
GEOMETRIC DECOMPOSITION OF LAGRANGE ELEMENTS

LONG CHEN AND XUEHAI HUANG

ABSTRACT. This lecture note explores the geometric decomposition of Lagrange ele-
ments using barycentric coordinates and the simplicial lattice. The first section introduces
the concept of barycentric coordinates, a powerful tool to represent points within a geomet-
ric simplex. The second section delves into the simplicial lattice, which is a fundamental
concept in this study. The geometric decomposition of Lagrange elements, building upon
the concepts of barycentric coordinates and the simplicial lattice, is presented in the third
section.
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1. BARYCENTRIC COORDINATES

Let vi = (x1,i, . . . , xd,i)
ᵀ for i = 0, 1, . . . , d be d+1 points in Rd. We say v0,v1, . . . ,vd

do not all lie in one hyper-plane if the d-vectors t0,1, t0,2, . . . , t0,d are linearly independent,
where ti,j is the edge vector from vi to vj for 0 ≤ i, j ≤ d. This is equivalent to the matrix:

A =


x1,0 x1,1 . . . x1,d

x2,0 x2,1 . . . x2,d

...
...

...
xd,0 xd,1 . . . xd,d

1 1 . . . 1


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is non-singular. Given any point x = (x1, . . . , xd)
ᵀ ∈ Rd, by solving the following linear

system

(1) A


λ0

...
λd−1

λd

 =


x1

...
xd
1

 ,

we obtain unique d+ 1 real numbers λi(x), 0 ≤ i ≤ d, such that for any x ∈ Rd

(2) x =

d∑
i=0

λi(x)vi, with
d∑
i=0

λi(x) = 1.

The convex hull of the d+ 1 points v0,v1, . . . ,vd in Rd

(3) T := {x =

d∑
i=0

λivi | 0 ≤ λi ≤ 1, i = 0 : d,

d∑
i=0

λi = 1}

is defined as a geometric d-simplex generated (or spanned) by the vertices v0,v1, . . . ,vd.
For example, a triangle is a 2-simplex and a tetrahedron is a 3-simplex.

xix

1

(a) 1d simplex

x

τ

τi

xi

FIGURE 1. Patches are similar

1

(b) 2d simplex

x

xi

(c) 3d simplex

FIGURE 1. Geometric explanation of barycentric coordinates.

The numbers λ0(x), λ1(x), . . . , λd(x) are called barycentric coordinates of x with
respect to the d + 1 points v0,v1, . . . ,vd. There is a simple geometric meaning of the
barycentric coordinates. Given an x ∈ T , let Ti(x) be the simplex with vertex vi replaced
by x. Then, by the Cramer’s rule for solving (1),

(4) λi(x) =
|Ti(x)|
|T | ,

where | · | is the Lebesgue measure in Rd, namely area in two dimensions and volume in
three dimensions. See Fig. 1. Clearly, λi(vj) = δij for 0 ≤ i, j ≤ d, where δij is the
Kronecker delta function.

It is convenient to have a standard simplex sd ⊂ Rd spanned by the vertices 0, e1, · · · , ed
where ei = (0, · · · , 1, · · · , 0)ᵀ. Then any d-simplex τ ⊂ Rd can be thought as an image
of sd through an affine mapB : sd → τ withB(0) = v0 andB(ei) = vi for i = 1, . . . , d.
See Fig. 2. The simplex sd is also often called the reference simplex. The explicit expres-
sion of B is

B(x) = v0 + (t0,1, t0,2, . . . , t0,d)x = v0 +

d∑
i=1

xit0,i.
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(a) A standard simplex in R1
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(b) A standard simplex in R2
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s3

y

z

x

(c) A standard simplex in R3

FIGURE 2. Reference simplexes in R1,R2 and R3.

In the traditional computation of finite elements, the process involves mapping back
to the reference simplex. However, when dealing with vector and matrix functions, this
transformation becomes intricate. To simplify this, we opt for expressing these functions
in terms of barycentric coordinates. On the reference simplex, the barycentric coordinates
λi = xi for i = 1, . . . , d, and λ0 = 1−∑d

i=1 xi. The d edge vectors {t0,1, t0,2, . . . , t0,d}
of sd represent the canonical orthonormal basis of Rd. This allows us to initially work with
the familiar Cartesian coordinates {xi, i = 1, . . . , d} and then symbolically transition to
the barycentric coordinates {λi, i = 0, . . . , d}.

