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ABSTRACT. This chapter focuses on the geometric decomposition of the Cm-conforming
finite elements on simplexes in arbitrary dimension constructed by Hu, Lin and Wu. The
distance structure is introduced for the simplicial lattice to present a key non-overlapping
decomposition of the simplicial lattice, in which each component will be used to determine
the normal derivatives at each lower dimensional sub-simplex.
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In a recent work [6], Hu, Lin and Wu have constructed aCm-conforming finite elements
on simplexes in arbitrary dimension for any positive integer m. It unifies the scattered re-
sults [3, 10, 1] in two dimensions, [11, 12, 8] in three dimensions, and [13] in four dimen-
sions. In this chapter, we use the simplicial lattice to give a geometric decomposition of
the finite element spaces constructed in [6] and consequently give a different construction
of HLW element.

Our approach is closely related to the multivariate splines on triangulations [5, 7]. For
example, construction ofCm element in d = 2, 3, but not arbitrary d ≥ 2, can be also found
in the book [7, Section 8.1 for 2D and Section 18.11 for 3D]. A key distinction between the
HLW element and multivariate splines lies in the choice of Degrees of Freedom (DoFs).
In multivariate splines, DoFs are typically selected as the function and its derivative values
at specific points, aligning with their primary focus on data interpolation. In contrast,
HLW element [6] establishes DoFs through integral forms on sub-simplexes. This choice
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not only facilitates straightforward proof of unisolvence but also proves advantageous in
constructing finite element de Rham complexes, as demonstrated in our recent work [4].

1. DISTANCE AND DERIVATIVE IN SIMPLICIAL LATTICE

In this section we introduce distance structure to the simplicial lattice and use it to study
the vanishing order of derivatives.

1.1. Simplicial lattices. Recall that a simplicial lattice, also known as the principal lat-
tice [9], of degree k and dimension d is a multi-index set of d + 1 components and with
fixed sum k, i.e.,

Tdk =
{
α = (α0, α1, . . . , αd) ∈ N0:d : |α| = α0 + α1 + . . .+ αd = k

}
.

Let a d-simplex T be generated by vertices v0,v1, . . . ,vd. We let ∆(T ) denote all
the subsimplices of T , while ∆`(T ) denotes the set of subsimplices of dimension `, for
0 ≤ ` ≤ d. For a sub-simplex f ∈ ∆`(T ) with ` = 0, . . . , d − 1, we will overload
the notation f for both the geometric simplex and the algebraic set of indices. Namely
f = {f(0), . . . , f(`)} ⊆ {0, 1, . . . , d} and

f = Convex(vf(0), . . . ,vf(`)) ∈ ∆`(T )

is the `-dimensional simplex with vertices vf(0), . . . ,vf(`).
If f ∈ ∆`(T ) with ` = 0, . . . , d− 1, then f∗ ∈ ∆d−`−1(T ) denotes the sub-simplex of

T opposite to f . When treating f as a subset of {0, 1, . . . , d}, f∗ ⊆ {0, 1, . . . , d} so that
f ∪ f∗ = {0, 1, . . . , d}, i.e., f∗ is the complement of set f . Geometrically,

f∗ = Convex(vf∗(1), . . . ,vf∗(d−`)) ∈ ∆d−`−1(T )

is the (d− `− 1)-dimensional simplex spanned by vertices not contained in f . See Fig. 1
for examples of f and f∗.

For α ∈ Tdk(T ) and f ∈ ∆`(T ) with ` = 0, . . . , d − 1, we have the following direct
decomposition

α = αf + αf∗ , and |α| = |αf |+ |αf∗ |,
where αf only keeps the component in f and set others zero. For example, when α =
(α0, α1, . . . , α4) and f = {1, 3}, thenαf = (0, α1, 0, α3, 0, 0) andαf∗ = (α0, 0, α2, 0, α4).

In summary, by treating f as a set of indices, we can apply the operators ∪,∩, ∗, \
on sets. While treating f as a geometric simplex, ∂f,

◦
f etc. can be applied. For example,

T`k(
◦
f) is the sub-set of lattice nodes of Tdk(T ) whose geometric coordinate is in the interior

of an `-dimensional f ∈ ∆`(T ).

1.2. Distance. Given f ∈ ∆`(T ), ` = 0, 1, . . . , d − 1, we define the distance of a node
α ∈ Tdk to f as

(1) dist(α, f) := |αf∗ | =
∑
i∈f∗

αi.

We present a geometric interpretation of dist(α, f). Set the vertex vf(0) as the origin
and embed the lattice to the scaled reference simplex kT̂ = Convex{0, ke1, . . . , ked},
where {ei, i = 1, . . . , d} is the canonical basis of Rd. Then |αf∗ | = s becomes the linear
equation

xf∗(1) + xf∗(2) + . . .+ xf∗(d−`) = s,



GEOMETRIC DECOMPOSITION OF SMOOTH FINITE ELEMENTS 3

which defines a hyper-plane in Rd, denoted by L(f, s), with a normal vector 1f∗ . The
simplex f can be thought of as the convex combination of vectors {ef(0)f(i)}`i=1. Ob-
viously 1f∗ · ef(0)f(i) = 0 as the zero pattern is complementary to each other. So f is
parallel to the hyper-plane L(f, s). The distance dist(α, f) for α ∈ L(f, s) is the intercept
of the hyper-plane L(f, s) and the basis vector ef(0)f(i); see Fig. 1 for an illustration. In
particular f ∈ L(f, 0) and

λi |f= 0 if i 6∈ f, i.e. i ∈ f∗.

