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1. INTRODUCTION

In big data era, fast algorithms are needed to manipulate massive data with large number
of features or dimensions. One example is the word vector model. A document can be
covert to a vector. The length of the vector is the number of (English) words which is
around 25, 000. The ith component is the count of the ith word. By computing the angle
or distance of corresponding vectors, we can then analyze a large collection of documents.
A convenient way is to form a d × n matrix A with each column represents a document.
Then ATA will give the pairwise inner products of these n-vectors.

As n, d � 1, the computation of ATA is time consuming. A fundamental tool to
speed up the computation is the random projection to a k-dimensional subspace such that
the pairwise distance is preserved within certain error. The remarkable fact is that the
dimension of the lower dimensional space depends only on the logarithmic of the size of
the data, i.e., k = O(lnn). Then the pairwise distance or relative ordering can be computed
efficiently. The dimension reduction from d to k is a great advantage since complexity of
many algorithms grows exponentially as a function of d which is frequently termed as
the “curse of dimensionality”. The storage of n column vectors is also reduced from dn
to kn = O(n log n). The mathematical theory behind this dimension reduction is the
following Johnson-Lindenstrauss Lemma [9].

Theorem 1.1 (Johnson-Lindenstrauss Lemma). For any 0 < ε < 1 and any integer n > 1,
let k be a positive integer such that k ≥ k0 with k0 = Cε−2 lnn, where C is a suitable
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constant. Then for any set V of n points in Rd, there exists a map f : Rd → Rk such that
for all u, v ∈ V ,

(1− ε)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε)‖u− v‖2.

Constant C in the lower bound k0 is of practical importance. It is not specified in
Johnson and Lindenstrauss’ paper [9] (not surprising for pure mathematicians). In the
simplified analysis give by Frankl and Maehara [6],C ≈ 9, and in a further simplified proof
by Dasgupta and Gupta [5], C ≈ 8. In practice, C = 2 is good enough; see computational
results in [16]. The gap between the theoretic bound and practical one could be due to the
union bound used in the proof.

One of such mapping is the projection to a random subspace of dimension k. Algorith-
mically the projection is realized by the multiplication of a random matrix T of size k × d
to the left of A, i.e., TA, which will be called a JL transformation (JLT). (Draw a picture
on the product of matrices.) A related result is the following random projection theorem.

Theorem 1.2 (Random Projection). For any 0 < ε, δ < 1/2 and positive integer d, there
exists a random matrix T of size k × d such that for k ≥ k0 with k0 = Cε−2 ln(1/δ) and
for any unit-length vector x ∈ Rd,

(1) Pr
{∣∣‖Tx‖2 − 1

∣∣ > ε
}
< δ.

The probability estimate (1) can be easily derived from the exponential tail bound

(2) Pr
{∣∣‖Tx‖2 − 1

∣∣ > ε
}
< e−Ckε

2

.

Several proofs will be developed by passing the estimate for one random variable to sum-
mation of independently identical distributed (i.i.d) random variables.

Remark 1.3. In the power of the exponential function in (2), the dependence of k is de-
sirable which implies k = O(lnn) while ε2 leads to the factor ε−2 in the lower bound k0.
When n = 103 ∼ 106, lnn = 7 ∼ 14. For ε = 0.25 ∼ 0.1, the factor ε−2 = 16 ∼ 100.
So ε cannot be too small. A factor C = 2 is further multiplied to yield k = 224 ∼ 2800.

It is interesting to note that k, however, is independent of d. The projection is beneficial
only if k � d. �

One can derive J-L lemma from the random projection theorem as follows. Choosing
δ = 1/n2 and, for one pair u, v ∈ V , setting x = (u− v)/‖u− v‖, we obtain

Pr
{∣∣‖T (u− v)‖2/‖u− v‖2 − 1

∣∣ > ε
}
<

1

n2
.

Using a union bound over all
(
n
2

)
= n(n− 1)/2 pairs, we obtain, for all u, v ∈ V ,

Pr
{∣∣‖T (u− v)‖2/‖u− v‖2 − 1

∣∣ > ε
}
< 1/2.

Here we use the union bound

Pr

{⋃
i

Ei

}
≤
∑
i

Pr {Ei}

and the equality holds if events Ei are mutually independent.
Define f(x) = Tx. We then obtain the probabilisitic version of J-L lemma

Pr
{

(1− ε)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε)‖u− v‖2
}
> 1/2.

Since the probability is strictly greater than zero, the existence of such a map is proved.
Repeating the projection p times can boost the success probability to 1− 1/2p.
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Remark 1.4. The random projection is oblivious to V , i.e., it can be applied to the whole
space Rd not depending on the data set V . If a prior information of V is known, one may
find a better mapping adapt to V .

