The eigen-

functions of A are ωk =
√

2/π sin(kx), with corresponding eigenvalues λk = k2, for
k = 1, 2, . . . . The bilinear term B(u, u) is defined by B(u, v) = 2

3uvx + 1
3uxv for every

u, v ∈ H1
0 (0, π). In particular, we have B(u, u) = uux for every u ∈ H1

0 (0, π).
We chose an exact solution ue(x, t) and then computed the “highly oscillatory”

time-dependent forcing term from the exact solution. In this way we checked errors
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without computing a large Galerkin approximation as an “exact” solution. We chose
ue(x, t) as follows,

ue(x, t) =

∞∑
k=1

ak(t)

k3
sin kx, ak(t) =

{
1 + γ sin k2t, 1 ≥ k ≥ 100,

1, k > 100,
(5.1)

and then calculated the forcing function as f(x, t) := due/dt+νAue +B(ue, ue). The
exact solution ue is in D(A) for t ≥ 0 as assumed above in section 3. Actually, we
can compute sharper estimates for ‖Aq‖ and ‖dq/dt‖ using expression (5.1) to obtain

‖Aq‖ ≤ √
2/λ

1/4
N = O(ε1/2), and similarly ‖dq/dt‖ ≤ √

γ/λ
1/4
N = γO(ε1/2). Note that

the ‖Aq‖ and ‖dq/dt‖ terms are of the same order, depending on the magnitude of γ.
We then obtain ‖q‖ = O(ε5/2) and ‖A1/2q‖ = O(ε3/2). These estimates are of slightly
higher order in ε than those assumed in the theoretical section. However, using these
estimates for the truncation analysis and keeping terms up to order ε, we obtain the
same leading order approximate system as in system (3.2)–(3.3).

The experiments in this section were run on a Sun Ultra 5. The time integra-
tor used was the VODE code [1] with computed diagonal Jacobians (VODE option
MF=23). This code is a reliable and efficient tool for the time integration of systems
of ODEs, especially for stiff problems like those arising from the spatial discretizations
of dissipative PDEs. VODE consists of a backward differentiation formula (BDF) im-
plemented with variable time step and variable order. Specifically, in the algorithm
the time levels are unevenly spaced and the step sizes are produced by the code as
the integration proceeds. Also, formulas of different orders (up to order six) are used,
the order of the formula being selected by the code at every time step. For problems
similar to those in this section, the superior efficiency of codes like VODE with respect
to other frequently used time integrators was experimentally checked in [9].

For each value of N we sought the Galerkin approximation, the standard post-
processed Galerkin approximation (standard PP) from system (2.18)–(2.20), and the
dynamic postprocessed Galerkin approximation (dynamic PP) from system (3.16)–
(3.19). Each experiment was carried out with decreasing values of the time-integration
tolerance (an input parameter to VODE) until additional reduction did not improve
the accuracy of the solution any further. This means that the time discretization error
is negligible in comparison with the spatial error that we are interested in examining.

Figure 5.1 shows the total errors for each of the approximations at time t = 2.0
units, with γ = 0.1 and ν = 1. The initial condition was the projection of ue(x, 0).
The solid line represents errors from the Galerkin method, (2.18) and (2.20); dashed
lines represent errors from the standard postprocessing method, system (2.18)–(2.20);
and dotted lines represent errors from the dynamic postprocessing method, system
(3.16)–(3.19). It is clear from Figure 5.1 that the dynamic postprocessing method
achieves the best rate of convergence as indicated by the most negative slope. The
improvement of the standard postprocessing method over the Galerkin method is only
algebraic, and not a significant improvement in the rate of convergence. Thus, the
addition of the dq1/dt term in the high mode equation is beneficial in this case, at
least in terms of accuracy. The low mode errors for each of the three methods are
essentially the same. The high mode errors are very similar to the total errors shown
in Figure 5.1, since the high mode error dominates the total Galerkin and standard
postprocessing error. Only the dynamic postprocessing method produces high mode
errors (and rate of convergence) that are approximately of the same order as those
for the low mode errors. In the case being studied, i.e., highly oscillatory solutions,
the dynamic postprocessing method is the most accurate.
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Fig. 5.1. Total errors ‖uapprox − ue‖.

The dynamic postprocessing method requires a numerical integration to obtain
the high modes, rather than evaluating the high modes once at some final time, as
with the standard postprocessing method [8], [10], [11], [17]. We next looked at the
efficiency of the dynamic postprocessing method in the case of highly time-oscillatory
solutions to determine whether the error improvement justifies any additional com-
putational cost (CPU).

We again integrated Burgers equation with homogeneous Dirichlet boundary con-
ditions on the interval [0, π] as in section 5. However, this time we provided the forcing
function defined by

f(x, t) =
∞∑
k=1

(
ȧk(t)

k3
+
ak(t)

k

)
sin kx, ak(t) =

{
1 + γ sin k2t, 1 ≥ k ≥ 100,

1, k > 100,

(5.2)
and used a large Galerkin run as an “exact” solution for computing errors. This
way we did not accumulate the cost of computing the forcing function from an exact
solution at each time step. The experiments in this section were run on an SGI Origin
2000 with γ = 0.1, ν = 1, and initial condition u0(x) =

∑
k−3 sin kx.