Indeed f = {x ∈ T : λi(x) = 0, i ∈ f∗}. See Chapter 2 (Lemma 2.3) for a proof.
We can extend the definition of distance to two sub-simplexes. For e ∈ ∆`(T ), f ∈

∆(T ), define
dist(e, f) := min

α∈T`k(e)
dist(α, f).

It is easy to verify that: for e ∈ ∆(f∗), dist(e, f) = k and for e ∈ ∆(f), dist(e, f) = 0.
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f ∗

dist(α, f)

(a) Distance to an edge.
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f

f ∗

dist(α, f)

(b) Distance to a face.

FIGURE 1. Distance to a sub-simplex.

We define the lattice tube of f with distance r as

D(f, r) = {α ∈ Tdk,dist(α, f) ≤ r},

which contains lattice nodes at most r distance away from f . We overload the notation

L(f, s) = {α ∈ Tdk,dist(α, f) = s},

which is defined as a plane early but here is a subset of lattice nodes on this plane. Then

D(f, r) = ∪rs=0L(f, s), L(f, s) = L(f∗, k − s).

By definition D(f,−1) = ∅, D(f, 0) = L(f, 0) = f , and L(f, k) = f∗. See Fig. 1 for
an illustration.

We have the following characterization of lattice nodes in D(f, r).

Lemma 1.1. For lattice node α ∈ Tdk, and f ∈ ∆`(T ), ` = 0, 1, . . . , d− 1,

α ∈ D(f, r) ⇐⇒ |αf∗ | ≤ r ⇐⇒ |αf | ≥ k − r,
α /∈ D(f, r) ⇐⇒ |αf∗ | > r ⇐⇒ |αf | ≤ k − r − 1.

Proof. Use the definition of dist(α, f) and the fact |αf |+ |αf∗ | = k. �

https://www.math.uci.edu/~chenlong/femcomplex/Ch2_LagrangeElement.pdf
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For each vertex vi ∈ ∆0(T ),

D(vi, r) = {α ∈ Tdk, |αi∗ | ≤ r},

which is isomorphic to a simplicial lattice Tdr of degree r; see the green triangle in Fig. 2
for d = 2, k = 8 and r = 3. For a (d − 1)-face f ∈ ∆d−1(T ), D(f, r) is a trapezoid
of height r with base f . In general for f ∈ ∆`(T ), the hyper plane L(f, r) will cut the
simplex T into two parts, and D(f, r) is the part containing f . See Fig. 1 for illustration.

0 1

2

FIGURE 2. A simplicial lattice T2
8(T ) in two dimensions. The green

triangle contains D(v0, 3). The purple trapezoid is D(f̊ , 0). The red
triangle is T2

5(T̊ ).

For two nodes α, β ∈ Tdk, define the distance

(2) dist(α, β) =
1

2
‖α− β‖`1 .

Two nodes α, β ∈ Tdk are adjacent if dist(α, β) = 1.
By assigning edges to all adjacent nodes, the simplicial lattice Tdk becomes an undi-

rected graph and denoted by G(Tdk). Obviously the graph G(Tdk) is connected. The dis-
tance of two nodes in the graph is the length of a minimal path connecting them, where the
length of a path is defined as the number of edges in the path. Graph theory can be further
applied for the study of the lattice Tdk and in turn the polynomial space.

Define εi ∈ N0:d as εi = (0, . . . , 1, . . . , 0) and εij = εi−εj = (0, . . . , 1, . . . ,−1, . . . , 0).

Lemma 1.2. For α, β ∈ Tdk, it holds

dist(α, β) = 1 ⇐⇒ β = α+ εij , for some i, j ∈ [0, d], i 6= j.

Proof. Notice for two non-negative integers, if αi 6= βi, then |αi−βi| ≥ 1. As α, β ∈ Tdk,
we have

∑d
i=0(αi − βi) = 0. The condition dist(α, β) = 1 means

∑d
i=0 |αi − βi| = 2.

So the only possibility is: αi − βi = −1 and αj − βj = 1 for some 0 ≤ i, j ≤ d and
i 6= j. �

Note that dist(α, β) in (2) is defined for two nodes while dist(α, f) in (1) is between a
node and a sub-simplex. We show the two distance definitions are consistent.

Lemma 1.3. For α ∈ Tdk and f ∈ ∆`(T ), for ` = 0, 1, . . . , d− 1, it holds

dist(α, f) = min
βf∈Tdk(f)

dist(α, βf ).
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Proof. For βf ∈ Tdk(f), since |βf | = k = |αf |+ |αf∗ |, we have

dist(α, βf ) =
1

2
(‖αf − βf‖`1 + |αf∗ |) ≥

1

2
(|βf | − |αf |+ |αf∗ |) = |αf∗ |.

Hence
dist(α, f) ≤ min

βf∈Tdk(f)
dist(α, βf ).

Then the equality holds by choosing βf = αf + |αf∗ |εf(0) ∈ Tdk(f). �

1.3. Derivative and distance. Recall that in [2] a smooth function u is said to vanish to
order r on f if Dβu|f = 0 for all β ∈ N1:d, |β| < r. The following result shows that the
vanishing order r of a Bernstein polynomial λα on f is exactly the distance dist(α, f).

