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Abstract
Many imaging techniques for biological systems—like fixation of cells coupled with
fluorescence microscopy—provide sharp spatial resolution in reporting locations of
individuals at a single moment in time but also destroy the dynamics they intend to
capture. These snapshot observations contain no information about individual tra-
jectories, but still encode information about movement and demographic dynamics,
especially when combined with a well-motivated biophysical model. The relationship
between spatially evolving populations and single-moment representations of their
collective locations is well-established with partial differential equations (PDEs) and
their inverse problems. However, experimental data is commonly a set of locations
whose number is insufficient to approximate a continuous-in-space PDE solution.
Here, motivated by popular subcellular imaging data of gene expression, we embrace
the stochastic nature of the data and investigate the mathematical foundations of para-
metrically inferring demographic rates from snapshots of particles undergoing birth,
diffusion, and death in a nuclear or cellular domain. Toward inference, we rigorously
derive a connection between individual particle paths and their presentation as a Pois-
son spatial process. Using this framework, we investigate the properties of the resulting
inverse problemand study factors that affect quality of inference.One pervasive feature
of this experimental regime is the presence of cell-to-cell heterogeneity. Rather than
being a hindrance, we show that cell-to-cell geometric heterogeneity can increase the
quality of inference on dynamics for certain parameter regimes. Altogether, the results
serve as a basis for more detailed investigations of subcellular spatial patterns of RNA
molecules and other stochastically evolving populations that can only be observed for
single instants in their time evolution.
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1 Introduction

1.1 Background andMotivation

Advances in microscopy and automated tracking have matured to an age of observing
of the spatial evolution of individuals at scales ranging from tissue-scale collectives
of cells (Cognet et al. 2014) down to single molecules (Moerner 2007; McLaugh-
lin et al. 2020). Such spatial tracking has led to discoveries in the understanding of
viral transmission (Chen et al. 2014), intracellular transport (Osunbayo et al. 2019;
Rayens et al. 2023), and many other areas in cell and molecular biology (Manzo and
Garcia-Parajo 2015). In these investigations, the dynamics of a population are probed
through the tracked motion of individual trajectories. The theory and practice of ana-
lyzing these single-particle trajectories is rich and well-developed (Qian et al. 1991;
Mellnik et al. 2016; Rehfeldt and Weiss 2023). In contrast, many imaging approaches
require the fixation of cells (which requires killing the tissue and cryo-preservation
to stabilize agent locations) and therefore provide only a snapshot of the population
at one moment of time (Biswas et al. 2021). Without direct access to the evolution
of creation, destruction, and motion of this population prior to imaging, what can be
inferred about these underlying dynamics?

One very active area of inferring dynamics from snapshots is in the quantification of
gene expression from spatial transcriptomics imaging of individual RNA molecules
(Weinreb et al. 2018; Marx 2021). Although time-lapse imaging and inference of
these systems is possible in certain circumstances (Bowles et al. 2022), inferring the
dynamics of underlyingpopulations fromRNAsnapshots is a farwider andmainstream
interest. Such spatial transcriptomics have served to be invaluable in recent identifica-
tions of cell types (Moses and Pachter 2022) and disease mechanisms (Williams et al.
2022). However, the theory to analyze this data has lagged behind the sophisticated
techniques used to harvest it. Spatial imaging techniques (such as smFISH, single-
molecule FISH (Shaffer et al. 2013; Omerzu et al. 2019; Ding and Elowitz 2019))
are capable of resolving individual RNA molecules, multiplexed over several genes
(Maynard et al. 2020) and many cells(Cai et al. 2006; Eng et al. 2019). This unprece-
dented single-molecule resolution is largely neglected, with most analysis approaches
focusing on RNA counts, binned either per-cell or split into nuclear and cytoplasmic
counts (La Manno et al. 2018; Svensson and Pachter 2018; Gorin et al. 2022; Fu et al.
2022). In doing so, the subcellular spatial factors that crucially control gene expres-
sion (Heinrich et al. 2017; Cassella and Ephrussi 2022), e.g., geometry-dependent
nuclear export (Köhler and Hurt 2007; Rodríguez-Navarro and Hurt 2011), are largely
understudied and unincorporated into transcriptomics analyses.

Beyond the motivation for quantification of subcellular patterns of individual RNA
molecules, we also emphasize the goals and value of mechanistic modeling. A zoo of
sophisticated techniques has arisen for the analysis of (spatial) transcriptomics data,
but these largely phenomenological or statistical studies (Imbert et al. 2022; Mah
et al. 2022) suffer a lack of methodological reproducibility and interpretability (Gorin
et al. 2022; Chari and Pachter 2023). The proposed solution to these shortcomings is
the use of mechanistic, stochastic models (Lammers et al. 2020; Gorin et al. 2022)
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as the basis of inferring gene expression dynamics. Such methods have grown in
popularity and sophistication in recent years (Munsky et al. 2015; Gómez-Schiavon
et al. 2017; Herbach et al. 2017; Gorin and Pachter 2022; Luo et al. 2022; Bowles
et al. 2022; Gupta et al. 2022; Kilic et al. 2023; Vo et al. 2023), but remain primarily
focused on non-spatial models. Thus, we have outlined the motivation for subcellular,
mechanistic modeling of RNA molecules as a natural next step in expanding the
frontier of spatial transcriptomics quantifications. We anticipate such techniques will
be useful in advancing understanding of subcellular, spatial factors that modulate gene
expression, including post-transcriptional splicing (Ding and Elowitz 2019; Coté et al.
2024; Ding et al. 2022) and nuclear export (Köhler and Hurt 2007; Rodríguez-Navarro
and Hurt 2011).

The basis of this work is a mathematical connection between spatial point pro-
cesses and snapshot observations of stochastic birth-death-diffusion processes. Most
crucially, this connection provides statistical information of stochastic particle posi-
tions and counts, while circumventing the need for costly spatial stochastic simulation
(Lemerle et al. 2005). The connection was suggested by Gardiner in the 1970s (Gar-
diner andChaturvedi 1977; Chaturvedi andGardiner 1978; Chaturvedi et al. 1977) and
recently reintroduced non-rigorously in (Schnoerr et al. 2016) in broad generality of
stochastic reaction-diffusion processes. Here, we provide rigorous particle-perspective
justification for this connection in the setup of birth, death, and diffusion in a domain.
The machinery developed to prove this reveals new insight into generalizations and
limitations of the theory. Inference on spatial point processes is a well-established
topic in the statistics literature (Baddeley 2001), but focuses largely on phenomeno-
logical or purely statistical modeling of the underlying intensities, including in a recent
application to the same data considered as our work (Walter et al. 2023). In contrast,
the resulting setup here is an intensity derived from the solution of a birth-diffusion-
death PDE. The model problem is similar in structure to classical PDE-based “inverse
problems" (Aster et al. 2013; Flegg et al. 2020) but the crucial difference is that
the data presents as collections of stochastic particle locations rather than the PDE
solution itself plus observational noise. Here we embrace the stochastic particle-by-
particle nature of the data and study the system using spatial point process inference
techniques, which are naturally informed by the solutions of appropriate PDEs.

