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ABSTRACT. This notes introduces the theory of linear elasticity, which studies the de-
formation of elastic solid bodies under external forces. The deformation is described by
the displacement vector field u, and the change of shape is measured by the infinitesimal
strain tensor ε(u). The internal forces generated by the deformation are represented by the
stress tensor satisfying the constitutive equationσ = λ tr(ε)I+2µε in the linear elasticity
regime. The physical interpretation of stress and strain, the relationships between material
constants, and the concepts of compressibility and incompressibility are also discussed.

1. INTRODUCTION

The theory of elasticity concerns the study of the deformation of elastic solid bodies
under the influence of external forces. A body is called elastic if it returns to its original
(undeformed) shape upon the removal of these external forces.

1.1. Displacement, Strain, and Stress. How do we describe the deformation of a solid
body? To begin, let us represent a solid body by a bounded domain Ω ⊂ R3. The deformed
domain can be described as the image of a vector-valued function Φ : Ω → R3, that is,
Φ(Ω), which we refer to as a configuration or placement of a body. For most problems of
interest, it is reasonable to require that this map be one-to-one and differentiable. Given
our focus on deformation, namely, the change in the domain, we define Φ(x) = x+u(x)
or, equivalently, u(x) = Φ(x)−x, and designate u as the displacement. Here, we engage
with continuum mechanics, which assumes that systems have properties defined at every
point in space, abstracting away from the details at the atomic and molecular levels.

The displacement is not the same as deformation. For instance, a translation or rotation,
known as rigid body motions, of Ω results in a non-trivial displacement, i.e., u 6= 0, yet
the shape and volume of Ω remain unchanged.

How do we mathematically describe shape? Using vectors. For example, a cube can be
defined by three orthogonal vectors. The change of shape is then described by a mapping
of these vectors, which can be represented by a 3× 3 matrix. For example, a rigid motion
is given by

(1) Φ(x) = x1 +Q(x− x0),

where x0,x1 are fixed material points, andQ is a rotation (unitary) matrix (QᵀQ = I).
Consider a point x ∈ Ω and a vector v pointing from x to x + v. Then the vector

v will be deformed to Φ(x + v) − Φ(x) ≈ DΦ(x)v provided ‖v‖ is small. Thus, the
deformation gradient F (x) := DΦ(x) is a candidate of the mathematical quantity to
describe the deformation.

To compute the change in length, consider two points x and x + v in Ω. The squared
distance in the deformed domain will be

‖Φ(x+ v)− Φ(x)‖2 ≈ ‖DΦ(x)v‖2 = vᵀ(F ᵀF )(x)v.
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FIGURE 1. Motion of a continuum body. From Wikipedia.

Since Φ is a differential homeomorphism, detF 6= 0, and (F ᵀF )(x) is symmetric and
positive definite, defining a Riemannian metric (geometry) at x.

Compared with the squared distance ‖x+ v−x‖2 = vᵀIv in the original domain, we
then define a symmetric matrix function

(2) E(x) =
1

2
[(F ᵀF )(x)− I]

and call it strain. When Φ is a rigid body motion, F = Q with QᵀQ = I , thus E = 0. A
nonzero strain E describes the change of geometry from the Euclidean one.

Strain is a geometrical measure of deformation that shows the relative displacement
between points in a material body, essentially measuring how much a given displacement
locally differs from a rigid-body displacement. It accurately describes deformation.

What is the relationship between the strain E and the displacement u? By substituting
DΦ = I +Du into (2), we obtain

(3) E = E(u) =
1

2
[Du+ (Du)ᵀ + (Du)ᵀDu] .

We will primarily focus on the small deformation case, meaning ‖Du‖ � 1. In this
scenario, we can ignore the quadratic part and roughly use

(4) E(u) ≈ ε(u) = ∇su :=
1

2
[Du+ (Du)ᵀ] ,

where ∇s denotes the symmetric gradient. The strain tensor E defined in (3) is known
as the Green-St. Venant Strain Tensor or the Lagrangian Strain Tensor. Its approximation
ε in (4) is referred to as the infinitesimal strain tensor. The relation expressed in (4) is
recognized as the kinematic relation. In the context of linear elasticity theory, we also refer
to the kernel of ε(·) as (infinitesimal) rigid body motion, and its characterization will be
discussed later on.