Lemma 1.4. Let f ∈ ∆`(T ) be a sub-simplex of T . For α ∈ Tdk, β ∈ N1:d, then

Dβλα|f = 0, if dist(α, f) > |β|,

Proof. For α ∈ Tdk, we write λα = λ
αf
f λ

αf∗

f∗ . When |αf∗ | > |β|, the derivativeDβλα will
contain a factor λγf∗ with γ ∈ N1:d−`, and |γ| = |αf∗ | − |β| > 0. Therefore Dβλα|f = 0

as λi|f = 0 for i ∈ f∗. �

Consider the 1-D reference simplex T = [0, 1] and f = {0} the left vertex. Then
λ0 = 1− x and λ1 = x. The result becomes Dβ((1− x)αfxαf∗ ) |x=0= 0 if |αf∗ | > |β|.

2. SMOOTH FINITE ELEMENTS IN TWO DIMENSIONS

We use two-dimensional case to explain the main idea of using the lattice decomposition
to determine the derivative at sub-simplexes. Denote the smoothness vector r = (r0, r1)
as the smoothness at edge r1 and vertex r0.

2.1. Examples in two dimensions. We present several decompositions of T2
8 for P8 in

two dimensions. Fig. 3 (a) is the decomposition of the Lagrange element. In particular, at
each vertex, function value is used as DoFs; see Chapter 2 for more details. In (b), the green
triangle of vertex v is expanded so that the Dαu(v) can be determined for |α| ≤ 2. The
vertex is for the function value. The 2 nodes in the second row are for 2 first derivatives,
and the 3 nodes below are for 3 second derivatives. In general Dαu(v) can be identified
with a lattice; see Lemma 2.1. In (c), the blue part is further expanded to include the
normal derivative; see Lemma 2.4. The requirement r0 ≥ 2r1 ensures the blue parts are
non-overlapping; see Lemma 3.1.

2.2. Derivatives at vertices. Consider a function u ∈ Cm(Ω). The set of derivatives of
order up to m can be written as

{Dβu, β ∈ N1:2, |β| ≤ m}.
Notice that the multi-index β ∈ N1:2 not in N0:2. We can add a component with value
m − |β| to form a simplicial lattice T2

m of degree m, which can be used to determine the
derivatives at that vertex. See the green triangles in Fig. 3 (b) (c).

Lemma 2.1. Let i ∈ {0, 1, 2}. The polynomial space

Pk(D(vi,m)) := span
{
λα, α ∈ T2

k,dist(α,vi) = |αi∗ | ≤ m
}
,

is uniquely determined by the DoFs

(3) {Dβu(vi), β ∈ N1:2, |β| ≤ m}.

https://www.math.uci.edu/~chenlong/femcomplex/Ch2_LagrangeElement.pdf
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0 1

2

(a) Lagrange element: k = 8,
m = 0, r = (0, 0).

0 1

2

(b) Hermite-type element: k = 8,

m = 0, r = (2, 0).

0 1

2

(c) C1 element: k = 8, m =

1, r = (2, 1).

FIGURE 3. Geometric decompositions of Lagrange element, Hermite-
type element, and a C1 element.

Proof. Without loss of generality, consider v0. Define map

α = (α0, α1, α2)→ β = (α1, α2)

which induces a one-to-one map from D(v0,m) =
{
α ∈ T2

k, α1 + α2 ≤ m
}

to {β ∈
N1:2, |β| ≤ m}. So the dimension of Pk(D(vi,m)) matches the number of DoFs (3). It
suffices to show that for u ∈ Pk(D(v0,m)) if DoFs (3) vanish, then u = 0.

When the triangle T is the reference triangle, v0 is the origin and λ1 = x1, λ2 = x2.
Recall the multivariate calculus result

(4) Dβ(xα1
1 xα2

2 ) = β!δ(α, β) for α, β ∈ N1:2, |α| = |β| = r ≥ 0,

where δ(α, β) is the Kronecker delta function. So we conclude that the homogenous poly-
nomial space span

{
xα1

1 xα2
2 , α ∈ N1:2, |α| = r

}
is determined by DoFs {Dβu(v0), β ∈

N1:2, |β| = r}. Running r = 0, 1, . . . ,m, we finish the proof when the triangle is the
reference triangle.

For a general triangle, instead of changing to the reference triangle, we shall use the
barycentric coordinate. Clearly {∇λ1,∇λ2} forms a basis of R2. Choose another basis
{t1, t2} of R2, being dual to {∇λ1,∇λ2}, i.e., ∇λi · tj = δi,j for i, j = 1, 2. Indeed ti is
the edge vector e0i as∇λi is orthogonal to e0i for i = 1, 2. We can express the derivatives
in this non-orthogonal basis and denote by Dβ

nu := ∂|β|u
∂(t1)β1∂(t2)β2

with ∂
∂ti = ti · ∇. By

the duality ∇λi · tj = δi,j , i, j = 1, 2, we have the generalization of (4)

(5) Dβ
n(λα1

1 λα2
2 ) = β!δ(α, β) for α, β ∈ N1:2, |α| = |β| = r.