1.2 Overview ofWork

In this work, we investigate a “toy”model motivated by smFISH imaging data of
subcellular RNA (Ding and Elowitz 2019) that distills salient features of the intrinsi-
cally stochastic (Raj et al. 2006; Raj and Van Oudenaarden 2008), spatial (Heinrich
et al. 2017; Cassella and Ephrussi 2022), and heterogeneous nature of the data. In
such imaging, see Fig. 1A as an example, individual mRNA can be resolved in both
cytoplasm and the nucleus of cells. Panel B shows the model considered throughout
the remainder of the text for nuclear mRNA in a domain�, with stochastic production
at rate κ+ at a gene site z, decay at rate κ−, and diffusion with diffusivity D. The
nuclear boundary is assumed to be instantaneous export at ∂�. To faithfully reflect
the cell-to-cell heterogeneity that crucially affects the observed data, we incorporate

123



   74 Page 4 of 31 C. E. Miles et al.

Fig. 1 Motivation and setup of the work. A: Experimental FISH data from (Ding and Elowitz 2019)
demonstrating the basis for modeling within this work. Individual mRNAs are resolved in both the nucleus
and cytoplasm. B: Schematic of the mRNA model in nuclear domain �: birth at rate κ+ at gene site z,
decay at rate κ−, and diffusion with diffusivity D, and instantaneous nuclear export at the boundary ∂�

(an absorbing boundary). C: 1D simulations of the model demonstrating the heterogeneity in nuclear (or
cellular) domain size L and gene site z (black plus)

different nuclear (or cellular) domain sizes and gene site positions, shown through a
simplified 1D setup in C. The remainder of this work explores the mathematical nature
of the inverse problem on this collection of heterogeneous snapshots.

In Sect. 2we outline themodel setup of snapshot data as an observation of a distribu-
tion of particles at time zero in a system in which the initial condition has been pulled
back in time to negative infinity. We show that the snapshot data can be described as a
nonhomogeneous spatial Poisson point process with an intensity measure that is gen-
erally recognized as the occupation measure of diffusing particles before exiting the
domain or being removed by state-switching (Durrett 1996). The full proof is provided
in Sect. 4.1 with a nondimensionalization argument found in Sect. 4.2. This connec-
tion is then translated into a likelihood function that can then be used for inference of
parameters.

In Sect. 3,we put the theory to practice in the context of our toymodel. In this setting,
the likelihood function has a fully explicit form, which we report and visualize as a
function of the number of cell snapshots that are included in a given experiment. This
raises questions concerning the impact on inference from geometric heterogeneity
among the cells and, in Sect. 3.1, we calculate the (Fisher) information for exper-
iments run under different heterogeneity assumptions. In Sect. 3.2, we explore how
these theoretical results translate into uncertainty in the inference ofmodel parameters.
We report on numerical experiments in which we generated synthetic snapshot data
from simulations of underlying particle processes, and employed Bayesian methods to
quantify joint uncertainty in the inference of particle production and degradation rates.
In Sect. 3.3 we report on similarly constructed numerical experiments based on several
different cell-heterogeneity assumptions. We find that the statistical information anal-
ysis conducted in Sect. 3.2 does faithfully predict Bayesian uncertainty quantifications
that result from simulated data. This encourages continued use of these methods for
both experimental design and practical statistical inference. Finally, in Sect. 4.4 we use
the information-theoretic framework to demonstrate the benefit of using explicit par-
ticle locations for inference when compared to spatial binning. Additional numerical
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implementation details regarding stochastic process simulations andMCMC sampling
for Bayesian inference are outlined in Section A.

2 Mathematical and Statistical Methods

2.1 Notation

Throughout this study, we have it in mind that biological cells can be heterogeneous
in their geometry, but have similar internal reaction rates and transport dynamics. Let
M ∈ N be the number of cells in a study, and for each m ∈ {1, 2, . . . , M}, let the
compact set �m ⊂ R

d denote the domain of the mth cell. Within each cell there are
diffusive particles that emerge at rate κ+ at locations that are distributed according to
a source probability distribution ϕm : �m → R+. They then move according to the
laws of Brownian motion with uniform diffusivity D, possibly with drift α : � → R

d .
If a particle in the mth cell exits the domain �m , we assume that it cannot return.
Furthermore, at rate κ− ≥ 0, particles undergo a change of state (either they degrade,
or engage in a chemical reaction, for example). We will call a particle active up until
the time it either switches state or exits the domain, and inactive thereafter.

In each cell, at time t = 0 we observe the locations of the active particles, denoted
xm = {x1m, x2m . . . , xn(xm ),m}, where xim ∈ �m . We write n(x) for the number of
particles in the collection x, and emphasize that the number of particles in each of the
M distinct cells �m will be independent of each other and random. In the foregoing
discussion, we emphasize that the boundary condition, the diffusivity constant, and
the emergence and switch rates are universal among all cells, but the initial location
distribution (often realistically in the cell nucleus) can be different in each different
cell.

Aswewill see later, the three parameters D, κ+ and κ− are notmutually identifiable.
We therefore introduce the ratios

λ := κ+L2
0

D
, and μ := κ−L2

0

D
. (1)

That is, we are nondimensionalizing with respect to the particle diffusivity and the
typical cell size L0 over the population of observations.

2.2 Stochastic Model for Snapshot ObservationsWithin a Single Cell

We now formally introduce the stochastic model that provides the basis for our infer-
ence protocol. For the remainder of this section, we will suppress dependence on the
cell index m and describe the dynamics within a single focal cell.

In this work, we assume that the emergence (or birth) times of particles are given
by a stationary Poisson point process on the negative half of the real line. Let 0 >

T1 > T2 > . . . be an enumeration of points in the negative half-line, starting with the
point closest to zero and decreasing from there. The initial locations of particles will be
given by the sequence of independent and identically distributed (iid) randomvariables
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ξi
i id∼ ϕ. Let {B̊i (t)}t≥0 be a sequence of iid standard d-dimensional Brownianmotions

(with B̊i (0) = 0), and let Bi (t) := B̊i (t − Ti ) be the Brownian motions shifted so that
their initial time is the associated particle emergence time Ti .