Remark 1.1. The approximation E(u) ≈ ε(u) holds true only in the case of small de-
formation. Take, for instance, the rigid motion described in (1). Here, the deformation
gradient is F = Q, which results in E(u) = 0. However, ε(u) = (Q+Qᵀ)/2− I 6= 0.
This discrepancy shows that the infinitesimal strain tensor ε does not accurately measure
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the correct strain in scenarios involving large rotations, even though the strain tensor E
can effectively do so.

1.2. Equations. How to find out the deformation? To cause a deformation, there should
be forces applied to the solid body. In a state of static equilibrium, deformation is de-
termined by the balance of these forces. Let us explore both external and internal forces
involved.

External forces can be categorized into two types:
• Body forces are forces distributed throughout the entire volume of the body, such

as gravity or a magnetic force.
• Surface forces are applied to the surface or outer boundary of the body, like the

pressure from applied loads or external contacts.
Internal forces come into play due to the deformation of the body itself. When a body

deforms, it generates resistance forces similar to those produced when stretching a spring
or compressing rubber. To describe these internal forces, imagine conceptually slicing the
body along a plane. This action creates a new internal surface, across which internal forces
are exerted to maintain equilibrium between the two halves of the body. These internal
forces are called stresses.

Stress at a point x can be mathematically defined as limA→{x} tA/A, where tA repre-
sents the internal force applied across the cutting surface A, which encloses x and shrinks
to the point x. The force tA is a vector and does not necessarily have to be orthogonal to
the surface. The component of this force that is normal to the surface is known as the nor-
mal stress (σn), and the component tangential to the surface is termed the shearing stress
(τn), with the subscript n indicating a normal vector to the cutting surface.

FIGURE 2. Stress vector on an internal surface S with normal vector n.
The stress vector can be decomposed into two components: one compo-
nent normal to the plane, called normal stress σn, and another component
parallel to this plane, called the shearing stress τn. From Wikipedia.

At any given point x within a body, there exist infinitely many surfaces with their cen-
troid at x. Consequently, stress can be conceptualized as a function t : Ω × S2 → R3,
where S2 represents the unit 2-sphere denoting direction. At a specific point x ∈ Ω, the
stress function t maps a unit vector n ∈ S2 to another vector, representing the force.
Cauchy’s theorem facilitates the expression of this stress function by decoupling the vari-
ables, leading to

t(x,n) = Σ(x)n,

where Σ(x) is referred to as the stress tensor.
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Assuming f is the sole applied external and body-type force, the equilibrium equations
can be written as: ∫

V

f dx+

∫
∂V

Σn dS = 0 for all V ⊂ Ω,(5) ∫
V

f × x dx+

∫
∂V

(Σn)× x dS = 0 for all V ⊂ Ω.(6)

The first equation represents the balance of forces, while the second signifies the conser-
vation of angular momentum.

From these equations, it can be deduced that the stress tensor Σ must be symmetric
to prevent the body from undergoing unconstrained rotation. Here, we offer a simplified,
albeit less rigorous, proof for the 2D case, directing readers to a more comprehensive proof
using the Tensor Calculus. For this purpose, 2D vectors (x1, x2) are extended to 3D vectors
(x1, x2, 0) to facilitate the application of the cross product, which can then be interpreted
as a scalar, namely (a1, a2)× (x1, x2) = a1x2 − a2x1.

By considering V as a small square of size h� 1 centered at the origin and assuming σ
as a constant function, we approximate the boundary integral using a one-point quadrature
at the midpoints of the boundary edges. The volume integral

∫
V
f × x dx is similarly

approximated using a one-point quadrature at the center, which equals zero. A straightfor-
ward calculation under these approximations reveals that σ12 = σ21, thus demonstrating
the symmetry of the stress tensor for a first-order approximation of the integral.