By the chain rule, it is easy to show that vanishing DoFs {Dβ
nu(v0), β ∈ N1:2, |β| ≤ m}

is equivalent to vanishing DoFs {Dβu(v0), β ∈ N1:2, |β| ≤ m}.
A Bernstein basis of Pk(D(v0,m)) is given by {λk−|α|0 λα1

1 λα2
2 , α ∈ N1:2, |α| ≤ m}.

Assume u =
∑

α∈N1:2
|α|≤m

cαλ
k−|α|
0 λα1

1 λα2
2 with cα ∈ R and Dβu(v0) = 0 for all β ∈ N1:2

satisfying |β| ≤ m. We shall prove cα = 0 by induction.
For |α| = 0, as c(0,0) = u(v0) = 0, we conclude c(0,0) = 0. Assume cα = 0 for all

α ∈ N1:2 satisfying |α| ≤ r−1, i.e., u =
∑

α∈N1:2
r≤|α|≤m

cαλ
k−|α|
0 λα1

1 λα2
2 . By Lemma 1.4, the

derivative Dβ(λ
k−|α|
0 λα1

1 λα2
2 ) vanishes at v0 for all β ∈ N1:2 satisfying |β| < |α|. Hence,
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for |β| = r, using (5),

Dβ
nu(v0) = Dβ

n

( ∑
α∈N1:2,|α|=r

cαλ
k−r
0 λα1

1 λα2
2

)
(v0) = β!cβ = 0,

which implies cβ = 0 for all β ∈ N1:2, |β| = r. Running r = 1, 2, . . . ,m, we conclude
u = 0. �

Such result can be generalized in the straight-forward way to arbitrary dimension d ≥ 1.
The set of derivatives of order up to m can be written as

{Dαu, α ∈ N1:d, |α| ≤ m}.

We add the component α0 = m − |α|. Then the index set forms a simplicial lattice Tdm
of degree m. For each vertex, we can use the small simplicial lattice Tdm ∼= D(vi,m) to
determine the derivatives at that vertex.

0 1

2

(a) r = (1, 0), k = 3.

0 1

2

(b) r = (1, 0), k = 8.

0 1

2

(c) r = (2, 0), k = 8.

FIGURE 4. Lattice decompositions for the Hermite-type finite elements.

2.3. Hermite-type finite elements. Given an integer m ≥ 1 and degree k ≥ 2m+ 1, the
Hermite-type finite elements are constructed based on the lattice decomposition

Tdk(T ) = D(∆0(T ),m)⊕d
`=1⊕f∈∆`(T )

[
T`k(f̊)\D(∆0(f),m)

]
.

Consequently

Pk(T ) =Pk(D(∆0(T ),m))⊕d
`=1⊕f∈∆`(T )Pk(T`k(f̊)\D(∆0(f),m)).(6)

Classical Hermite element is m = 1, k = 3 and the general case will be called Hermite-
type elements. Notice that when d > 1, the Hermite finite element space is C0-conforming
only but Cm continuous at vertices.

Lemma 2.2 (Hermite-type element in Rd). Let k ≥ 2m + 1 and T be a d-dimensional
simplex. The shape function space Pk(T ) is determined by DoFs

Dαu(vi) α ∈ N1:d, |α| ≤ m,vi ∈ ∆0(T ), i = 0, 1, . . . , d,(7) ∫
f

uλ
αf
f ds αf ∈ T`k−(`+1), αf ≤ k −m− 2, f ∈ ∆`(T ), ` = 1, . . . , d.(8)
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(a) Hermite element in 2D (b) Hermite element in 3D

FIGURE 5. DoFs for the P3 Hermite element which is only C0-
conforming for dimension d ≥ 2. Black dot represents moment DoF
and the circle for the first derivative.

Proof. The proof is essentially the same as that for the Lagrange element (cf. See Chapter
2 (Theorem 3.2)) except using the decomposition (6) and Lemma 2.1 for lattice nodes
in D(∆0(T ),m). For a polynomial u ∈ Pk(T`k(f̊)\D(∆0(f),m)), as the distance of
corresponding lattice nodes to all vertices are greater than m, (7) vanishes which means
the DoF-Fun matrix is still block lower triangular.

The condition k ≥ 2m+1 is required so that the disks D(vi,m) are disjointed. The set

T`k(f̊)\D(∆0(T ),m) = {αf ∈ T`k(f), 1 ≤ αf ≤ k −m− 1},

which can be verified as follows: for any v ∈ ∆0(f), αv ≥ 1 as αf ∈ T`k(f̊). The
condition αf 6∈ D(∆0(f),m) is equivalent to dist(αf ,v) = |αv∗ | > m which implies the
upper bound αv ≤ k −m− 1.

Then we set α̃f = αf − 1 to get the lattice set in DoF (8). The degree of polynomial is
reduced from k to k − (`+ 1) as bf = λf ∈ P`+1(f) is always positive in f̊ . �

Exercise 2.3. Prove that

(9) T`k(f̊)\D(∆0(f),m) ∼= T`k−(`+1)(f)\D(∆0(f),m− `).

Geometrically we can consider the inner simplicial lattice and subtract vertex disks with a
smaller radius.

Given a mesh Th, the decomposition can be naturally extended to the whole mesh

V H(Th) =⊕v∈∆0(Th)Pk(D(v,m)) ⊕ ⊕d
`=1⊕f∈∆`(Th)Pk(T`k(f̊)\D(∆0(f),m)).