For a general non-degenerated simplex, {t0,1, t0,2, . . . , t0,d} may not be orthonormal
but still forms a basis of Rd. We now figure out the dual basis of {t0,1, t0,2, . . . , t0,d}. The
(d− 1)-dimensional face opposite to the vertex vi will be denoted by Fi. Note that λi(x)
is an affine function of x and vanished on the face Fi. Therefore ∇λi will be orthogonal
to Fi the zero level-set of λi. Let nT be the unit outward normal vector to ∂T , which will
be abbreviated as n. We have

(5) n|Fi = −∇λi/|∇λi|.

By computing the constant directional derivative ti,j · ∇λ` by values on the two vertices,
we have

(6) ti,j · ∇λ` = δj` − δi` =


1, if ` = j,

−1, if ` = i,

0, if ` 6= i, j.

Therefore we conclude that the d scaled normal vectors

{∇λ1, . . . ,∇λd} = {−|∇λ1|n1, . . . ,−|∇λd|nd}

with ni = n|Fi is the dual basis of {t0,1, t0,2, . . . , t0,d}, i.e.,

t0,i · (−|∇λj |nj) = δij , 1 ≤ i, j ≤ d.

We refer to Fig. 3 for an illustration in 3-D.
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FIGURE 3. Basis {t0,1, t0,2, . . . , t0,d} and {∇λ1, . . . ,∇λd} for d = 3.

2. SIMPLICAL LATTICE AND BERNSTEIN BASIS

This section introduces the concept of a simplicial lattice, which is a multi-index set
of nodes with fixed sum k. A geometric embedding of the lattice into the simplex is
given by barycentric coordinates. Sub-simplicial lattices, formed by subsets of nodes, are
also discussed. The Bernstein basis of polynomials on the simplex is used to provides
an overview of how simplicial lattices and polynomials are interconnected and lays the
foundation for studying polynomials through the simplicial lattice.

2.1. The simplicial lattice and its geometric embeddings. For two non-negative integers
` ≤ m, we will use the multi-index notation α ∈ N`:m, meaning α = (α`, . . . , αm) with
integer αi > 0. The sum of a multi-index is |α| :=

∑m
i=` αi for α ∈ N`:m. We can also

treat α as a row vector with non-negative integer valued coordinates. We use the convention
that: a vector α ≥ c means αi ≥ c for all components i = 0, 1, . . . , d.

(a) Simplicial lattice T2
4(T ) (b) Simplicial lattice T3

3(T )

FIGURE 4. Two examples of the simplicial lattices.

A simplicial lattice, also known as the principal lattice [3], of degree k and dimension
d is a multi-index set of d+ 1 components and with fixed sum k, i.e.,

Tdk =
{
α = (α0, α1, . . . , αd) ∈ N0:d : |α| = α0 + α1 + . . .+ αd = k

}
.

An element α ∈ Tdk is called a node of the lattice. It holds that

|Tdk| =
(
d+ k

k

)
.
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(0, 0) (1, 0)

(0, 1)

0 1

2

FIGURE 5. Two embeddings of the simplicial lattice T2
8 in two dimensions.

We can embed the simplicial lattice into a geometric simplex by using α/k as the
barycentric coordinate of node α. Given α ∈ Tdk, the barycentric coordinate of α is given
by

λ(α) = (α0, α1, . . . , αd)/k.

Let T be a simplex with vertices {v0,v1, . . . ,vd}. The geometric embedding is

x : Tdk → T, x(α) =

d∑
i=0

λi(α)vi.

For a visual representation, please refer to Figs. 4 and 5.
The left figure of Fig. 5 illustrates the embedding of a two-dimensional simplicial lattice

T2
8 within a reference triangle T̂ with vertices (0, 0), (1, 0), (0, 1), while the right side

shows the embedding of the same lattice into an equilateral triangle.
A simplicial lattice Tdk is, by definition, an algebraic set. Through the geometric em-

bedding Tdk(T ), we can use operators for the geometric simplex T to study this algebraic
set. For example, for a subset S ⊆ T , we use Tdk(S) = {α ∈ Tdk, x(α) ∈ S} to denote the
portion of lattice nodes whose geometric embedding is inside S. The superscript d will be
replaced by the dimension of S when S is a lower dimensional sub-simplex.

Exercise 2.1. Use the simplicial lattice to describe the uniform refinement of a d-simplex.
That is: adding middle points of edges and connecting to form 2d smaller simplices. The
difficulty is to show the resulting smaller simplices will not degenerate when the process is
repeated.