The mapping f is defined as a linear mapping. Again in some cases, one may find a
nonlinear mapping to do a better job, e.g., when the data set V is near a low-dimensional
manifold [14, 15]. �

A statistic interpretation of the transform by Achlioptas [1] is as follows. Recall that
a data is represented by one column, say x, of the matrix A. Each row of T acts as an
estimator of the length of x by computing the inner product. To reach consensus we take an
average (squared sum) of k estimators. By Central Limit Theorem, if we have sufficiently
many estimators (i.e. as k → ∞), we can get an arbitrarily good estimate of ‖x‖. But
using the randomness of estimator, a Gaussian type concentration will be reached for a
remarkably small samples k = O(lnn).

The transformed data TA is a k × n matrix and can be thought as a low rank approxi-
mation of A. A related dimension reduction technique is using Ak, the space spanned by
the singular vectors corresponding to the k-largest singular values of A. Then Ak is the
best rank k approximation of A for any rotationally invariant norm of matrices. So in the
average sense, the information of A is preserved as much as possible in Ak. This optimal-
ity, however, implies no guarantees regarding local properties such as pairwise distance (or
in general local geometry). In addition, the computation of SVD is not cheap. In contrast,
JLT can be used to speed up the computation of SVD.

In practice, it is important to generate and evaluate the random matrix T fast. We end
the introduction with a discussion on several choices of T .

(1) Orthonormal vectors. In the original proof of Johnson and Lindenstrauss [9], the
rows of T are chosen as a random k-tupe of orthonormal vectors in Rd (with a
proper scaling

√
d/k). Then T is the projection to the row space of T . From

statistical point of view, requiring the k-vectors to be orthonormal has the pleasant
statistical overtone of “maximizing mutual information”. The resulting matrix is
dense and orthogonalization process is needed.

(2) Gaussian vectors. Indyk and Motwani [8] and Dasgupta and Gupta [5] choose the
entries of T as independent random variables with the standard normal (Gauss-
ian) distribution. The orthogonalization and normlization of row vectors is thus
dropped. The matrix is easier and faster to generate by skipping the orthogonal-
ization procedure. The relaxation of orthogonality is due to the large dimension.
As d � 1, random unit vectors are mutually orthogonal with high probability.
The relaxation of normalization is a consequence of the exponential concentration
bound. But the matrix is still dense.

(3) Sub-Gaussian vectors. Achlioptas [1] showed the Gaussian distribution can be re-
laxed to a much simpler±1 random distribution with zero mean and variance one.
Matoušek [13] generalizes such results to sub-Gaussian vectors; see Theorem 2.16
for details. A computationally efficient choice will be: Tij = 0 with probability
2/3 and ±1 with probability 1/6 each (with a proper scaling so that the variance
is one). The matrix is sparser and requires only summation and subtraction op-
erations (no multiplication since the scaling can be post-ponded). Therefore the
computation is much faster. But the number of non-zero is still in the order of
O(kd).
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(4) Fast Johnson-Lindenstrauss Transform. Ailon and Chazelle [2] propose a discrete
Fourier transform to enlarge the support of sparse vectors. To prevent the spar-
sification of dense vectors, the Fourier transform is randomized. Then a sparse
T can be used. They call the resulting transform as Fast-Johnson-Lindenstrauss-
Transform (FJLT). The computational cost is reduced to O(d ln d+ k ln2 n).

2. JL TRANSFORM

We will consider probability proofs for the random projection theorem. We first follow
Dasgupta and Gupta [5] to give a simple proof for random projections using Gaussian i.i.d
variables and then Matoušek [13] for random projections using sub-Gaussian entries.

We shall write X ∼ Y to denote that the random variable X is distributed as random
variable Y . We use N(0, 1) to denote the standard normal (Gaussian) distribution with
mean 0 and variance 1.

2.1. An Elementary Proof. We first flip the randomness. The length of a unit vector u in
Rd when projected to a random k-dimensional subspace has the same distribution as the
length of a random unit vector projected down onto a fixed k-dimensional subspace, say,
the space spanned by the first k coordinate vectors.

This fact can be mathematically justified as follows. Let SO(d) be the group of all
rotation of Rd equipped with a measure σ. A random projection can be realized as Tu =
UTPkUu where U ∈ SO(d) is chosen randomly w.r.t. σ and Pk is the projection matrix
to the first k coordinates. Since U is unitary and P 2

k = Pk, we have ‖Tu‖2 = ‖PkUu‖2 =
‖Pkx‖2 and the vector x = Uu ∈ Sd−1 is a random unit vector. The randomness in T is
then switched to the randomness in x.

How to realize a random unit vector mathematically? That is how to generate the ran-
dom variable with uniform density on the sphere Sd−1. We can achieve this through the
normalization of a random variable which is centrally symmetric (i.e. rotation invariant)
around the origin. One convenient way is through Gaussian distribution. Let X1, . . . , Xd

be i.i.d. N(0, 1) random variables, and let X = (X1, . . . , Xd). Since Xi are independent,
the probability density function of X is (2π)−d/2e−|x|

2/2, i.e., X ∼ Nd(0, 1) which is
rotation invariant. The normalized vector Y = X/‖X‖ is then a random unit vector.