We use the term “time” in the preceding description, but as we show in Sect. 4.2,
we can assume that the dynamics have already been rescaled to nondimensional coor-
dinates that result in a process that has diffusivity one, switch rate μ and birth rate
λ. In this nondimensional framework, let a drift vector α : Rd → R

d be given, and
define {Xi (t)}t>Ti to be the solution of the stochastic differential equation (SDE)

dXi (t) = α(Xi (t))dt + √
2 dB(t), t > Ti ;

Xi (Ti ) = ξi .
(2)

The partial differential operator associated with this diffusion is defined in terms of
its action on twice-differentiable functions f : Rd → R,

LX := α(x) · ∇ f (x) + 	 f (x) (3)

where 	 is the Laplacian.
Associated with each path is a continuous-time Markov chain (CTMC) {Ji (t)}t>Ti

that records the state of the particle at time t . We assume that all particles start in
the active state Ji (0) = 1. At rate μ, the particles switch to the inactive state 0. We
label the switch times τswitch,i and, due to the Markov assumption, the switch times
are exponentially distributed with densities pi (t) = μe−μ(t−Ti )1[Ti ,∞)(t). Because
particles are assumed to not be able to return to the interior of a cell once they exit,
we define the stopping times τexit,i := inf{t ≥ Ti : Xi (t) /∈ �}.

Ourmodel for the “snapshot” data is to define a spatial point process N : B(�) → Z

that counts the number of active particles in subsets of the domain at time 0. To be
precise, for every Borel subset A ∈ B(�), we define

N (A) :=
∞∑

i=1

δA
(
(Xi (0 ∧ τexit,i )

)
1{Ji (0∧τexit,i )=1}, (4)

where δA(x) = ∫
A δ(x − y)dy and t ∧ s := min(t, s). In other words, N (A) counts all

particles that have neither exited the system through the boundary ∂�, nor switched
from active to inactive, and are located in the set A at time t = 0. A schematic of this
can observation model can be seen in Fig. 2.

We can now state the main mathematical result, which identifies the relationship
between collections of particle locations in steady state and the solution of a well-
known boundary value problem (BVP).

Theorem 2.1 Let (Xi (t), J (t))i∈N be the particle/state pairs defined by (2) and the
foregoing discussion. Let � ⊂ R

d be an open domain with compact closure that has
a boundary with all regular points with respect to the SDE (2). Then the associated
spatial point process N , defined by (4), giving the locations of active particles at time
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Fig. 2 Visualization of the stochastic model. Particle populations observed at the snapshot instant (t = 0)
have long histories that cannot be observed. Here, particles are “born” at a rate λ (yellow circles) in
the source location z (yellow line). The particles diffuse until they are either degraded (green circles) or
exit the domain (pink circles). The faded trajectories are for particles that left the system before time
zero, while the purple trajectories are those that remain active and are observed in the t = 0 snapshot.
Nondimensional x, t shown with rates λ = 10, μ = 1.5 corresponding original simulation parameters
κ+ = 5, κ− = 0.75, D = 0.5, L = 3, L0 = 1, z = 1

zero, is a Poisson spatial process with intensity measure u satisfying the BVP

L∗u(x) − μu(x) = −λϕ(x), x ∈ �,

u(x) = 0, x ∈ ∂�.
(5)

where L∗u = −∇ · (α(x)u(x)) + 	u(x) is the adjoint of the operator (3).

Remark 2.2 This is to say, N satisfies the condition that, given any disjoint sets
A1, . . . AK ⊂ B(�), the random variables {N (Ak)}Kk=1 are independent with respec-
tive distributions

N (Ak) ∼ Pois
( ∫

Ak

u(x)dx
)
. (6)

The proof of this theorem is the content of Sect. 4.1.

2.3 Framework for Inference

The Poisson spatial point process representation of the particle locations organizes the
data into a form that readily allows for statistical inference. Suppose that we partition
the domain� into a fixed collection of sets.We then “bin the data,” meaning we record
the particle locations in terms of the number of particles in each bin. By Theorem 2.1,
the number of particles in each bin is Poisson distributed and independent of number of
particles in other bins. This yields a likelihood function that can be used for parameter
inference, but depends explicitly on the choice of bins. For example, suppose that the
sets (A1, A2, . . . , AK ) form a partition of cell domain, meaning that they are mutually
disjoint and their union is �. For a given set of particle locations x, define nk(x) to be
the number of particles observed in the set Ak . Then the likelihood function for the
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parameter vector θ = (λ, μ) given the binned data is

Pθ

(
N (A1) = n1(x), . . . , N (AK ) = nK (x))

=
K∏

k=1

e
− ∫

Ak
u(x; θ)dx

( ∫

Ak

u(x; θ)dx
)nk (x) 1

nk(x)! .
(7)

We introduce the notation u(x; θ) to emphasize the dependence of the intensity mea-
sure on θ through the BVP (5).

Now, if we change the partition of the domain, the associated likelihood function
for the new binning of the data will be different, leading to different estimates and
uncertainty regions for the parameters. Naturally among all choices for which partition
to use, we would prefer to use one that yields the “best” statistical inference in some
rigorous sense. One standard approach is to consider the likelihood that emerges in a
limit in which the partition mesh size (often defined to be the size of the largest bin)
is taken to zero. The form of the limiting likelihood is well known for spatial Poisson
processes (Baddeley 2001; Daley and Vere-Jones 2003) and can be expressed directly
in terms of the particle locations, rather than a summary from binning.

Definition 2.3 (Likelihood function) Let � ⊂ R
d satisfy the conditions of Theorem

2.1. For each θ = (λ, μ) ∈ 
, let u(·; θ) satisfy the BVP (5) for the given parameter
vector. Then for any set of particle locations x = {

x1, x2, . . . , xn(x)

} ⊂ �, we define
the likelihood function L(·; x) : 
 → R+ as follows:

L(θ; x) :=
⎛

⎝
n(x)∏

i=1

u(xi ; θ)

⎞

⎠ e− ∫
� u(x; θ)dx . (8)

While the use of this form of likelihood function is standard and can be found else-
where [(for instance, in Jensen andMøller (1991)], in Sect. 4.3 we include a derivation
using the Lebesgue Differentiation Theorem in the context of Bayesian methods that
we have not explicitly seen in the literature. Moreover, in Sect. 4.4, we use the notion
of statistical information to quantify the claim that the likelihood function defined by
(8) is “better” than any likelihood function of the form (7) that arises from binning the
particle locations.