0

(0,−1)

(1, 0)

(0, 1)

(−1, 0)

(0, h)

(h, 0)

FIGURE 3. At the left and right edges,
∫
e
(σn) × x ≈ h(σ11, σ21) ×

(h, 0) = −σ21h2 and at the top and bottom edges,
∫
e
(σn) × x ≈

h(σ12, σ22)× (0, h) = σ12h
2. The volume integral

∫
V
f dx ≈ 0. So (6)

will imply σ12 + σ21 = 0 in the first order approximation.

Using the Gauss theorem and letting V → {x}, the equation (5) for the balance of
forces becomes

(7) f + divΣ = 0.

The 3×3 matrix function Σ has 9 components while (5)-(6) contains only 6 equations. Or
the symmetric matrix function Σ has 6 components while (7) contains only 3 equations.
We need 3 more equations to determine Σ.

The internal force within a material results directly from deformation. Therefore, it
is logical to presume that stress is a function of strain, and subsequently, a function of

https://www.math.uci.edu/~chenlong/226/tensor.pdf
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displacement, expressed as:

(8) Σ = Σ(E) = Σ(u),

This relationship is known as the constitutive equation. Substituting this equation into
the balance of forces enables solving for the 3 unknown components of the displacement
vector function u by 3 equations in (5).

To delineate the relation Σ(E) within the constitutive equation, two primary assump-
tions are made: firstly, that the stress tensor is intrinsic, meaning it is independent of the
coordinate system chosen. Secondly, the material is considered isotropic, implying that
the stress remain unchanged under any rotation of the non-deformed body. Under these
assumptions, the stress tensor can be represented as:

Σ = Σ(F ᵀF ) = Σ(I + 2E).

Following the Rivlin-Ericksen theorem, this expression can be expanded to:

Σ = λ trace(E)I + 2µE + o(E),

where λ and µ are two positive constants referred to as the Lamé constants. In the realm
of linear elasticity, the higher-order terms are neglected, leading to the approximation:

(9) Σ ≈ σ = λ trace(ε)I + 2µε = λ divuI + 2µ∇su.
We now summarize the unknowns and equations for linear elasticity as the follows.

————————————————————————————————————
• (σ, ε,u): (stress, strain, displacement).
σ, ε are 3× 3 symmetric matrix functions and u is a 3× 1 vector function.
• Kinematic equation

ε = ∇su =
1

2
(Du+ (Du)ᵀ).

• Constitutive equation

σ = λ trace(ε)I + 2µ ε = λ divu+ 2µ∇su.
• Balance equation

f + divσ = 0.

————————————————————————————————————
Given certain boundary conditions, the combination of the kinematic equation, consti-

tutive equation, and balance equation uniquely defines the deformation characterized by
the trio (σ, ε,u).

Remark 1.2. Across various mechanics disciplines, the kinematic and balance equations
maintain their form consistently. The distinction among these disciplines arises in the
constitutive equations – essentially, how stress is related to strain varies.

1.3. Boundary conditions. In linear elasticity, there are several types of boundary condi-
tions that can be prescribed on the boundary of the domain Ω. The boundary ∂Ω is typically
divided into two disjoint parts: the Dirichlet boundary ΓD and the Neumann boundary ΓN ,
such that ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅.

1. Dirichlet boundary conditions (also known as displacement boundary conditions).
These conditions specify the displacement vector u on the Dirichlet boundary ΓD. Math-
ematically: u = g on ΓD, where g is a given function. Physically, this means that the
boundary ΓD is fixed (g = 0) or has a prescribed displacement.
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2. Neumann boundary conditions (also known as traction boundary conditions).
These conditions specify the traction vector t (force per unit area) on the Neumann bound-
ary ΓN . Mathematically: σ · n = t on ΓN , where σ is the stress tensor, n is the unit
outward normal vector to the boundary, and t is a given function. Physically, this means
that the boundaryΓN is subjected to a specified force or traction.