DoFs are single valued at each sub-simplex (symbolically change ∆`(T ) to ∆`(Th)). The
obtained space V H(Th) is C0-conforming only for d > 1 but Cm continuous at vertices.
The dimension of V H(Th) is

dimV H(Th) = |∆0(Th)|
(
d+m

m

)
+

d∑
`=1

|∆`(Th)|
[(
k − 1

`

)
− (`+ 1)

(
m

`

)]
.

When computing the dimension of Pk(T`k(f̊)\D(∆0(f),m)), it is easier to use the equiv-
alent index set in (9).

https://www.math.uci.edu/~chenlong/femcomplex/Ch2_LagrangeElement.pdf
https://www.math.uci.edu/~chenlong/femcomplex/Ch2_LagrangeElement.pdf
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Compared with the Lagrange elements, more DoFs are accumulated to vertices and thus
reduce the dimension of the global finite element space. For example, in two dimensions,
moving edge-wise and element-wise DoFs to vertices will reduce the dimension of the
finite element space around one half less, which is considered as an advantage of using
Hermite elements vs Lagrange elements.

2.4. Normal derivatives on edges. Given an edge e, we identify lattice nodes to deter-
mine the normal derivative up to order m{

∂βu

∂nβe
|e, 0 ≤ β ≤ m

}
.

By Lemma 1.4, if the lattice node is re + 1 away from the edge, then the corresponding
Bernstein polynomial will have vanishing normal derivatives up to order re.

We have used lattice nodesD(∆0(e), rv) := ∪v∈∆0(e)D(v, rv) to determine the deriva-
tives at vertices. We will useD(e, re)\D(∆0(e), rv) for the normal derivative. We refer to
Fig. 6 (a) (b) for an illustration of the lattice decomposition and DoFs for the C1 Argyris
element with k = 5 and generalization to k = 8 in (c).

0 1

2

(a) Lattice decomposition with
r = (2, 1) and k = 5.

(b) DoFs: circles represent
derivatives and arrows on the
edges represent the normal
derivative.

0 1

2

(c) Lattice decomposition with
r = (2, 1) and k = 8.

FIGURE 6. Lattice decompositions and DoFs for the C1 Argyris-type element.

Lemma 2.4. Let rv ≥ re ≥ 0 and k ≥ 2rv + 1. Let e ∈ ∆1(T ) be an edge of a triangle
T . The polynomial function space Pk(D(e, re)\D(∆0(e), rv)) is determined by DoFs∫

e

∂βu

∂nβe
λαe ds, α ∈ T1

k−2(rv+1)+β , β = 0, 1, . . . , re.

Proof. Without loss of generality, take e = e0,1. By definition D(e, re) = ∪rei=0L(e, i),
where recall that

L(e, i) = {α ∈ T2
k,dist(α, e) = i} = {α ∈ T2

k, α0 + α1 = k − i}

consists of lattice nodes parallel to e and with distance i. Define the map (α0, α1, α2) →
(α0, α1) which is one-to-one between L(e, i) and T1

k−i(e).
Now we use the requirement α /∈ D(∆0(e), rv) to figure out the bound of the compo-

nents. Using Lemma 1.1, we derive from dist(α,v0) > rv that α0 < k − rv. Together
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with α0 +α1 = k− i, we get the lower bound α1 ≥ rv− i+ 1. Similarly α0 ≥ rv− i+ 1.
Therefore

L(e, i)\D(∆0(e), rv) = {(α0, α1, i), α0 + α1 = k − i,min{α0, α1} ≥ rv − i+ 1}.

Define the one-to-one mapping

T1
k−2(rv+1)+i → L(e, i)\D(∆0(e), rv),

(α0, α1) 7→ (α0 + (rv − i+ 1), α1 + (rv − i+ 1), i).

With the help of this one-to-one mapping, we shall prove the polynomial function space
Pk(L(e, i)\D(∆0(e), rv)) is determined by DoFs

(10)
∫
e

∂iu

∂nie
λαe ds, α ∈ T1

k−2(rv+1)+i.

Take a u =
∑
α∈T1

k−2(rv+1)+i
cαλ

α+rv−i+1
e λi2 ∈ Pk(L(e, i)\D(∆0(e), rv)) with coeffi-

cients cα ∈ R. By the chain rule and the fact λ2|e = 0, in the non-zero terms of ∂iu
∂nie
|e,

the derivative in ∂iu
∂nie
|e will all apply to λi2, so

∂iu

∂nie
|e= i!(ne · ∇λ2)iλr

v−i+1
e

∑
α∈T1

k−2(rv+1)+i

cαλ
α
e |e.

Noting that ne ·∇λ2 is a constant and the bubble polynomial λr
v−i+1
e is always positive in

the interior of e, the vanishing DoF (10) means cα = 0 for all α ∈ T1
k−2(rv+1)+i.

It follows from Lemma 1.4 that ∂β

∂nβe
(λαe λ

i
2)|e = 0 for α ∈ T1

k−i(e) and 0 ≤ β < i ≤
re. That is the matrix(

∂β

∂nβe
(λαe λ

i
2)|e
)

0≤β≤re,0≤i≤re,α∈T1
k−2(rv+1)+i

(e)

is lower block triangular as follows.

β\ i
α

0 1 . . . re − 1 re

T1
k−2(rv+1) T1

k−2(rv+1)+1 · · · T1
k−2(rv+1)+re−1 T1

k−2(rv+1)+re

0

1
...

re − 1

re



� 0 · · · 0 0

� � · · · 0 0
...