We note that the above discussion contains a mix of Bayesian and frequentist
ideas and we will continue to draw on tools from each school throughout this work.
Generally speaking, when we are considering a specific data set and wish to establish
point estimates for the parameters and to quantify uncertainty, we will use a Bayesian
method. This is because the notion of a highest-density posterior region (HDPR)
allows for clean visualization of 2d “joint uncertainty” for the parameters λ and μ,
which can then be summarized with a single quantity: its area (Yau and Campbell
2019). Meanwhile, when we wish to make comparisons that are not specific to a given
data set, we will use the determinant of the information matrix det(I). Optimization
of this determinant, or D-optimality (Atkinson et al. 2007), is a popular choice in
experimental design [(including in other studies of gene expression Fox and Munsky
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(2019)] due to its ability to capture correlations between inferred parameters in the
(inverse) area of confidence ellipsoids. However, confidence is a frequentist notion,
and we use det(I) as an analytically tractable proxy for the inverse of the area of the
joint uncertainty region in Bayesian inference. The relationship between maximizing
det(I) and minimizing expected HDPR is not precise for finite data, in part because
the role of the priormust be considered in theBayesian setting (Gábor andBanga 2015;
Sharp et al. 2022). But, as we show in Sect. 3.3, det(I) does make useful predictions
in the present setting.

3 Inferring Dynamics of the 1D RNAModel

Using the framework established in previous sections, we now explore their conse-
quences and implementation in the context of the 1D model approximating the key
features seen in subcellular spatial RNA transcriptomics data. The principal result
was the connection between the PDE (5) as the intensity for the corresponding point
process. For a single cell, this PDE becomes

0 = 	u(x) + λδ(x − z) − μu(x) for x ∈ [0, L], u(0) = 0, u(L) = 0, (9)

where (λ, μ) are nondimensional (1) dynamic quantities sought to be inferred, and L
is relative to the typical length seen in the population of images.

The solution to (9) can be explicitly computed:

u(x) = λ√
μ
csch

(√
μL

)
sinh

(√
μmin{x, z}) sinh (√μ(L − max{x, z})) . (10)

The expected number of particles is then, from (6),

E[N ] =
∫ L

0
u(x) dx = λ

μ

(
1 − sech

(√
μL

2

)
cosh

(
1

2
√

μ(L − 2z)

))
(11)

The expectation in (11) shows an intuitive structure of the product of the pure birth-
death mean λ/μ, and a geometry-dependent term (always strictly less than 1) that
scales the former.

3.1 Likelihood and Information from Analytical Solution

Equipped with the statistical characterization from Theorem 2.1 and the analytical
expression of the intensity for a single snapshot in (10), we can now examine the
behavior and emergent lessons arising from this inference setup.

Wefirst explore the behavior of the likelihood (8) as a function of the systemparame-
ters and quantity of data. To do so, we perform stochastic simulations of the underlying
birth-death-diffusion trajectories and then terminate them at an experimental time T .
The particle positions at this observation time are the data used for inference. Further
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Fig. 3 Behavior of the likelihood. A: λ − μ evaluations of the likelihood L(θ; x) for increasing numbers
of snapshots M with fixed λ = 500, μ = 10, L = 1, z = 0.5. At low M , the likelihood peaks around the
line of constant E[N ], and as M increases, sharply peaks around the true parameter values. B/C: Slices of
the likelihood shown in panel A evaluated at μtrue and λtrue respectively

details on the stochastic simulation can be found in Section A. Beginning with the sim-
plest setup, we fix λ = 500, μ = 10, L = 1 and z = 1/2 and explore how increasing
the number of snapshots M shapes the likelihood, the results of which can be seen in
Fig. 3A. As M increases, the likelihood first concentrates around a line and then within
this line, begins to peak at the true parameter values. To understand this behavior, we
plot the λ − μ line of constant E[N ] from (11) superimposed on the likelihood. From
this, we see that the likelihood concentrates around the line defining the true number
of particles, and then further resolves within this line from their spatial information.
In panels B and C of the same figure, the same information is shown as slices of the
likelihoodwith one parameter at a time held to be the true value. From these panels, we
see again that sufficiently large M (here, M ≈ 1000) yields likelihoods that are tightly
concentrated around the true values used to generate the synthetic data. In the next
section, we will explore more concretely how the spread of the likelihood translates
into uncertainty in the inference itself.

Before performing inference on the synthetic data, other useful quantities can be
computed directly from the likelihood. For a likelihood L(θ; x), the corresponding
information matrix I is defined by the elements (Vahid et al. 2020)

Ii j := Eθ

[
(∂θi log L(θ; X))(∂θ j log L(θ; X))

] = −Eθ

[
∂θi ∂θ j log L(θ; X)

]
, (12)

where Eθ is the expectation of an observation of the point process X (a vector with
stochastic length) with fixed model parameters θ . The latter equality in (12) holds
under regularity conditions straightforward to verify for Poisson point processes (Clark
2022). Our parameters of interest are θ = (λ, μ) so the information matrix takes the
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form

I(θ) = −Eθ

[
∂λλ log L(λ, μ;X) ∂λμ log L(λ, μ;X)

∂λμ log L(λ, μ;X) ∂μμ log L(λ, μ;X)

]
. (13)

Importantly, the expectation is over both stochastic particle positions and number. To
do so, we employ machinery from the theory of spatial point processes, specifically
the Campbell-Hardy formula stated in Theorem 3.1.

Theorem 3.1 (Campbell-Hardy, (Baddeley 2001)) Let N be governed by a general
point process on a domain�with intensity u : � → R so thatE[N (B)] = ∫

B u(x)dx.
Let f (x) be any measurable function. Then, the expectation of the sum over observa-
tions X = (X1, X2, . . . , XN ) of the point process is

E

[
N∑

i=1

f (Xi )

]
=
∫

�

f (x)u(x)dx . (14)

Through Theorem 3.1, the elements of our informationmatrix in (13) can be related
to the PDE solution u by (10). To do so, the log-likelihood �(θ; x) from (8) is

�(θ; x) := log L(θ; x) = −
∫

�

u(x; θ)dx +
N∑

i=1

log u(xi ; θ)

and ∂θi θ j � = − ∫
�

∂θi θ j u(x; θ)dx + ∑N
i=1 ∂θi θ j log u(xi ; θ).