2.2. Sub-simplicial lattices. Following [1], we let ∆(T ) denote all the subsimplices of
T , while ∆`(T ) denotes the set of subsimplices of dimension `, for 0 ≤ ` ≤ d. The

cardinality of ∆`(T ) is
(
d+ 1

`+ 1

)
. Elements of ∆0(T ) = {v0, . . . ,vd} are d + 1 vertices

of T and ∆d(T ) = T .
For a sub-simplex f ∈ ∆`(T ) with ` = 0, . . . , d − 1, we will overload the nota-

tion f for both the geometric simplex and the algebraic set of indices. Namely f =
{f(0), . . . , f(`)} ⊆ {0, 1, . . . , d}, and

f = Convex(vf(0), . . . ,vf(`)) ∈ ∆`(T )

is the `-dimensional simplex spanned by the vertices vf(0), . . . ,vf(`).
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FIGURE 6. On the left, f = {2, 3} is an edge and f∗ = {0, 1} is another
edge. On the right, f = {0, 2, 3} is a face and f∗ = {1} is a vertex.

If f ∈ ∆`(T ) with ` = 0, . . . , d− 1, then f∗ ∈ ∆d−`−1(T ) denotes the sub-simplex of
T opposite to f . When treating f as a subset of {0, 1, . . . , d}, f∗ ⊆ {0, 1, . . . , d} so that
f ∪ f∗ = {0, 1, . . . , d}, i.e., f∗ is the complement of set f . Geometrically,

f∗ = Convex(vf∗(1), . . . ,vf∗(d−`)) ∈ ∆d−`−1(T )

is the (d− `− 1)-dimensional simplex spanned by vertices not contained in f .
Given a sub-simplex f ∈ ∆`(T ) with ` = 0, . . . , d− 1, through the geometric embed-

ding f ↪→ T , we define the prolongation/extension operator E : T`k → Tdk as follows:

E(α)f(i) = αi, i = 0, . . . , `, and E(α)j = 0, j 6∈ f.
For example, assume f = {1, 3, 4}, then for α = (α0, α1, α2) ∈ T`k(f), the extension
E(α) = (0, α0, 0, α1, α2, . . . , 0) ∈ Tdk(T ). The geometric embedding x(E(α)) ∈ f justi-
fies the notation T`k(f). On the other hand, for α ∈ Tdk(T ) and f ∈ ∆`(T ), the restriction
αf ∈ N0:` is defined as (αf )i = αf(i) for i = 0, . . . , `. With a slight abuse of notation,
for a node αf ∈ T`k(f), we still use the same notation αf ∈ Tdk(T ) to denote its extension
E(αf ). Then for α ∈ Tdk(T ) and f ∈ ∆`(T ) with ` = 0, . . . , d−1, we have the following
direct decomposition

(7) α = E(αf ) + E(αf∗) = αf + αf∗ , and |α| = |αf |+ |αf∗ |.
For example, when α = (α0, α1, . . . , α4) and f = {1, 3}, then αf = (0, α1, 0, α3, 0, 0)
and αf∗ = (α0, 0, α2, 0, α4).

In summary, by treating f as a set of indices, we can apply the operators ∪,∩, ∗, \
on sets. While treating f as a geometric simplex, ∂f,

◦
f etc can be applied. For example,

T`k(
◦
f) is the sub-set of lattice nodes of Tdk(T ) whose geometric coordinate is in the interior

of an `-dimensional f ∈ ∆`(T ).

2.3. Polynomials and Bernstein basis. For a domain Ω ⊆ Rd and integer k > 0,
Pk(Ω) denotes the set of real valued polynomials defined on Ω of degree less than or
equal to k. For simplicity, we let Pk = Pk

(
Rd
)
. Hence, if d-dimensional domain Ω

has nonempty interior, then dimPk(Ω) = dimPk =

(
k + d

d

)
. When Ω is a point,

Pk(Ω) = R for all k > 0. And we set Pk(Ω) = {0} when k < 0.
For d-dimensional simplex T , the barycentric coordinates {λi, i = 0, 1, . . . , d} form a

basis for P1(T ). The Bernstein representation of polynomial of degree k on a simplex T is

Pk(T ) := {λα := λα0
0 λα1

1 . . . λαd

d , α ∈ Tdk}.
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With such one-to-one mapping between the lattice node α and the Bernstein polynomial
λα, we can study properties of polynomials through the simplicial lattice. Based on (7),
we can write a Bernstein polynomial as

λα = λ
αf

f λ
αf∗

f∗ ,

where λf = λf(0) . . . λf(`) ∈ P`+1(f) is the bubble function on f .
The following integral formuale is quite useful in the computation

(8)
∫
T

λα dx =
α!d!

(|α|+ d)!
|T |, α ∈ Tdk.

For an elementary proof, we refer to [2, Exercise 1]. The normalized basis λα/α! has the
constant integral

(9)
∫
T

1

α!
λα dx =

d!