...
. . .

...
...

� � · · · � 0

� � · · · � �


Since we have proved each block matrix is invertible, then the whole lower block trian-

gular matrix is invertible which is equivalent to the unisolvence. �

Geometrically we push all lattice nodes in D(e, re)\D(∆0(e), rv) to the edge to deter-
mine normal derivatives on e up to order re.
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3. SMOOTH FINITE ELEMENTS IN ARBITRARY DIMENSIONS

The smoothness at sub-simplexes is denoted by a vector r = (r0, . . . , rd−1) which is
exponentially increasing as the dimension decreases

rd−1 = m, r` ≥ 2r`+1 for ` = d− 2, . . . , 0.

The degree of polynomial k ≥ 2r0 + 1 ≥ 2dm + 1. The key of HLW element [6] is a
non-overlapping decomposition of the simplicial lattice in which each component will be
used to determine the normal derivatives on lower sub-simplexes. The distance introduced
in Section 3 for the simplicial lattice helps to simplify the construction.

3.1. Decompositions of the simplicial lattice. We explain the requirement r`−1 ≥ 2r`.
In Fig. 3, the blue part will be disjointed due to the requirement r0 ≥ 2r1.

Lemma 3.1. Let T be a d-dimensional simplex. For ` = 1, . . . , d − 1, if r`−1 ≥ 2r`, the
sub-sets {D(f, r`)\

[
∪e∈∆`−1(f)D(e, r`−1)

]
, f ∈ ∆`(T )} are disjoint.

Proof. Consider two different sub-simplices f, f̃ ∈ ∆`(T ). The dimension of their inter-
section is at most `−1. Therefore f∩ f̃ ⊆ e for some e ∈ ∆`−1(f). Then e∗ ⊆ (f∩ f̃)∗ =

f∗∪f̃∗. For α ∈ D(f, r`)∩D(f̃ , r`), we have |αe∗ | ≤ |αf∗ |+|αf̃∗ | ≤ 2r` ≤ r`−1. There-
fore we have shown the intersection region D(f, r`) ∩D(f̃ , r`) ⊆ ∪e∈∆`−1(f)D(e, r`−1)
and the result follows. �

Next we remove D(e, ri) from D(f, r`) for all e ∈ ∆i(T ) and i = 0, 1, . . . , `− 1.

Lemma 3.2. Given integer m ≥ 0, let non-negative integer array r = (r0, . . . , rd−1)
satisfy

rd−1 = m, r` ≥ 2r`+1 for ` = d− 2, . . . , 0.

Let k ≥ 2r0 + 1 ≥ 2dm+ 1. For ` = 1, . . . , d− 1, and any f ∈ ∆`(T )

(11) D(f, r`)\

`−1⋃
i=0

⋃
e∈∆i(f)

D(e, ri)

 = D(f, r`)\

`−1⋃
i=0

⋃
e∈∆i(T )

D(e, ri)

 .
Proof. In (11), the relation ⊇ is obvious as ∆i(f) ⊆ ∆i(T ).

To prove ⊆, it suffices to show for α ∈ D(f, r`)\
[⋃`−1

i=0

⋃
e∈∆i(f)D(e, ri)

]
, it is not

in D(e, ri) for e ∈ ∆i(T ) and e 6∈ ∆i(f).
By definition,

|αf∗ | ≤ r`, |αe| ≤ k − ri − 1 for all e ∈ ∆i(f), i = 0, . . . , `− 1.

For each e ∈ ∆i(T ) but e 6∈ ∆i(f), the dimension of the intersection e∩f is at most i−1.
It follows from rj ≥ 2rj+1 and k ≥ 2r0 + 1 that: when i > 0,

|αe| = |αe∩f |+ |αe∩f∗ | ≤ k − ri−1 − 1 + r` ≤ k − ri − 1,

and when i = 0,
|αe| = |αe∩f∗ | ≤ r` ≤ k − ri − 1.

So |αe∗ | > ri. We conclude that α 6∈ D(e, ri) for all e ∈ ∆i(T ) and (11) follows. �

We are in the position to present a geometric decomposition of the simplicial lattice
and polynomial spaces. It is a simplification of that in [6] using the distance structure
introduced in Section 3 for the simplicial lattice.
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Theorem 3.3. Given integer m ≥ 0, let non-negative integer array r = (r0, . . . , rd−1)
satisfy

rd−1 = m, r` ≥ 2r`+1 for ` = d− 2, . . . , 0.

Let k ≥ 2r0 + 1 ≥ 2dm + 1. Then we have the following direct decomposition of the
simplicial lattice on a d-dimensional simplex T :

(12) Tdk(T ) =⊕d
`=0⊕f∈∆`(T )S`(f),

where

S0(v) = D(v, r0),

S`(f) = D(f, r`)\

`−1⋃
i=0

⋃
e∈∆i(f)

D(e, ri)

 , ` = 1, . . . , d− 1,

Sd(T ) = Tdk(T )\

d−1⋃
i=0

⋃
f∈∆i(T )

D(f, ri)

 .
Consequently we have the following geometric decomposition of Pk(T )

(13) Pk(T ) =⊕d
`=0⊕f∈∆`(T )Pk(S`(f)).