Exercise 2.1. Consider generation of points uniformly at random on the sphere. Show that
independently generate each coordinate uniformly at random from the interval [−1, 1] and
project to the sphere will not give uniformly distributed points on sphere Sd−1.

Exercise 2.2. Show that if X ∼ Nd(0, 1) and u is a unit vector, then X · u ∼ N(0, 1).

Let Z ∈ Rk be the projection of Y onto its first k-coordinates, i.e. Z = PkY . As Xi ∼
N(0, 1) and independent, E

[∑d
i=1X

2
i

]
=
∑d
i=1 E[X2

i ] = d. Consequently E[‖Z‖2] =

k/d. Indeed it is highly concentrated around the mean. A Chernoff tail bound can be
derived using the moment generating function.

Let X be a random variable with density function f(x). The moment generating func-
tion MX(t) of X is defined for an open interval of t containing 0

MX(t) = E
[
etX
]

=

∫ ∞
−∞

etxf(x) dx.

It is named after the fact that

M
(n)
X (0) = E[Xn] n ≥ 1.

We will skip the subscript X , i.e., use M(t) only, when it is clear from the context.
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Exercise 2.3. Let X ∼ N(0, 1) be the standard normal distribution. Show that

(1) MX(t) = et
2/2 for all t ∈ R;

(2) MX2(t) = (1− 2t)−1/2 for −∞ < t < 1/2.

Exercise 2.4. Prove the following inequalities
(1) 1 + x ≤ ex for all x ∈ R;
(2) ln(1− x) ≤ −x− x2/2 for all x ∈ [0, 1];
(3) ln(1 + x) ≤ x− x2/2 + x3/3 for all x ≥ 0;
(4) ex ≤ 1 + 2x for all x ∈ [0, 1];
(5) ex ≤ 1 + x+ x2 for all x ≤ 1;
(6) (ex + e−x)/2 ≤ ex2/2 for all x ∈ R.

Lemma 2.5 (Dasgupta and Gupta [5]). Let k < d and let Xi ∼ N(0, 1), for i = 1, . . . , d,
be i.i.d standard normal random varibles.
a) If β < 1, then

Pr

{
d

k∑
i=1

X2
i ≤ kβ

d∑
i=1

X2
i

}
≤ βk/2

(
1 +

k(1− β)

d− k

)(d−k)/2

≤ ek(1−β+ln β)/2.

b) If β > 1, then

Pr

{
d

k∑
i=1

X2
i ≥ kβ

d∑
i=1

X2
i

}
≤ βk/2

(
1 +

k(1− β)

d− k

)(d−k)/2

≤ ek(1−β+ln β)/2.

Proof. For part a), for any t > 0,

Pr

{
d

k∑
i=1

X2
i ≤ kβ

d∑
i=1

X2
i

}
= Pr

{
kβ

d∑
i=1

X2
i − d

k∑
i=1

X2
i ≥ 0

}
= Pr

{
et(kβ

∑d
i=1X

2
i−d

∑k
i=1X

2
i ) ≥ 1

}
≤ E

[
et(kβ

∑d
i=1X

2
i−d

∑k
i=1X

2
i )
]

= E
[
etkβX

2
1

](d−k)

E
[
et(kβ−d)X2

1

]k
= (1− 2tkβ)−(d−k)/2 [1− 2t(kβ − d)]

−k/2
.

Define
g(t) = (1− 2tkβ)−(d−k)/2 [1− 2t(kβ − d)]

−k/2
.

It gives us two more constraints that tkβ < 1
2 and t(kβ − d) < 1

2 . We may combine these
two constraints together to get 0 < t < 1/2kβ. In order to minimize g(t), it is equivalent
to maximize

f(t) = (1− 2tkβ)(d−k) [1− 2t(kβ − d)]
k

in the interval 0 < t < 1/2kβ which is achieved at

t∗ =
1− β

2β(d− kβ)
.

Therefore, we have

g(t) ≥ g(t∗) =
1√
f(t∗)

= βk/2
(
d− kβ
d− k

)(d−k)/2

= βk/2
[
1 +

(1− β)k

d− k

](d−k)/2

.
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For part b), the proof is almost identical. �

The estimate can be rewritten as

Pr
{
d/k‖Z‖2 ≤ β

}
≤ ek(1−β+ln β)/2.

If we define the projection as
√
d/k Z and chose β = 1− ε, Lemma 2.4 and inequality (2)

in Exercise 2.4 implies the desired tail bound: for a unit vector x and k ≥ 8ε−2 lnn,

Pr
{
‖Tx‖2 ≤ 1− ε

}
≤ e−kε

2/4 ≤ e−2 lnn = 1/n2.