(k + d)!
|T |, α ∈ Tdk.

For a subset S ⊆ Tdk, we define

Pk(S) = span{λα, α ∈ S ⊆ Tdk}.
In the Bernstein form, for an f ∈ ∆`(T ),

Pk(f) = {λαf = λα0

f(0)λ
α1

f(1) . . . λ
α`

f(`), α ∈ T`k}.
The barycentric coordinate λf(i)(x) defined for x ∈ f can be naturally extended to x ∈ T .
By doing that, we can treat Pk(f) ⊆ Pk(T ).

2.4. Bubble polynomials. For ` ≥ 1, the bubble polynomial of f is a polynomial of
degree `+ 1:

bf := λf = λf(0)λf(1) . . . λf(`) ∈ P`+1(f).

To unify the notation, when ` = 0, i.e. f = {i} is a vertex, bf = λi. It is called a bubble
function as bf vanishes on the boundary of f and the graph of bf is like a bubble; see
Fig. 7. We shall show bf also vanishes on other sub-simplexes not containing f .

(a) Edge bubble be. (b) Face bubble bf .

FIGURE 7. Bubble functions in two dimensions.

We start from the following simple fact.

Lemma 2.2. Let f ∈ ∆(T ) be a sub-simplex of T . Then

λi |f= 0 if i 6∈ f, equivalently i ∈ f∗.
Proof. We know λi |Fi= 0 where recall that Fi is the (d− 1)-face opposite to i-th vertex.
If i 6∈ f , then f ⊆ Fi and therefore λi |f= 0. �

Indeed f can be identified as the intersection of the zero level sets.
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Lemma 2.3. Let f ∈ ∆(T ) be a sub-simplex of T . Then

f = ∩i∈f∗{λi = 0} = ∩i∈f∗Fi.

Proof. We prove the statement by treating the sub-simplex f as a sub-set of vertex index.
In this terminology, Fi = {i}∗ contains all indices except i and F ∗i = {i}. Consequently

(∩i∈f∗Fi)
∗

= ∪i∈f∗F ∗i = ∪i∈f∗{i} = f∗.

�

Lemma 2.4. Let f, e ∈ ∆(T ). If f 6⊆ e, then bf |e= 0.

Proof. As f = (f ∩ e∗) ∪ (f ∩ e) and f 6⊆ e, we conclude f ∩ e∗ 6= ∅. So bf contains λi
for some i ∈ e∗ and consequently bf |e = 0. �

In particular, bf vanishes at all sub-simplexes with dimensions ≤ dim f and other than
f , and higher dimensional sub-simplexes not containing f .

3. GEOMETRIC DECOMPOSITION OF LAGRANGE ELEMENTS

This section introduces the geometric decomposition of Lagrange elements, expressing
the simplicial lattice as a direct sum of spaces associated with vertices, edges, and all sub-
simplexes. The discussion extends to the Lagrange finite element spaces on conforming
meshes.

3.1. Lagrange element. We begin with the following decomposition of the simplicial
lattice and refer to Fig. 3.1 for an illustration.

Lemma 3.1. We have

(10) Tdk(T ) =⊕v∈∆0(T )T
0
k(v) ⊕ ⊕d

`=1⊕f∈∆`(T )T
`
k(
◦
f).

Proof. As a geometric object T = ∂T ∪ T̊ . Then recursively apply this decomposition to
each face in ∂T to obtain

T = ∪v∈∆0(T )v ∪d`=1⊕f∈∆`(T )

◦
f .

Restricting to the geometric coordinate of lattice nodes, we obtain (10). �

0 1

2

FIGURE 8. A geometric decomposition of the simplicial lattice T2
8.

The following geometric decomposition of Lagrange element is given in [1] without
proofs. As it is the foundation of other geometric decompositions, we present it using our
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notation and provide a detailed proof. We refer to [1, Fig. 2.1] for an illustration of this
geometric decomposition.

For ` = 0,
∫
f
v ds := v(f), i.e. the function value at the vertex f . Here A polynomial

v ∈ Pk−(`+1)(f) can be naturally extended to the element T by the Bernstein form in the
barycentric coordinate.

Theorem 3.2 (Geometric decomposition of Lagrange element, (2.6) in [1]). For the poly-
nomial space Pk(T ) with k ≥ 1 on a d-dimensional simplex T , we have the following
decomposition

Pk(T ) =⊕d
`=0⊕f∈∆`(T )bfPk−(`+1)(f).(11)

The function u ∈ Pk(T ) is uniquely determined by DoFs

(12)
∫
f

u pds p ∈ Pk−(`+1)(f), f ∈ ∆`(T ), ` = 0, 1, . . . , d.