Proof. First we show that the sets {S`(f), f ∈ ∆`(T ), ` = 0, . . . , d} are disjoint. Take
two vertices v1,v2 ∈ ∆0(T ). For α ∈ D(v1, r0), we have αv1

≥ k− r0. As v1 ⊆ v∗2 and
k ≥ 2r0 + 1, |αv∗2 | ≥ αv1 ≥ k − r0 ≥ r0 + 1, i.e., α /∈ D(v2, r0). Hence {S0(v),v ∈
∆0(T )} are disjoint and⊕v∈∆0(T )S0(v) is a disjoint union. By Lemma 3.1 and (11), we
know {S`(f), f ∈ ∆`(T ), ` = 0, . . . , n} are disjoint.

Next we inductively prove

(14) ⊕`
i=0⊕f∈∆i(T )Si(f) =

⋃̀
i=0

⋃
f∈∆i(T )

D(f, ri) for ` = 0, . . . , d− 1.

Obviously (14) holds for ` = 0. Assume (14) holds for ` < j. Then

⊕j
i=0⊕f∈∆i(T )Si(f) =⊕f∈∆j(T )Sj(f) ⊕

j−1⋃
i=0

⋃
e∈∆i(T )

D(e, ri)

=⊕f∈∆j(T )

D(f, rj)\

j−1⋃
i=0

⋃
e∈∆i(T )

D(e, ri)

 ⊕ j−1⋃
i=0

⋃
e∈∆i(T )

D(e, ri)

=

j⋃
i=0

⋃
f∈∆i(T )

D(f, ri).

By induction, (14) holds for ` = 0, . . . , d − 1. Then (12) is true from the definition of
Sd(T ) and (14). �

We can write out the inequality constraints in S`(f). For ` = 1, . . . , d,

(15) S`(f) = {α ∈ Tdk : |αf∗ | ≤ r`, |αe| ≤ k − ri − 1,∀e ∈ ∆i(f), i = 0, . . . , `− 1}.

For α ∈ S`(f), by Lemma 3.2 we also have α 6∈ D(f̃ , r`) for f̃ ∈ ∆`(T )\{f}, i.e.

(16) |αf̃ | ≤ k − r` − 1 ∀ f̃ ∈ ∆`(T )\{f}.
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From the implementation point of view, the index set S`(f) can be found by a logic array
and set the entry as true when the distance constraint holds. Explicit characterization of
S`(f) is not necessary.

3.2. Degrees of freedom. Recall that L(f, s) = {α ∈ Tdk,dist(α, f) = s} consists of
lattice nodes s away from f . The following result is a generalization of Lemma 2.4 in two
dimensions.

Lemma 3.4. Let ` = 0, . . . , d−1 and s ≤ r` be a non-negative integer. Given f ∈ ∆`(T ),
let {n1

f ,n
2
f , . . . ,n

d−`
f } be d− ` vectors spanning the normal plane of f . The polynomial

space Pk(S`(f) ∩ L(f, s)) is uniquely determined by DoFs

(17)
∫
f

∂βu

∂nβf
λ
αf
f ds, α ∈ S`(f), |αf | = k − s, β ∈ N1:d−`, |β| = s.

Proof. A basis of Pk(S`(f) ∩ L(f, s)) is {λα = λ
αf
f λ

αf∗

f∗ , α ∈ S`(f), |αf∗ | = s} and
thus the dimensions match (by mapping αf∗ to β).

We choose a basis of the normal plane {n1
f ,n

2
f , . . . ,n

d−`
f } s.t. it is dual to the vectors

{∇λf∗(1),∇λf∗(2), . . . , }, i.e., ∇λf∗(i) · njf = δi,j for i, j = 1, . . . , d− `. Then we have
the duality

(18)
∂β

∂nβf
(λ
αf∗

f∗ ) = β!δ(αf∗ , β), αf∗ , β ∈ N1:d−`, |αf∗ | = |β| = s,

which can be proved easily by induction on s. When T is the reference simplex T̂ , λi = xi
and∇λi = −ei, (18) is the calculus result Dβ

nf
x
αf∗

f∗ = β!δ(αf∗ , β).
Assume u =

∑
cαf ,αf∗λ

αf
f λ

αf∗

f∗ ∈ Pk(S`(f) ∩ L(f, s)). If the derivative is not fully
applied to the component λαf∗f∗ , then there is a term λγf∗ with |γ| > 0 left and λγi |f = 0 for
i ∈ f∗. So for any β ∈ N1:d−` and |β| = s,

∂βu

∂nβf
|f = β!

∑
α∈S`(f),|αf |=k−s

cαf ,βλ
αf
f .

The vanishing DoF (17) implies
∑

α∈S`(f),|αf |=k−s
cαf ,βλ

αf
f |f = 0. Hence cαf ,β = 0 for

all |αf | = k − s, α ∈ S`(f). As β is arbitrary, we conclude all coefficients cαf ,αf∗ = 0
and thus u = 0. �

For u ∈ Pk(S`(f) ∩ L(f, s)) and β ∈ N1:d−` with |β| < s, by Lemma 1.4, ∂
βu

∂nβf
|f = 0.

Applying the operator ∂
β(·)
∂nβf
|f to the direct decomposition Pk(S`(f)) =⊕r`

s=0Pk(S`(f)∩
L(f, s)) will possess a block lower triangular structure and leads to the following unisol-
vence result.