Ii j (θ) = −E[∂θi θ j �(θ;X)] = −E

[
−
∫

�

∂θi θ j u(x; θ)dx

]
− E

[
N∑

i=1

∂θi θ j log u(Xi ; θ)

]

=
∫

�

∂θi θ j u(x; θ)dx − E

[
N∑

i=1

∂θi θ j log u(Xi ; θ)

]

=
∫

�

∂θi θ j u(x; θ)dx −
∫

�

(
∂θi θ j log u(x; θ)

)
u(x; θ) dx .

(15)
The first term is deterministic, and therefore is its own expected value. The second,
stochastic sum, takes the form of (14) with f (x) = ∂θi θ j log u(x) and is evaluated
with Theorem 3.1. The integrands of (15) can be manipulated to a more tractable form
by expanding derivatives

Ii j (θ) = −
∫

�

(
∂θi θ j log u(x; θ)

)
u(x; θ) dx +

∫

�

∂θi θ j u(x; θ) dx

=
∫

�

(
∂θi log u(x; θ)

)(
∂θ j log u(x; θ)

)
u(x; θ) dx .

=
∫

�

(∂θi u(x; θ))(∂θ j u(x; θ))

u(x; θ)
dx .

(16)
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Fig. 4 Behavior of the information. A: Determinant of the information det(I) in the z − μ plane with
λ = 500, L = 1 fixed. B: same information as panel B, with det(I) as a function of z shown for various
values of μ, with the maximizing value of z labeled. B inset: the-information maximizing source location
z as a function of μ. C: Determinant of the information det(I) in the L − μ plane with λ = 500, z = L/2
fixed. D: same information as panel C, with det(I) as a function of L shown for various values of μ

If λ > 0, then u > 0, and det(I) > 0 follows immediately from Cauchy–Schwarz.
From this non-degeneracy, structural identifiability of both parameters can be con-
cluded (Browning et al. 2020; Wieland et al. 2021). Moreover, the analytical solution
to the PDE allows us to compute the information explicitly. For instance,

I11(θ) = −Eθ [∂λλ�(θ;X)] = (λμ)−1 [1 − sech
(√

μL/2
)
cosh

(√
μ(L − 2z)/2

)]
.

(17)
The remaining entries can be computed straightforwardly using Mathematica but
have unwieldy expressions not shown here.

In Fig. 4, we employ the analytical expressions for the informationmatrix to explore
the behavior of det(I) as a function of the underlying parameters. We interpret this
quantity’s importance through the classical lens of the Cramér-Rao bound (Clark
2022): any unbiased estimator of the parameter’s variance is bounded below by the
inverse of information. Informally, we interpret larger information setups as “easier”
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inverse problems.We later verify this interpretation through posterior widths on actual
inference setups.

In Fig. 4A and B, we fix λ = 500, L = 1 and vary both source location z and
degradation rate μ. For large values of μ, the behavior is intuitive: the information
is maximized when the source location is at the center, as this minimizes the overall
number of particles exiting the boundary and corresponding information loss. For
smaller values ofμ, a bifurcation in the behavior occurs and the optimal source location
becomes non-trivial: occurring at two symmetric locations somewhere between the
cell center and boundary. This non-trivial behavior arises only in the simultaneous
inference of parameters, suggesting its origin. We interpret this non-trivial behavior as
arising from the trade-off between seeing more particles (sources closer to the center)
or seeing a wider range of the spatial gradient (for off-center source locations).

Panels C and D investigate the cell size’s impact on the information by fixing z/L
and varying L and μ. Intuitively, larger cells (relative to the typical size) yield more
information due to less information loss through the absorbing boundary. Interestingly,
this effect saturates for sufficiently large values of μ, when the typical length scale of
a trajectory is far shorter than the domain size, so no additional information is gained
through enlarging the domain.

3.2 Bayesian Inference on Synthetic Data

To deploy Bayesian inference, we must specify prior distributions for λ and μ. For
the production rate λ, we take a conjugate prior

λ ∼ Gamma(α, β), p(λ) = λα−1e−βλβα

�(α)
. (18)

Assuming the total prior is independent for each parameter, p(θ) = p(λ)p(μ), then
for a single observation, we have

p(θ |x) ∝ p(θ)L(θ; x) = p(μ)p(λ)e−λ
∫
� v(x;μ)dx

N∏

i=1

λv(xi ;μ)

= p(μ)

N∏

i=1

v(xi ;μ)
λα−1e−βλβα

�(α)
λne−λ

∫
� v(x;μ)dx

= p(μ)

N∏

i=1

v(xi ;μ)
λ(α+n)−1e−λ(β+∫

� v(x;μ)dx)βα

�(α)
.

(19)

Here, we have introduced the definition of v as u(x;μ, λ) = λv(x;μ), noting that
(10) is linear in λ and following standard practice of identifying a “scale”parameter
in the point process literature (Baddeley 2001). This yields the convenient conditional
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Fig. 5 Bayesian inference on synthetic data. A: Shaded regions show 89% highest-density posterior region
(HDPR) for M = 10, 50, 500 snapshots and fixed parameters λ = 500, μ = 10, z = 1/2, L = 1. As M
increases, the posterior regions concentrate around the true parameters. B,C: Marginal posterior samples
for λ and μ respectively, along with the initial prior distributions for each (with prior means shown with
dots on the curves). A inset: area of the HDP region as a function of M , showing ∼ M−1 scaling

posterior for λ arising from conjugacy

p(λ|x, μ) = Gamma
(
α + n(x), β +

∫

�

v(x;μ) dx
)
. (20)

For M observations, each with a different domain, this generalizes to

p(λ|x1, . . . , xm, μ) = Gamma

(
α +

M∑

m=1

n(xm), β +
M∑

m=1

∫

�m

v(x;μ) dx

)
. (21)

For μ, we choose a uniform prior μ ∼ unif(0, μmax) with large μmax for unin-
formedness. With these choices, of priors, it is straightforward to implement a
Gibbs-in-Metropolis sampler for the posterior distribution, with a Gibbs step using
the conjugacy for λ and Metropolis step for μ. Further details on the MCMC imple-
mentation (including verification of convergence) can be found in Section A.