We first verified that we obtain accuracy results with this forcing function similar
to those in the previous numerical experiment. Figure 5.2 shows the total error
estimates at t = 2.0 units using the VODE time integrator. The rates of convergence
are similar to those in Figure 5.1; the dynamic postprocessing method is again the
most accurate method. In Figure 5.3 we plot the total errors ‖uapprox − ue‖ from
Figure 5.2 versus the amount of computing time (in seconds) needed by each method
to achieve those errors. We added results from larger mode standard postprocessing
runs to better indicate any overlap. A horizontal line across the plot indicates, for
a particular error, the CPU time needed by each method. Again, the solid line
represents errors from the Galerkin method, dashed lines represent errors from the
standard postprocessing method, and dotted lines represent errors from the dynamic
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Fig. 5.3. Error vs. CPU: VODE.

postprocessing method. For the larger mode runs, the dynamic postprocessing method
is slightly more efficient than the standard postprocessing method.

We also sought to take advantage of using a larger time step to integrate the high
modes, subcycling the low mode integration within the high mode integration. For
this experiment we used a semi-implicit backward Euler scheme. The low modes were
integrated using the scheme

pn+1 − pn + ∆t
(
Apn+1 + PNB(pn, pn)

)
= ∆tPNf

n,
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Fig. 5.4. Error vs. CPU: backward Euler.

and the high modes were integrated, in the dynamic postprocessing method, using

qn+1 − qn + ∆t
(
Aqn+1 + QNB(pn, pn)

)
= ∆tQNf

n.

Otherwise, the experimental setup was the same as with the VODE time integrator,
i.e., we computed the errors at time t = 2 units with ν = 1, γ = 0.1, and initial
condition u0(x) =

∑
k−3 sin kx. In each experiment we set ∆t small enough so that

the low mode error (‖p−uN‖) was equivalent to the low mode errors from the VODE
experiments. The effect of subcycling was to slightly increase the error with little
improvement in CPU time. This is because the cost of evaluating the high modes at
each time step is minimal compared to the cost of evaluating the nonlinear term within
each subcycle in order to integrate the low modes. The CPU comparison for the semi-
implicit backward Euler experiments without subcycling is given in Figure 5.4. We
plot error versus CPU time for the standard and dynamic postprocessing methods.
Again the dynamic postprocessing method is the more efficient method for the case
of a highly oscillatory (in time) solution due to a highly oscillatory (in time) forcing
function.

Performing the same experiments with a less time-oscillatory forcing function, we
obtained different accuracy and CPU comparisons. In this final set of experiments,
we used the forcing function

f(x, t) =
∞∑
k=1

(
ȧk(t)

k3
+
ak(t)

k

)
sin kx, ak(t) =

{
1 + γ sin t, 1 ≥ k ≥ 100,

1, k > 100.

(5.3)
In this case we expect the solution to be less oscillatory, and hence the ‖dq/dt‖ term

should be of a smaller order, and the standard postprocessing method should be as
accurate as the dynamic postprocessing method. Figure 5.5 shows the total errors for
the Galerkin, standard postprocessing, and dynamic postprocessing approximations
using the VODE time integrator at time t = 3.0 units, again with γ = 0.1, ν = 1.0, and
u0(x) =

∑
k−3 sin kx. Note that the standard and dynamic postprocessing methods
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Fig. 5.6. Error vs. CPU: VODE and f slowly oscillating in time.

have the same rate of convergence, and there is no improvement with the dynamic
postprocessing method.

In Figure 5.6 we plot the total error versus CPU time for the case of the slowly
oscillating (in time) forcing function when using the VODE time integrator; the stan-
dard postprocessing method proves to be more efficient. Results using the backward
Euler scheme are similar, though the differences are less pronounced.

6. Concluding remarks. Through a classical truncation analysis we have shown
that postprocessing appears as a natural part of approximate systems and correspond-
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ing schemes for numerically integrating the two-dimensional NSE. For autonomous
systems, we generated a family of approximate systems (and schemes) of increasing
orders of approximation using the asymptotic (in time) estimates from [5] for ‖Aq‖
and ‖dq/dt‖. Each system included a postprocessing step that resulted in a high
mode approximation of the same order as the low mode approximation. We found
that the leading order system is the standard Galerkin method with postprocessing
as introduced in [11]. The standard Galerkin method alone uses a less accurate ap-
proximation for the high modes than for the low modes. Hence, the accuracy of the
high mode approximation, or lack thereof, dominates the error.

By assuming different asymptotic (in time) estimates for ‖Aq‖ and ‖dq/dt‖, we
obtained the dynamic postprocessing method as the leading order method. This was
done for the case of a highly oscillatory (in time) solution; the algorithm applies
to the case of nonsmooth initial data as well [24]. In the case of a highly oscillatory
solution, the dynamic postprocessing method was more accurate and efficient than the
standard postprocessing method. For nonautonomous systems with solutions that are
not so oscillatory, both methods obtained the same accuracy; however, the standard
postprocessing method was more efficient in this case.

The method of using truncation analysis with asymptotic estimates for the low
and high modes may easily be extended to general nonlinear parabolic evolution or
elliptic equations to obtain postprocessing systems and schemes which approximate
the low and high modes to the same order of accuracy.
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