Lemma 3.5. Let ` = 0, . . . , d−1. The polynomial space Pk(S`(f)) is uniquely determined
by DoFs∫

f

∂βu

∂nβf
λ
αf
f ds, α ∈ S`(f), |αf | = k − s, β ∈ N1:d−`, |β| = s, s = 0, . . . , r`.

Together with decomposition (13) of the polynomial space, we obtain the following
result.
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Theorem 3.6 (Theorem 1.1 in [6]). Given integer m ≥ 0, let non-negative integer array
r = (r0, . . . , rd−1) satisfy

rd−1 = m, r` ≥ 2r`+1 for ` = d− 2, . . . , 0.

Let k ≥ 2r0 + 1 ≥ 2dm+ 1. Then the shape function Pk(T ) is uniquely determined by the
following DoFs

Dαu(v), α ∈ N1:d, |α| ≤ r0,v ∈ ∆0(T ),(19a) ∫
f

∂βu

∂nβf
λ
αf
f ds, α ∈ S`(f), |αf | = k − s, β ∈ N1:d−`, |β| = s,(19b)

f ∈ ∆`(T ), ` = 1, . . . , d− 1, s = 0, . . . , r`,∫
T

uλα dx, α ∈ Sd(T ).(19c)

Proof. Thanks to the decomposition (13), the dimensions match. Take u ∈ Pk(T ) satisfy
all the DoFs (19) vanish. We are going to show u = 0.

For α ∈ S`(f) and e ∈ ∆i(T ) with i ≤ ` and e 6= f , by (15) and (16) we have |αe∗ | ≥
ri + 1, hence ∂βλα

∂nβe
|e = 0 for β ∈ N1:d−i with |β| ≤ ri. Again this tells us that applying

the operator ∂β(·)
∂nβf
|f to the direct decomposition Pk(T ) = ⊕d

`=0⊕f∈∆`(T )Pk(S`(f))

will produce a block lower triangular structure. Then apply Lemma 3.5, we conclude
u ∈ Pk(Sd(T )), which together with the vanishing DoF (19c) gives u = 0. �

3.3. Smooth finite elements in arbitrary dimension. Given a triangulation Th, the finite
element space is obtained by asking the DoFs depending on the sub-simplex f only.

Theorem 3.7. Given integerm ≥ 0, let non-negative integer array r = (r0, r1, · · · , rd−1)
satisfy

rd−1 = m, r` ≥ 2r`+1 for ` = d− 2, . . . , 0.

Let k ≥ 2r0 + 1 ≥ 2dm+ 1. The following DoFs

Dαu(v) α ∈ N1:d, |α| ≤ r0,v ∈ ∆0(Th),(20a) ∫
f

∂βu

∂nβf
λ
αf
f ds α ∈ S`(f), |αf | = k − s, β ∈ N1:d−`, |β| = s, s = 0, . . . , r`,(20b)

f ∈ ∆`(Th), ` = 1, . . . , d− 1,∫
T

uλα dx α ∈ Sd(T ), T ∈ Th,(20c)

will define a finite element space

Vh = {u ∈ Cm(Ω) | DoFs (20a)− (20b) are single valued, u|T ∈ Pk(T ),∀T ∈ Th}.

Proof. Restricted to one simplex T , by Theorem 3.6, DoFs (20) will define a function u
s.t. u|T ∈ Pk(T ). We only need to verify u ∈ Cm(Ω).

It is apparent that u ∈ C0(Ω) and u |F∈ Pk(F ). Thus all tangential derivatives on F
are also continuous. It suffices to prove ∂iu

∂niF
|F ∈ Pk−i(F ), for all i = 0, . . . ,m and all

F ∈ ∆d−1(T ), are uniquely determined by (20a)-(20b) on F .
Let w = ∂iu

∂niF
|F ∈ Pk−i(F ). Consider the modified index sequence riF = (r0− i, r1−

i, . . . , rd−2 − i, 0) and degree ki = k − i. Then ki, riF satisfies the condition in Theorem
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3.6 and we obtain a direct decomposition of Td−1
k−i (F ) =⊕d−1

`=0⊕f∈∆`(F )S
F
` (f), where

SF0 (v) = D(v, r0 − i) ∩ Td−1
k−i (F ),

SF` (f) = (D(f, r` − i) ∩ Td−1
k−i (F ))\

[
⊕`−1

i=0⊕e∈∆i(F )S
F
i (e)

]
, ` = 1, . . . , d− 2,

SFd−1(F ) = Td−1
k−i (F )\

[
⊕d−2

`=0⊕f∈∆`(F )S
F
` (f)

]
.

The DoFs (20a)-(20b) related to w are

Dα
Fw(v) α ∈ N1:d−1, |α| ≤ r0 − i,v ∈ ∆0(F ),∫

f

∂βw

∂nβF,f
λ
αf
f ds α ∈ SF` (f), |αf | = k − i− s, β ∈ N1:d−1−`, |β| = s,

f ∈ ∆`(F ), ` = 1, . . . , d− 2, s = 0, . . . , r` − i,∫
F

wλα dx α ∈ SFd−1(F ),

where DFw is the tangential derivatives of w, nF,f is the normal vector of f but tangential
to F . Clearly the modified sequence rFi still satisfies constraints required in Theorem
3.6. We can apply Theorem 3.6 with the shape function space Pk−i(F ) to conclude w is
uniquely determined on F . �
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