Proof. We first prove the decomposition (11). Each component bfPk−(`+1)(f) ⊂ Pk(T )
and the sum is direct due to the property of bf , cf. Lemma 2.4. Then count the dimensions
to finish the proof.

To prove the unisolvence, we choose a basis {φi} of Pk(T ) by the decomposition (11)
and denote DoFs (12) as {Ni}. By construction, the dimension of {φi}matches the number
of DoFs {Ni}. The square matrix (Ni(φj)) is block lower triangular in the sense that for
φf ∈ bfPk−(`+1)(f),∫

e

φfp ds = 0, e ∈ ∆m(T ) with m ≤ ` and e 6= f, p ∈ Pk−dim e−1(e)

due to the property of bf established in Lemma 2.4. Each diagonal block matrix is the
Gram matrix ∫

f

pqbf dxf , p, q ∈ Pk−(`+1)(f),

in the measure bf dxf and thus symmetric and positive definite. In particular it is invertible.
So the unisolvence follows from the inverstiablity of this lower triangular matrix; see below
for an illustration.

Nf\ φf 0 1 . . . d− 1 d

0

1
...

d− 1

d



� 0 · · · 0 0

� � · · · 0 0
...

...
. . .

...
...

� � · · · � 0

� � · · · � �


�

Consider a Hilbert space V with the inner product (·, ·). Define N : V → V ∗ as: for
any p ∈ V , N (p) ∈ V ∗ is given by 〈N (p), ·〉 = (·, p). When restricted to face f , Pk(f) is
a subspace of L2(f) and thus N (Pk(f)) consists of the degrees of freedom (DoFs):

〈N (p), ·〉 =

∫
f

(·) p ds, p ∈ Pk(f).
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For the 0-dimensional face, i.e., a vertex v, we understand that 〈N (1), u〉 =
∫
v uds =

u(v) for 1 ∈ Pk(v) = R. Then (12) implies the decomposition of DoFs
(13)
P∗k(T ) =⊕d

`=0⊕f∈∆`(T )N (bfPk−(`+1)(f)) =⊕d
`=0⊕f∈∆`(T )N (Pk−(`+1)(f)).

Notice that in the second decomposition, the bubble function bf is removed as bf dxf can
be treat as a measure on f and the test function in (12) is in Pk−(`+1)(f).

Exercise 3.3. Define XT = {x(α), α ∈ Tdk} and call it the set of interpolation nodes.
Another DoFs are given by the function values on the interpolation nodes, i.e.

(14) Nα(u) = u(x(α)) α ∈ Tdk.

Prove the unisolvence by finding a basis {φα, α ∈ Tdk} of Pk dual to {Nα, α ∈ Tdk} of P∗k,
i.e.,

Nα(φβ) = δ(α, β) α, β ∈ Tdk.

Exercise 3.4. Find a basis of Pk dual to DoFs (12) normalized by 1/|f |.
3.2. Lagrange finite element space. Let {Th} be a family of partitions of Ω into nonover-
lapping simplexes with hT := diam(T ) and h := maxT∈Th hT . The mesh Th is conform-
ing in the sense that the intersection of any two simplexes is either empty or a common
lower sub-simplex. Let ∆`(Th) be the set of all `-dimensional faces of the partition Th for
` = 0, 1, . . . , d− 1. The Lagrange finite element space

Skh := {v ∈ C(Ω) : v|T∈ Pk(T ),∀ T ∈ Th, DoFs (12) are single-valued}.
The following result is a direct corollary of Theorem 3.2.

Corollary 3.5. The Lagrange finite element space has the geometric decomposition

Skh =⊕d
`=0⊕f∈∆`(Th)bfPk−(`+1)(f).

Here we extend the polynomial bfPk−(`+1)(f) to each element T containing f by the
Bernstein form in the barycentric coordinate and thus it is a piecewise polynomial function
and continuous in Ω. Consequently Skh ⊂ H1(Ω) and the dimension of Skh is

dimSkh =

d∑
`=0

|∆`(Th)|
(
k − 1

`

)
,

where |∆`(Th)| is the cardinality, i.e., the number of `-dimensional simplexes in Th.

Remark 3.6. The degree k could vary for different f . In hp refinement, polynomial degree
k is a piecewise constant function on ∆d(Th). Then set

k(f) = max
T∈ωf

k(T ),

where ωf := {T ∈ Th, f ⊆ T}. Then the space

Shp =⊕d
`=0⊕f∈∆`(Th)bfPk(f)−(`+1)(f)

is a conforming finite element space with variable degree of polynomial.
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