Similarly choosing β = 1 + ε and using the estimate in part b) and (3) in Exercise 2.4, we
have

Pr
{
‖Tx‖2 ≥ 1 + ε

}
≤ ek[1−(1+ε)+ln(1+ε)]/2 ≤ e−k(ε2/2−ε3/3)/2 ≤ e−2 lnn = 1/n2

if k ≥ k0 = 4(ε2/2− ε3/3)−1 lnn.

We can thus prove the random projection theorem and consequently the JL lemma.

2.2. T-bound and M-bound. The technique used in the above proof is known as Chernoff
tail bound:

Pr {X ≥ a} ≤ e−taM(t) for all t > 0,(3)

Pr {X ≤ a} ≤ e−taM(t) for all t < 0.(4)

Proof of Chernoff tail bound is straightforward. For example, to prove (3), we use mono-
tonicity of the exponential function and Markov inequality to get, for t > 0,

Pr {X ≥ a} = Pr
{
etX ≥ eta

}
≤ E[etX ]e−ta = M(t)e−ta.

We obtain the best bound by minimizing the upper bound e−taM(t).

Example 2.6 (Chernoff bounds for the standard normal distribution). Let X ∼ N(0, 1) be
the standard normal distribution. Then M(t) = et

2/2. So the Chernoff bound is given by

Pr {X ≥ a} ≤ e−taet
2/2 for all t > 0.

The minimum is achieved at t = a which gives the exponential decay tail bound

(5) Pr {X ≥ a} ≤ e−a
2/2 for all a > 0.

Similarly, we get the tail bound in the left

(6) Pr {X ≤ a} ≤ e−a
2/2 for all a < 0.

To generalize to random variables other than Gaussian, let us introduce the following
concepts. The presentation mainly follows Matoušek [13].

Definition 2.7. Let X be a random variable with zero mean E[X] = 0. X has a sub-
Gaussian upper tail if there exists a constant C > 0 such that for all a > 0,

(7) Pr {X ≥ a} ≤ e−Ca
2

.

X has a sub-Gaussian upper tail up to a0 if the bound (7) holds for all a ≤ a0. X has a
sub-Gaussian tail if both X and −X have sub-Gaussian upper tail.

Definition 2.8. A random variable X is called sub-Gaussian up to t0 if there exists a
constant C such that for all t ≤ t0
(8) MX(t) ≤ eCt

2

We will simply call (7) “T-bound” and (8) “M-bound”.
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M-bound −→ T-bound. By checking the proof of Example 2.6, we see that if we have
a bound on the moment generating function M(t) ≤ eCt

2

, then we could have a sub-
Gaussian upper tail bound.

We summarize as the following lemma.

Lemma 2.9. For a random variableX with E[X] = 0, ifX is sub-Gaussian, i.e.,MX(t) ≤
eCt

2/2 for some constant C and for all t > 0, then X has a sub-Gaussian upper tail
Pr {X ≥ a} ≤ e−a

2/(2C). If MX(t) ≤ eCt
2/2 holds for all t ∈ (0, t0), then X has a

sub-Gaussian upper tail up to Ct0.

T-bound −→ M-bound. We have kind of converse of the above result.

Lemma 2.10 (Matoušek [13]). If E[X] = 0,Var[X] = E[X2] = 1 and X has a sub-
Gaussian upper tail, i.e. Pr{X ≥ a} ≤ e−Caa

2

, then X is sub-Gaussian, i.e., M(t) ≤
eCt

2

for all t > 0, where the constant C depends only on Ca in the sub-Gaussian tail.

Proof. Let F (x) = Pr {X < x} be the distribution function of X . Then we have

E[etX ] =

∫ ∞
−∞

etx dF (x) =

∫ 1/t

−∞
etx dF (x) +

∫ ∞
1/t

etx dF (x)

For the first term, we have the following inequalities:∫ 1/t

−∞
etx dF (x) 6

∫ 1/t

−∞
(1 + tx+ t2x2) dF (x) 6

∫ ∞
−∞

(1 + tx+ t2x2) dF (x)

= 1 + tE[X] + t2E[X2] = 1 + t2

where in the first step we use the fact that ex 6 1 + x+ x2 when x 6 1.
For the second term, we can rewrite the integral by the sum:∫ ∞

1/t

etx dF (x) =

∞∑
k=1

∫ k+1/t

k/t

etx dF (x) 6
∞∑
k=1

et
k+1
t Pr

{
X >

k

t

}

6
∞∑
k=1

e2ke−Cak
2/t2 =

∞∑
k=1

ek(2−Cak/t
2).