The results of performing Bayesian inference on synthetic data can be seen in
Fig. 5. The data considered here is the same as that in Fig. 3, with fixed parameters and
varied number of snapshots. In panel A, we depict the 89% HDPR (highest density
posterior region) (Gelman et al. 1995), computed by evaluating L(θ; x)p(θ) for each
posterior sample θ , retaining the top 89%, and then computing the convex hull of
these samples. The resulting uncertainty qualitatively mimics the lesson seen from the
likelihood. For small values of M , the posterior concentrates around the parameter
region that produces an expected number of particles equal to the observed count, and
then resolves to be sharply peaked around the true parameters with data from more
snapshots. Qualitatively, the same result can be seen in the marginal posterior samples
seen in Fig. 5B and C. To more explicitly quantify the dependence of uncertainty on
data, we plot the HDPR area as a function of the number of snapshots M in the inset
of Fig. 5A, and find a convincing ∼ M−1 scaling. This scaling can be interpreted

123



Inferring Stochastic Rates... Page 15 of 31    74 

as arising from the product (an area) of the uncertainty of each parameter ∼ M−1/2

arising from the central limit theorem.

3.3 Cell-to-Cell Heterogeneities and their Impact on Inference

In the previous figure, we assumed all cells were identical in shape and source location.
However, in experimental setups, there is enormous cell-to-cell heterogeneity. The
likelihood results shown inFig. 3 suggest that this heterogeneity should affect inference
quality, as both domain size and source location both modulate the total information.
However, those quantities were generated through the computation of the information
for a single observation. How do these propagate to a heterogeneous population? To
investigate this heterogeneity, we extend the information matrix calculation to now
assume that the domain parameters ϑ = (z, L) follow some probability distribution.
The expectation can be extended by the Law of Total Expectation:

Ii j (θ) = −Eθ ,ϑ [∂θi ∂θ j log L(θ,ϑ;X)] = −Eϑ [Eθ [∂θi ∂θ j log L(θ; X) | ϑ]]. (22)

Ultimately, this reduces to integrating the results of previous figures against the prob-
ability distributions for z and L . To parameterize the noise, we take z/L | L ∼
Beta(σ−1

z , σ−1
z ) and L ∼ �(σ−2

L , σ 2
L). The choice of distribution for source loca-

tion was chosen so that Eϑ [z | L] = L/2 and increasing σz spreads out the source
symmetrically around this location, with σz = 1 corresponding to spatially uniform
locations. Similarly, L is supported on the non-negative numbers, and the distribution
is chosen so that Eϑ [L] = 1 and increasing σL spreads out the distribution of cell
sizes in a plausible way.

The impact of cell-to-cell heterogeneity on the information can be seen in Fig. 6.
Panel A the information det(I) as a function of σz for various values of μ and fixed
λ = 500, L = 1. For low values of μ, varying source locations increase the amount
of information in observations, whereas for large μ, they lower the information. This
is in alignment with the results seen in Fig. 4 for fixed source locations, where low
values of μ corresponded to non-trivial optimal source locations, and large μ have
optimal source locations in the center.

A similar effect can be seen for varying L in panel B of Fig. 6: for low values
of μ, varied cell sizes increase the information, whereas for large μ, they decrease
it. This result is somewhat more surprising. For increasing values of σL , the median
L decreases, meaning that more mass of the distribution is shifted toward cell sizes
smaller than the typical size. The fixed-size results say that smaller cells encode less
information. However, taken together, the population-heterogeneous results suggest
that the information from large cells offsets the lack thereof from small, and creates a
net gain in information.

An outstanding curiosity remains of whether these information results aremeaning-
ful for actual inference. To investigate this, we repeat the Bayesian inference pipeline
from the previous section for various setups of heterogeneities: varied z, varied L , and
both varied. For a fixed experiment of M = 100 images, synthetic data (withμ chosen
in the regime of increase information) is generated and inference is performed. The
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Fig. 6 Impact of cell-to-cell heterogeneities. A: Information with L = 1, λ = 500 fixed and source
location varied by a spatially symmetric parameterization with σz → 0 is a fixed source and σz = 1 is
spatially uniform. For low values of μ, spatial heterogeneity increases information, whereas it decreases
the information for largeμ. B: Information with z = L/2 and varied L parameterized by a distribution such
that Eϑ [L] = 1 and increasing σL spreads out the distribution. Again, lower μ scenarios have increased
information from spatial heterogeneity. C: Repeated Bayesian inference on synthetic data with μ = 1,
varied source location σz = 0.75, cell size σL = 0.25, and both random. All heterogeneous setups have
lower uncertainty (smaller HDPR area) than static z, L

likelihood is constructed using individual z and L values for each snapshot, assumed
known. The HDPR area is computed as a measure of the overall uncertainty in the
estimation. This inference experiment is then repeated 1000 times, and the results can
be seen in Fig. 6 panel C. The results from estimation support the previous: hetero-
geneity does indeed increase the amount of information in the snapshots, and lowers
uncertainty in estimation. All three scenarios with random source location, cell size,
or both random yield smaller HDPR areas than the static scenario.

4 Support for the Inference Framework.

4.1 Proof of Theorem 2.1

In order to prove that the set of locations of particles is a Poisson spatial process, we
need only show that for any finite collection of disjoint sets A1, . . . , Ak , the number
of particles in the sets are independent and Poisson distributed. If we find a function
u such that

∫
A u(x)dx = P(A) for all A, then this the intensity measure.

Poisson distribution. To fix notation, let ρA(t) be the probability that a particle that is
distributed according to ϕ at time 0 and is in the set A at time t > 0. Recall, however,
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that in the model the particles emerge at a rate λ according to a Poisson arrival process
for some interval of time (−h, 0) and we are counting the particles still in the system
at time zero. Since this means that the initial times are iid and uniformly distributed
over (−h, 0), we can define

ρ
(h)
A = 1

h

∫ 0

−h
ρA(−s)ds = 1

h

∫ h

0
ρA(t)dt . (23)

By Poisson thinning, if the total number of particles that emerge is Pois(λh), then the
distribution of particles in A at time zero is Pois(λhρ

(h)
A ). Taking the limit as h → ∞,

we have that the number of particles in A has a Poisson distribution with mean

λρA = λ

∫ ∞

0
ρA(t)dt . (24)

Intensity measure. The time-dependent PDE that describes the probability density of
particles that have not yet been removed by state-switching or by being absorbed at
the boundary of a domain is [(p. 230, Cox and Miller (1977)]

∂tρ(x, t) = L∗ρ(x, t) − μρ(x, t), x ∈ �, t > 0,

ρ(x, t) = 0, x ∈ ∂�, t > 0,

ρ(x, 0) = ϕ(x), x ∈ �.