3. Mixed boundary conditions. These conditions involve a combination of Dirichlet
and Neumann boundary conditions on different parts of the boundary: u = g on ΓD and
σ · n = t on ΓN .

4. Robin boundary conditions (also known as spring boundary conditions or elastic
support boundary conditions). These conditions relate the displacement and the traction
on the boundary through a spring-like relation. Mathematically: σ · n + ku = t on ΓR,
where k is a positive constant representing the stiffness of the elastic support and ΓR is the
portion of the boundary where Robin conditions are prescribed. Physically, this means that
the boundary is supported by an elastic medium or springs.

5. Periodic boundary conditions. These conditions are used when the domain has a
periodic structure, and the displacements and tractions are required to be periodic across
opposite boundaries. Mathematically: u(x) = u(x+L) and σ(x) ·n = −σ(x+L) ·n
on periodic boundaries, where L is the periodic length vector.

These boundary conditions are essential for well-posedness of the linear elasticity prob-
lem and to model various physical situations. The choice of boundary conditions depends
on the specific problem and the physical characteristics of the system being modeled.

2. PHYSICAL INTERPRETATION

In this section, we explain the physical meaning of stress and strain, offering insights
into kinematic and constitutive equations from a physical standpoint.

2.1. Strain. In the one-dimensional case, the equation ε = u′ implies that strain is essen-
tially the relative displacement per unit distance between two points within a body. In a
multi-dimensional setting, deformation encompasses not only changes in length but also
alterations in angles. We can thus distinguish between two main types of strain:

• Normal strain, which quantifies the degree of elongation along a specific direction.
• Shear strain, which measures the amount of distortion or, more simply, the change

in angles.
Mathematically, considering three points x,x+ v, and x+w in the undeformed body,

the geometry (lengths and angles) of the vectors v andw is characterized by the inner prod-
uct (v,w) = wᵀv. After deformation, Φ(x+v)−Φ(x) ≈ DΦ(x)v = Fv and similarly
for Φ(x+w)− Φ(x) ≈ Fw, the inner product becomes (Fw,Fv) = vᵀF ᵀFw.

Taking w = v, we obtain the change in squared distance, particularly

‖δe1‖2 = ‖Fe1‖2 − ‖e1‖2 = 2(Ee1, e1) = 2ε11.

Thus, εii signifies half of the change in squared length in the i-th coordinate direction for
i = 1, 2, 3.

The alteration in angle is similarly reflected in the strain tensor E = (F ᵀF − I)/2.
Selecting w = e1 and v = e2 as the coordinate axes vectors. The original angle between
e1 and e2 is π/2 and thus (e1, e2) = 0. Denoting the angle of the deformed vectors by θ
and the change in angle by δθ, such that θ = π/2− δθ, we find

2ε12 ≈ 2(Ee1, e2) = (Fe1,Fe2) = ‖Fe1‖‖Fe2‖ cos θ

= (1 + ‖δe1‖)(1 + ‖δe2‖) sin δθ ≈ δθ.
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In the approximation, we utilize the linear approximation sin δθ ≈ δθ, 1+|δei| ≈ 1, and
omit quadratic and higher order terms, given the smallness of length and angle changes.
Consequently,

ε12 = δθ/2,

implying that the shear strain εij represents half of the angle change.

2.2. Stress. With an understanding of strain, let us explore the concept of stress. Consider
the deformation occurring within a bar-like structure. When we envision a cut through this
body, essentially introducing an imaginary cutting plane, the deformation gives rise to two
primary types of stress:

• Normal stress, which acts perpendicular to the plane.
• Shear stress , which acts parallel to the plane.

Normal stress is deemed positive when it results in tension within the material, stretching
it apart. Conversely, it is considered negative when it leads to compression, pressing the
material together. The distinction between normal and shear stress is context-dependent.
For example, in a bar that is being stretched horizontally, there would be no shear stress
if the cutting plane is vertical, as the stress is purely normal to the plane. Similarly, if
the cutting plane were horizontal, we would observe no normal stress but shear stress,
depending on the direction and nature of the applied forces. See Fig. 3.