Now consider the quadratic function x(2 − xCa/t2). When k is in the negative part
of the above quadratic function. The summation is a geometrical decay series. More
precisely, if t 6

√
Ca/2, then we have 2− Cak/t2 6 −Ca/2t2 and thus
∞∑
k=1

ek(2−Cak/t
2) 6

∞∑
k=1

e−kCa/t
2

=
e−Ca/t

2

1− e−Ca/t2

6
e−Ca/t

2

1− e−4
6 2e−Ca/t

2

6
2t2

Ca
= O(t2)

the last line is due to the fact that e−x 6 1/x for all x > 0. Hence

E[etx] 6 1 +O(t2) 6 eO(t2).

If t >
√
Ca/2, the largest terms in the sum are those k near t2/a, and the sum is still

O(et
2/2Ca). So we also get E[etx] 6 eO(t2). �
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Exercise 2.11. LetX be the random variable taking values±1 with probability 1/2. Prove
the M-bound directly

E
[
etX
]
≤ et

2/2.

2.3. Sum of independent random variables. Consider n-independent random variables.
We want to pass properties of individual random variable to the sum. A sequence of ran-
dom variables X1, X2, . . . , Xn have a uniform sub-Gaussian tail if all of them have sub-
Gaussian tails with the same constant.

The target is a tail bound for the sum of Xi. But when passing the properties of each
random variable to the summation, working on the M -bound is much easier. So we first
apply “T-bound to M-bound” procedure to each Xi and then “M-bound to T-bound”; see
the diagram below

T-bound −−−−→ M-bound
∑y ∑y

T-bound ←−−−− M-bound

Lemma 2.12. Let X1, . . . , Xn be independent random variables satisfying E[Xi] = 0,
Var(Xi) = 1, and having a uniform sub-Gaussian tail. Let α1, . . . , αn be real coefficients
satisfying

∑n
i=1 α

2
i = 1. Then the sum Y =

∑n
i=1 αiXi has E[Y ] = 0,Var(Y ) = 1, and

a sub-Guassian tail.

Proof. By the linearity of expectation, we get E[Y ] = 0. For independent random vari-
ables, the variance is additive and thus Var(Y ) =

∑n
i=1 α

2
i Var(Xi) =

∑n
i=1 α

2
i = 1.

By Lemma 2.10, MXi
(t) ≤ eCt2 for all t > 0. Then

MY (t) = E
[
etY
]

= E

[
n∏
i=1

etαiXi

]
=

n∏
i=1

E
[
etαiXi

]
≤ eCt

2 ∑n
i=1 α

2
i = eCt

2

.

Therefore by Lemma 2.9, the M-bound of Y implies the desired tail bound. �

Exercise 2.13 (The 2-stability of Gaussian distribution). Let X1, . . . , Xn be i.i.d N(0, 1).
Let α1, . . . , αn be real coefficients satisfying

∑n
i=1 α

2
i = 1. Prove that Y =

∑n
i=1 αiXi

is still the standard normal distribution, i.e., Y ∼ N(0, 1).

Let T be a random matrix with each entry Rij satisfying E[Rij ] = 0, Var(Rij) = 1,
and having a uniform sub-Gaussian tail. Then for a unit vector x, by Lemma 2.12, Yi :=

(Tx)i =
∑d
j=1Rijxj has properties E[Yi] = 0,Var(Yi) = 1, for i = 1, 2, . . . , k and has

a sub-Guassian tail. Next we consider the squared length of (Y1, Y2, · · · , Yk).

Lemma 2.14 (Matoušek [13]). Let k ≥ 1 be an integer. Let Y1, . . . , Yk be independent
random variables with E[Yi] = 0, Var(Yi) = 1, and having a uniform sub-Gaussian tail.
Then

Z =
1√
k

(Y 2
1 + Y 2

2 + · · ·+ Y 2
k − k)

has a sub-Gaussian tail up to
√
k.

Proof. By the linearity of expectation, we have

E

[
k∑
i=1

Y 2
i

]
=

k∑
i=1

E
[
Y 2
i

]
=

k∑
i=1

Var(Yi) = k.
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The scaling 1/
√
k is introduced to normalize the variance of

∑k
i=1 Y

2
i as that in Central

Limit Theorem.
We calculate the moment generating function of Z first:

E
[
etZ
]

= E

[
exp

{
t√
k

k∑
i=1

(
Y 2
i − 1

)}]
=

k∏
i=1

E
[
exp

{
t√
k

(Y 2
i − 1)

}]
.

So we need a M-bound of Y 2
i − 1 derived from the tail bound of Y 2

i .
Following the proof of Lemma 2.10, we can show that: There exist constant C ≥ 1/2

and t0 such that for all t ∈ [0, t0], we have

(9) E
[
et(Y

2
i −1)

]
≤ eCt

2

and E
[
et(1−Y

2
i )
]
≤ eCt

2

.