(25)

Defining ρ(x) = ∫∞
0 ρ(x, t)dx , (p. 163–167, Gardiner (2004)) we integrate (25) to

find (
lim
t→∞ ρ(x, t)

) − ρ(x, 0) = L∗ρ(x) − μρ(x), x ∈ �,

ρ(x) = 0, x ∈ ∂�.
(26)

Since particles exit the domain in finite time with probability one, ρ(x, t) → 0 as
t → ∞. Imposing the initial condition yields

L∗ρ(x) − μρ(x) = −ϕ(x), x ∈ �

ρ(x) = 0, x ∈ ∂�.
(27)

In order to achieve the desired mean for the Poisson distribution in (24), we define
u(x) = λρ(x) and note that u can be attained by multiplying the initial distribution
function by λ. This yields the BVP stated in the theorem and the proof is complete.

��

4.2 Nondimensionalization

In this subsection, we outline the nondimensionalization argument justifying the SDE
(2). Suppose that the original SDE satisfies the SDE

dX(t) = α(X(t))dt + √
2DdW (t) (28)
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with initial condition X(t0) = x0. The particle canmeet one of two fates: a state-switch
due to degradation, at rate κ−, or exit through the boundary of the domain. Define

t̃ := D

L2
0

t, x̃ := 1

L0
x, and α̃(x̃) := L0

D
α(x).

Then we claim that X̃(t̃) := 1
L X(t) satisfies

d X̃(t̃) = α̃(X̃(t))dt̃ + √
2d B̃(t̃) (29)

where B̃(t̃) is a standard Brownian motion. The argument follows from the integral
form of the SDE:

X̃(t̃) − X̃(t̃0) = 1

L0
(X(t) − X(t0))

=
∫ t

t0

1

L0
α(X(s))ds +

√
2D

L2
0

(B(t) − B(t0)) .

For the drift term, under the substitution s̃ = D
L2
0
s we have

∫ t

t0

1

L0
α(X(s))ds =

∫ Dt
L20

Dt0
L20

L0

D
α

(
X
( L2

0

D
s̃
))

ds̃

=
∫ t̃

t̃0

L0

D
α
(
L0 X̃(s̃)

)
ds̃

=
∫ t̃

t̃0
α̃
(
X̃(s̃)

)
ds̃

Meanwhile, define B̃(t̃) =
√

D
L2
0
B(t). Then E

(
B̃(t̃)

) = 0 and

Var
(
B̃(t̃)

) = D

L2
0

Var(B(t)) = D

L2
0

t = t̃ (30)

meaning that B̃ is a standard Brownian motion.
In terms of the essential stopping times, we define μ = L2

0/D (as in (1)), and so
τ̃switch = τswitchD/L2

0 is the corresponding nondimensional switch time. Moreover,
defining �̃ = {x : L0x ∈ �} and τ̃exit := inf{t̃ > t̃0 : X̃(t̃) /∈ �̃}. We can readily
show path-by-path that τ̃exit = τexitD/L2

0. Analogous to the dimensional case, we
define τ̃ := min(τ̃exit, τ̃switch)

Altogether, it follows that, for any A ∈ �, if we let Ã = {x : L0x ∈ �}, then

P(X̃(0 ∧ τ̃ ) ∈ Ã) = P(X(0 ∧ τ) ∈ A)). (31)
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Hence, if we wish to solve for the intensity measure of a given dimensional system,
we can rescale space by L0 and the rates as in (1) and use the intensity measure of the
associated nondimensionalized system for statistical inference.

4.3 Derivation of the Likelihood Function

Proposition 4.1 Let {AK }∞K=1 (with AK = (A1,K , . . . , AK ,K )) be a sequence of �-
partitions that has the following properties:

(i) the partitions are nested in the sense that if K1 < K2, then every set in AK2 is
contained within some member of AK1 ; and

(ii) the partition mesh sizes,
(
maxk∈{1,...,K }{|Ak,K |}), where |A| denotes the volume

of a set A, decrease to zero with K .

Fix x = (
x1, x2, . . . , xn(x)

)
to be a single snapshot of particle locations arising

from the dynamics defined for Theorem 2.1 and let π(θ) be a prior distribution for
θ = (λ, μ). Define πK (θ , x) be the posterior distribution of θ under the prior π when
the locations are reported through binning in the sets of the partition AK . Then,

π(θ | x) := lim
K→∞ πK (θ | x) = L(θ; x)π(θ)∫



L(ϑ; x)π(ϑ)dϑ

. (32)

where L(θ; x) is the likelihood function given in
Definition Definition 2.3.

Remark 4.2 A construction of such a sequence of partitions can be achieved, for exam-
ple, by starting with any partition of � and creating each refinement by randomly
selecting one of the partition’s sets and splitting in half. For another construction, see
the definition of psuedolikelihoods put forward by Jensen and Møller (1991).

Proof We can represent the collection of particle locations as a measure δx(x) :=∑n(x)
i=1 δxi (x) (Daley and Vere-Jones 2003) and for each member Ak,K of a partition

AK , we can define

nk,K (x) :=
∫

Ak,K

δx(x)dx . (33)

We then can write the posterior distribution πK (·|x) associated with the partitionAK

as follows:

πK (θ | x) = Pθ

(
N (A1,K ) = n1,K (x), . . . , N (AK ,K ) = nK ,K (x)

)
π(θ)

∫


Pϑ

(
N (A1,K ) = n1,K (x), . . . , N (AK ,K ) = nK ,K (x))π(ϑ)dϑ

(34)
Here the subscript of the probability measure denotes that we are evaluating the prob-
ability with the indicated parameter vector. The full parameter space is denoted 
,
which in our case isR+ ×R+. Since the probability in the above formula is expressed
in terms of an event comprised of independent Poisson random variable results, we
have the following explicit formula for the likelihood (suppressing dependence on K ),
which follows from Remark 2.2:
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Pθ

(
N (A1) = n1(x), . . . , N (AK ) = nK (x))

=
K∏

k=1

e
− ∫

Ak
u(x; θ)dx

( ∫

Ak

u(x; θ)dx
)nk(x) 1

nk(x)! .
(35)

Now, because the partitions are nested, there exists a K∗ such that for all K > K∗,
all partition sets contain at most one particle. If we write Aki to be the bin containing
the particle location xi , we have that nki (x) = 1 for each i , and nk(x) = 0 otherwise.
For the purpose of writing the likelihood function, we gather all bins not containing a
particle into one set

A0 := � \
{ n(x)⋃

i=1

Aki

}
.

For such a partition, (35) has the form

Pθ

(
N (A1) = n1(x), . . . , N (AK ) = nK (x))

= Pθ

(
N (A0) = 0, N (Ak1) = 1, . . . , N (Akn(x) = 1

)

= Pθ

(
N (A0) = 0

) n(x)∏

i=1

Pθ

(
N (Aki ) = 1

)

= e
− ∫

A0
u(x; θ)dx

n(x)∏

i=1

e
− ∫

Aki
u(x; θ)dx( ∫

Aki

u(x; θ)dx
)

= e− ∫
� u(x; θ)dx

n(x)∏

i=1

∫

Aki

u(x; θ)dx .