(a) Normal stress (b) Shear stress

FIGURE 4. Normal and shear stress.

For a symmetric matrix, employing eigen-vectors to establish an orthonormal basis al-
lows for the stress to be represented in diagonal form within a new coordinate system.
These eigen-vectors, known as principal directions, vary with location. When analyzing
stress along these principal directions, only normal stress is observed, demonstrating a di-
rect relationship between the orientation of the stress tensor and the nature of the stress
experienced.

Similarly, the strain tensor also has principal directions. Note that the principal direc-
tions for strain and stress tensors do not always coincide.

We use a Cartesian coordinate system to describe deformation. Changing the coordi-
nate system will alter the description, but the deformation itself is intrinsic, meaning it
is independent of the coordinate system chosen. Both stress and strain are described by
symmetric matrix functions, underscoring their role as intrinsic material properties. Im-
portantly, these properties are coordinate-independent, meaning their mathematical repre-
sentation must remain consistent across coordinate transformations. For instance, consider
a coordinate transformation where x̂ = Qx, with Q representing a rotation matrix. The
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transformed strain and stress tensors, ε̂ and σ̂, respectively, are related to their original
counterparts by:

(10) ε̂ = QεQᵀ, σ̂ = QσQᵀ,

demonstrating the rotational invariance of these quantities. So mathematically speaking,
while a matrix can be considered a 2nd order tensor, a 2nd order tensor is essentially an
equivalent class of matrices.

2.3. Constitutive Equation. We first derive a simple relation between the normal stress
and the normal strain. Consider the case of a spring that is stretched in the x-direction.
According to Hooke’s Law, the stress resulting from this elongation is directly proportional
to the strain experienced by the spring, mathematically expressed as:

σ11 = E ε11, or ε11 =
1

E
σ11.

The positive parameter E is called the modulus of elasticity in tension or Young’s modulus
which is a property of the material. Usually E is large (tens for solid and hundreds for
metals), which means a small strain will lead to a large stress.

FIGURE 5. A cube with sides of length L of an isotropic linearly elastic
material subject to tension along the x axis, with a Poisson’s ratio of ν.
The green cube is unstrained, the orange is expanded in the x direction
by ∆L, and contracted in the y and z directions by ∆L′. The ration
−∆L′/∆L = ν. From Wikipedia.

Stretching a body in one direction will usually have the effect of changing its shape in
others – typically decreasing it. The strain in y- and z- directions caused by the stress σ11

can be described as
ε22 = ε33 = −νε11 = − ν

E
σ11,

where ν is a property of the material and called Poisson’s ratio. It can be mathematically
shown ν ∈ (0, 0.5) and usually takes values in the range 0.25− 0.3. See Fig. 6.

By the superposition, which holds for the linear elasticity, we have the relation

(11)

ε11 =
1

E
( σ11 − νσ22 − νσ33) ,

ε22 =
1

E
(−νσ11 + σ22 − νσ33) ,

ε33 =
1

E
(−νσ11 − νσ22 + σ33) .
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FIGURE 6. Young’s modulus E and Poisson ratio ν

For shear stress and shear strain, we now show:

(12) εij =
1 + ν

E
σij for i 6= j.

This equation demonstrates that, for off-diagonal elements representing shear components,
the strain is proportional to the stress, modulated by material properties expressed by G =

E
2(1+ν) which is called shear modulus or modulus of rigidity, representing the material’s
resistance to shear deformation.

To illustrate this, consider a strain consisting only of shear strain with σ12 = σ21 = 1.
We can identify a unitary matrixQ such that:

σ =

(
0 1
1 0

)
= Qᵀ

(
1 0
0 −1

)
Q =: Qᵀσ̂Q.