Then for t ∈ (0, t0
√
k), we obtain the M-bound of Z

E
[
etZ
]
≤
(
eCt

2/k
)k

= eCt
2

,

and a sub-Gaussian upper tail up to 2C
√
k ≥
√
k follows from Lemma 2.9. �

Exercise 2.15. Let Y be a random variable like Yi in Lemma 2.14.
(1) Show that E[Y 4] is finite and thus Var(Y 2) is finite;
(2) Prove M-bound (9) for Y 2 − 1.

2.4. JL Transform by sub-Gaussian entries. The following theorem shows the random
projection matrix can be composed by entries with i.i.d. sub-Gaussian random variables
[10, 1, 13].

Theorem 2.16 (Matoušek [13]). Let n ≥ 1 be an integer, ε ∈ (0, 1), and δ ∈ (0, 1), and let
k = Cε−2 log(δ/2) with a suitable constantC. Define a random linear map T : Rn → Rk
by

(Tx)i =
1√
k

n∑
j=1

Rijxj , i = 1, 2, . . . , k,

where Rij are independent random variables with E[Rij ] = 0, Var(Rij) = 1, and a
uniform sub-Gaussian tail or Rij are independent sub-Gaussian random variables. Then
for every x ∈ Rn we have

Pr
{

(1− ε)‖x‖2 ≤ ‖Tx‖2 ≤ (1 + ε)‖x‖2
}
≥ 1− δ.

Proof. Since T is linear, we can assume x is a unit vector. Then for a unit vector x, by
Lemma 2.12, Yi := (Tx)i =

∑d
j=1Rijxj has properties E[Yi] = 0,Var(Yi) = 1, for

i = 1, 2, . . . , k and has a sub-Guassian tail.
Next we consider the squared length of (Y1, Y2, · · · , Yk). Note that the random variable

‖Tx‖2 − 1 with a fixed x (the randomness is from T ) has the same distribution of Z/
√
k.

So
Pr
{
‖Tx‖2 ≥ 1 + ε

}
= Pr

{
Z ≥ ε

√
k
}
≤ e−Cε

2k ≤ δ/2,

for k ≥ Cε−2 log(δ/2). Repeat the same argument for Pr
{
‖Tx‖2 ≤ 1− ε

}
to finish the

proof. �

Example 2.17. According to Theorem 2.16, the Gaussian is not essential. A very simple
choice could be Rij = ±1 with probability 1/2. Then by Exercise 2.11, we have M-bound
of Rij , i.e., Rij are sub-Gaussian.
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Example 2.18. Achlioptas [1] proposed a computationally efficient choice: Rij = 0 with
probability 2/3 and ±1 with probability 1/6 each (with a proper scaling

√
3 so that the

variance is 1). The sub-Gaussian tail bound can be obtained by Hoeffding’s inequality
for bounded random variables. The matrix contains only 1/3 non-zeros and requires only
summation and subtraction operations (no multiplication since the scaling can be post-
ponded). Therefore the computation is much faster.

Here we follow [11] to prove Hoeffding’s inequality to verify the sub-Gaussian M-
bound for a bounded random variable.

Proposition 2.19 (Hoeffding’s inequality). Let X be a random variable with E[X] = 0
and a ≤ X ≤ b. Then for t > 0,

E[etX ] ≤ et
2(b−a)2/8.

Proof. We use the convexity of the exponential function to get the inequality

etx ≤ w1(x)eta + w2(x)etb

with w1(x) = (x− a)/(b− a) and w2 = (b− x)/(b− a). Apply the expectation operator
and notice that E[X] = 0 to get

E[etX ] ≤ w2(0)etb − w1(0)eta = (1− p+ pet(b−a))e−pt(b−a) = eΦ(u),

where p = −a/(b − a), u = t(b − a), and Φ(u) = −pu + log(1 − p + peu). Now it is a
calculus problem to show Φ(u) ≤ t2(b− a)2/8, e.g. by Taylor series. �

Exercise 2.20. Consider a random matrix T with i.i.d. entries Rij ∼ N(0, 1). Prove

Pr
{

(1− ε)‖x‖2 ≤ ‖Tx‖2 ≤ (1 + ε)‖x‖2
}
≥ 1− 2e−(ε2−ε3)k/4,

directly using the moment generating function of the square of the standard normal distri-
bution.

Exercise 2.21 (Preservation of inner products [12]). Let f = 1/
√
kTx where T is a J-L

transform satisfying Pr
{
|‖Tx‖2 − 1| > ε

}
≤ δ for a unit vector x. Prove for any two unit

vectors u, v ∈ Rd:
Pr {|u · v − f(u) · f(v)| > ε} ≤ 2δ.

3. FAST JL TRANSFORM

The JL transforms discussed before require a dense k× d matrix with k = O(ε−2 lnn)
and thus need O(kd) = O(ε−2d lnn) operations for transforming one data. Can we re-
duce the computational cost? The lower bound of k0 ≥ O(ε−2/| log ε| lnn) by Alon [4]
eliminates the possibility of using less number of rows. Then the only hope is to make the
k× d matrix sparser, i.e., with more zero entries. One attempt is the approach by Achliop-
tas [1] which reduces the number of non-zero entry to 1/3 of a full matrix, c.f. Example
2.18. Can we go further?

A naive choice would the coordinate axis vectors, e.g., randomly choosing k-coordinate
axis vectors of the original Rd. The corresponding matrix is a permutation matrix. If the
transform matrix is sparse, however, then some vectors will be totally missed, e.g., the
non-zero pattern of the vector coincides to be the zero pattern of rows. In the example of
choosing k-coordinate axis, data points could be aligned to the other n− k axis. If the ma-
trix is considerably sparse, then there are considerably portion of such vectors. From this
point of view, the randomization in the original JL transform can be thought as insurance
against axis-alignment.
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A sparse transform cannot be oblivious. It can be only applied to a special class of data.
For example, if the d components of the vector x contribute almost equally to the norm
‖x‖, randomly chose k components would give a good approximation of the norm.

Another choice would be the generalization of Achlioptas’ idea. We could use the
random variable: R = 0 with probability 1−q andR = ±q−1/2 with probability q/2. Then
the transformation matrix contains O(kdq) non-zeros. When q � 1, e.g. q = O(1/d),
then only O(k) operations is needed for one transformation. However, by Hoeffding’s
inequality, the M-bound will hold with a constant depending on 1/q and consequently k
should be larger.

We shall follow Matoušek [13] to present a precise characterization of the trade-off
between the sparsity and the tail bound. In the sequel, we use short nation pq = Pr{X =
q} for a discrete random variable X .

Lemma 3.1 (Matoušek [13]). Let α2 ≤ q ≤ 1 and let x ∈ Rn be a unit vector with
‖x‖∞ ≤ α. Chose i.i.d random variables S1, S2, . . . , Sd using the distribution p0 =

1− q, pq−1/2 = q/2, p−q−1/2 = q/2 and let Y =
∑d
i=1 Sixi. Then Y has a sub-Gaussian

tail up to
√

2q/α.

Proof. For such distribution, it is easy to check the M-bound. For each Si, using the last
inequality in Ex. 2.4, we have

E
[
etS
]

=
q

2

(
et/
√
q + e−t/

√
q
)

+ 1− q ≤ qet
2/(2q) + 1− q.

Then by the independence of Si, we have

E
[
etY
]

=

d∏
i=1

E
[
etxiSi

]
≤

d∏
i=1

(
qet

2x2
i /(2q) + 1− q

)
.

When ‖x‖∞ ≤ α, for t2 ≤ 2q/α2, the power t2x2
i /(2q) ≤ 1. We can use the inequality

of exponential functions to bound as

qet
2x2

i /(2q) + 1− q ≤ q(1 + t2x2
i /q) + 1− q = 1 + t2x2

i ≤ et
2x2

i .

Consequently E
[
etY
]
≤
∏d
i=1 e

t2x2
i = et

2

for t2 ≤ 2q/α2. From the M-bound, we easily
get the T-bound for a ≤ a0 =

√
2q/α. �

The parameter q in the above lemma can be thought of as a measure of the sparsity. The
smaller q is, the sparser the matrix is. The non-zero value±q−1/2 of the random variable is
to satisfy the condition: mean zero and variance one. If no control of the maximum norm,
the sub-Gaussian tail holds only up to

√
2q which is small for a sparse transformation.

Choosing q = O(α2) leads to a tail-bound with O(1) range. Therefore we would like to
control ‖x‖∞. Note that for a unit vector x, 1/

√
d ≤ ‖x‖∞ ≤ 1 and if ‖x‖∞ = O(1/

√
d),

then components of x are almost equi-distributed or in other words more spread out.
How to apply a sparse JL transform for a general set of data without such control of

maximum norm? Ailon and Chazelle [2] propose an ingenious idea of combination of a
sparse transformation with fast Fourier transform. They use the Uncertainty Principle in
harmonic analysis: A nonzero function and its Fourier transform cannot both be sharply
localized; see Appendix for a concise description. Based on that, they propose a discrete
Fourier transform to enlarge the support of any sparse vector. To prevent the sparsification
of dense vectors, the Fourier transform is randomized.

This procedure can be thought as precondition. That is preconditioned the d × n ma-
trix by a d × d matrix such that the transformed data will have a lower maximum norm
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while the l2-norm is preserved. Preconditioner proposed by Ailon and Chazelle [2] is the
composition of the following matrices:

• H is the d× d normalized Hadamard matrix:

Hij = d−1/2(−1)(i−1,j−1),

where (i, j) is the dot-product of index i, j expressed in binary. The factor d−1/2

is introduced such that the norm of row vectors is unit.
• D is a d×d diagonal matrix, where eachDii is drawn independently from {−1, 1}

with probability 1/2.