In the coordinate system defined by the principal directions (the columns of Q), the stress
is diagonal, σ̂11 = 1, σ̂22 = −1). Applying the relationship (11) between normal stress
and normal strain, we obtain

ε̂11 =
1

E
(σ̂11 − νσ̂22) =

1 + ν

E
,

ε̂22 =
1

E
(σ̂22 − νσ̂11) = −1 + ν

E
in the rotated coordinate system. Transforming back to the original coordinate system, we
find:

ε =
1

E

(
0 1 + ν

1 + ν 0

)
, for σ =

(
0 1
1 0

)
,

thus establishing the stated relationship between shear stress and shear strain.
In summary, we can write the relation between the strain ε and the stress σ in the matrix

form

(13)


ε11
ε22
ε33
ε12
ε13
ε23

 =
1

E


1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 1 + ν 0 0
0 0 0 0 1 + ν 0
0 0 0 0 0 1 + ν




σ11

σ22

σ33

σ12

σ13

σ23

 ,
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and abbreviate (13) in a simple form

(14) ε = Aσ,
where A is called compliance tensor of fourth order. Solving ε from (18), we obtain

(15) Aσ =
1

2µ

(
σ − λ

2µ+ dλ
tr(σ)I

)
.

Inverting the matrix in (13), we have the relation

(16) σ = Cε
where

(17) C =
E

(1 + ν)(1− 2ν)


1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1− 2ν 0 0
0 0 0 0 1− 2ν 0
0 0 0 0 0 1− 2ν

 .

Comparing (16) with the constitutive equation

(18) σ = λ trace(ε)I + 2µ ε,

we obtain the relation of the parameters

E =
µ(3λ+ 2µ)

λ+ µ
, ν =

λ

2(λ+ µ)
,

and

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E
2(1 + ν)

,

which implies ν ∈ (0, 0.5) and limν→0.5 λ = +∞. When ν is close to 0.5 or equivalently
λ� 1, it will cause difficulties in the numerical approximation.

We have derived the constitutive equation assuming the material is isotropic and the
deformation it undergoes is linear. In a broader context, the constitutive equation can
still be formulated using a fourth-order tensor, C, with σij = Cijklεkl. Mathematically,
the matrix C, which could be visualized as a 9 × 9 matrix, implies the possibility of 81
parameters. However, the symmetry inherent in both the stress tensor σ and the strain
tensor ε effectively reduces the number of independent parameters to 36.

For materials that exhibit isotropy, meaning their properties are uniform in all directions,
the complexity of C is further diminished. Isotropy implies that C = C′, where C′ represents
the tensor in a rotated coordinate system. By examining specific rotations, it becomes
evident that C for isotropic materials relies only on two parameters. These parameters can
be represented as either the pair (E, ν), consisting of Young’s modulus and Poisson’s ratio,
or the Lamé constants (λ, µ).

2.4. Compressibility and Incompressibility. When considering a small volume V , the
change in volume due to deformation is given by

δV =

∫
∂V

u · n dS =

∫
V

divu dx =

∫
V

tr(ε) dx.

This relationship provides insight into the material’s behavior under stress in terms of vol-
ume change.
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Compressible materials have the capacity to undergo significant volume changes when
subjected to pressure. Gases are the quintessential example of compressible materials be-
cause their volume can be easily reduced or expanded based on the applied pressure.

Incompressible materials, theoretically, experience no volume change when pressure is
applied. Many liquids fall into this category as their volume remains largely constant under
pressure variations.

Nearly incompressible materials demonstrate very slight volume changes in response
to pressure. While not perfectly incompressible, these materials exhibit a strong resistance
to volume alteration. Examples include certain rubbers, biological tissues, and metals
under specific conditions, all of which maintain nearly constant volume when subjected to
external forces.

The concept of compressibility is closely tied to the Lamé constant λ, which is related
to the material’s response to changes in density. As indicated in the constitutive equa-
tion involving λ tr(ε), a very large value of λ suggests that tr(ε) = divu is very small,
signifying minimal volume change under stress.
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