The multiplication of the preconditioner HD matrix, which will be called randomized
Hardmard transformation, can be computed fast, say, inO(d ln d) operations using Walsh-
Hadamard transform. It is easy to see HD is l2-norm preserving. The following lemma
shows the maximum norm is reduced and the ‘energy’ is more spread out.

Lemma 3.2 (Randomized Hardmard transformation [2]). LetH,D be defined above. Then
for any set V of n vectors in Rd, with probability at least 1− 1/20,

(10) max
x∈V
‖HDx‖∞ ≤

(
2 ln(40nd)

d

)1/2

‖x‖2.

Proof. SinceHDx is linear in x, w.l.o.g. we assume ‖x‖2 = 1. Let u = (u1, u2, . . . , ud)
T =

HD(x1, x2, . . . , xd)
T . Then u1 =

∑d
i=1Rixi, where each Ri = ±d−1/2 is chosen uni-

formly and independently. We compute the M-bound of u1 as

E
[
etdu1

]
=

d∏
i=1

E
[
etdRixi

] d∏
i=1

1

2

(
etxi

√
d + e−txi

√
d
)
≤

d∏
i=1

et
2dx2

i /2 = et
2d/2.

From the M-bound, we can derive the T-bound

Pr {|u1| ≥ a} ≤ 2e−a
2d/2 ≤ 1

20nd
,

by choosing a2 = 2 ln(40nd)/d. Using the union bound over all nd coordinates of
HD(V ), we obtain the desired result. �

With sub-Gaussian tail of Y and the bound of the maximum norm of preconditioned
data, we can follow the previous proof to show the high concentration of the random vari-
able Z =

(∑k
i=1 Y

2
i − k

)
/
√
k. Note that Lemma 2.14 cannot be applied directly since

the sub-Gaussian tail only holds up to a finite value
√

2q/α. Further trick (using elemen-
tary calculus and probability estimate) is needed and can be found in [13].

If we denote the sparse projection matrix as P . Then T = PHD is called Fast-Johnson-
Lindenstrauss-Transform (FJLT). The projection matrix P is i.i.d. Gaussian in the original
paper by Ailon and Chazelle [2] and improved to sub-Gaussian by Matoušek [13] which is
more computationally efficient.

The computational cost of HDx is O(d ln d+ qdk). With the choice of q = O(α2) =
O(1/d lnn), the cost becomes O(d ln d + k lnn). As only k-components of HDx is
needed in PHDx, the first term O(d ln d) can be further reduced to O(d ln k), c.f. [3].
Recall that the dense J-L transform requires O(kd) operations. The fast J-L transform
essentially changes the product kd to the addition k+d penalized with logarithmic factors.
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APPENDIX: THE UNCERTAINTY PRINCIPLE FOR FOURIER TRANSFORMS

We denoted by S(R) the Schwartz functions on the real line which is, roughly speak-
ing, smooth functions and all derivatives decay faster than polynomials approaching to the
infinity. Although the Fourier transform

f̂(ξ) =

∫
R
f(x)e−2πixξ dx

is well defined for f ∈ L1(R), restricted to S(R), the transform is isomorphism. And
more importantly, restricted to S(R), the differentiation changes to a multiplication, e.g.
f̂ ′(x) = iξf̂ which can be proved using integration by parts. Details can be found in [7].

Theorem 3.3. For any f ∈ S(R) and any x0, ξ0 ∈ R, we have the following inequality:

(11) ‖f(x)‖2 ≤ 4π‖(x− x0)f(x)‖‖(ξ − ξ0)f̂(ξ)‖.

Proof. For simplicity we consider real functions. We use integration by parts to get∫
R
|f(x)|2 dx = −2

∫
R
xf(x)f ′(x) dx,

where the boundary term at −∞ and∞ are vanished since f ∈ S(R). Therefore

‖f‖2 ≤ 2‖xf(x)‖‖f ′(x)‖.

Now we can compute the norm ‖f ′(x)‖ by its Fourier transform and obtain ‖f ′(x)‖ =

2π‖ξf̂(ξ)‖. This finishes the proof for x0 = ξ0 = 0. For general cases, we can apply the
zero case to g(x) = e−2πixξ0f(x+ x0). �

Consider the case |f |2 and |f̂ |2 are probability density functions of random variables X
and X̂ , and x0 and ξ0 are the expectation of X and X̂ , respectively. Then the right hand
side are standard deviation. So the inequality implies that if one random variable is tightly
concentrated in a small region then the other will have a wider spread. Smaller standard
deviation implies a more precise prediction (or measurement). So if two probability density
functions are Fourier transforms of one another, we can accurately predict at best one event.
This is known as ‘Uncertainty Principle’ in quantum physics. Physical quantities of such
conjugate pairs include: position and momentum, time and frequency.
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