(36)

Each term in the final product is going to zero, but by the Lebesgue Differentiation
theorem (and observing that for the i th particle location, the sequence of xi -containing
partition sets Aki ,K is nested), we have that

lim
K→∞

1

|Aki ,K |
∫

Aki

u(x; θ)dx = u(xi ).

It follows that

lim
K→∞

Pθ

(
N (Aε,1) = n1(x), . . . , N (Aε,K ) = nK (x)

)
∏n(x)

i=1 |Aki ,K |
= e− ∫

� u(x)dx
n(x)∏

i=1

u(xi ).

(37)
The right-hand side is precisely L(θ; x), the function appearing in the likelihood
definition (8). Multiplying the numerator and denominator of (34) by the rescaling
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factor
∏n(x)

i=1 |Aki ,K |−1, we obtain the limit of a sequence of posterior distributions
πK (· | x), which can be written

π(θ | x) := lim
K→∞ πK (θ | x) = L(θ; x)π(θ)∫



L(ϑ; x)π(ϑ)dϑ

.

This justifies the choice of L appearing in Definition 2.3. ��

4.4 Spatial Binning Encodes Less Statistical Information

The previous section provides a formal derivation of the point process likelihood (8) by
considering increasingly fine-scale partitions of the spatial domain. In this subsection,
we motivate this further by showing that the resulting likelihood encodes greater
statistical information than any spatial binning of the process, stated as the following
proposition.

Proposition 4.3 Let u(x; θ) be the intensity of a Poisson point process on a domain
� with underlying parameter θ . Let {A j } j=K

j=1 be any non-overlapping partition of the
domain and denote observations of the binned process

N j = N (A j ) ∼ Poisson

(∫

A j

u(x)dx

)
, j = 1, . . . , K (38)

with corresponding log-likelihood �bin(θ; x). Let Ibin(θ) = −Eθ [∂θθ �bin(θ; X)] be
the information for the binned process and Iunbin(θ) = −Eθ [∂θθ log L(θ; X)] be the
point process information from likelihood (8). Then,

Ibin(θ) ≤ Iunbin(θ).

Proof The likelihood for the binned process is this process is (35), and the log-
likelihood is

�bin(θ; x) := log Lbin(θ; x) (39)

= −
∫

�

u(x; θ)dx +
∑

j

n j (x) log
∫

A j

u(x; θ)dx +
∑

j

log n j (x)!.

(40)
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For a parameter θ ,

Ibin(θ) = −Eθ [∂θθ �bin(θ; X)]

=
∫

�

uθθ (x; θ)dx −
∑

j

E[N j ]∂θθ log

(∫

A j

u(x; θ)dx

)

=
∫

�

uθθ (x; θ)dx −
∑

j

(∫

A j

u(x; θ)dx

)
∂θθ log

(∫

A j

u(x; θ)dx

)
,

=
∑

j

(∫
A j

uθ (x; θ)dx
)2

∫
A j

u(x; θ)dx
.

(41)
wherewe have used ∂θθn j (x) = 0 andEθ [N j ] = ∫

A j
u(x; θ)dx .We can compare this

directly to the unbinned information obtained via Campbell’s formula (16), restated
as

Iunbin(θ) =
∫

�

uθθ (x; θ)dx −
∫

�

u∂θθ (x; θ) log u(x; θ)dx =
∫

�

uθ (x; θ)2

u(x; θ)
dx .

(42)
To prove Ibin ≤ Iunbin, it must be shown that

∑

j

(∫
A j

uθ (x; θ)dx
)2

∫
A j

u(x; θ)dx
≤
∫

�

uθ (x; θ)2

u(x; θ)
dx =

∑

j

∫

A j

uθ (x; θ)2

u(x; θ)
dx, (43)

and noting this must hold for any A j , this further reduces to showing

(∫
A j

uθ (x; θ)dx
)2

∫
A j

u(x; θ)dx
≤
∫

A j

uθ (x; θ)2

u(x; θ)
dx . (44)

Denote the inner product 〈 f , g〉u := ∫
f (x)g(x)u(x)dx . Then the assertion (44) can

be written
〈∂θ log u, 1〉2u

〈1, 1〉u ≤ 〈∂θ log u, ∂θ log u〉u . (45)

In this form (44) is seen to be an expression of the Cauchy–Schwarz inequality, and
the claim Ibin ≤ Iunbin is proved. ��

Cauchy–Schwarz provides an interpretation of this result. Equality is achievedwhen
∂θ log u ∝ constant, or when ∂θu ∝ u. Intuitively, this says that scale parameters (such
asλ in themain text) are insensitive to binning, but parameters thatmodulate the spatial
variation of the intensity magnify the information loss from binning.
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5 Discussion

In summary, we have established new understanding in the theory and practice of infer-
ring dynamics of spatially stochastic birth-death-diffusion processes in heterogeneous
domains from particle snapshot data alone. This pursuit was motivated by technical
challenges arising in the study of spatial transcriptomics imaging data, where observ-
able data often consists of positions of a stochastic population of RNAmolecules, at a
single time (due to cell fixation), in a cell-specific geometry. Using an argument based
on the occupation measure of particles, the principal result is a rigorous statistical
connection between particle paths and their observation as a Poisson point process
with intensity governed by a birth-death-diffusion PDE with appropriate boundaries.
This explicit statistical description enables inference that faithfully incorporates often-
ignored cell-to-cell heterogeneities. Surprisingly, we find that variation in source
location and domain size can increase the accuracy of inference on the underlying
dynamics in the regime where particles are long-lived relative to their typical diffusive
exit time from the domain. Our study has broader context and future directions in the
areas of inverse problems and mathematical modeling of gene expression data.

As an inverse problem, the most important aspect of the work is the formal deriva-
tion and justification for the point process likelihood. This non-trivial likelihood must
describe a stochastic number of particles and their position, in contrast to previous
inference studies with single particle paths (Bernstein and Fricks 2016; Falcao and
Coombs 2020) or population positions with fixed number (Chen et al. 2021). Our work
clarifies how point processes are the natural resolution of this technical hurdle. More-
over, we show that the point process description encodes more statistical information
than spatial binning used in other inference of stochastic reaction-diffusion systems
(Dewar et al. 2010). There is future interest in connecting our results to scenarios
where particles cannot be tracked individually but temporal fluctuations in spatial bin
counts can reveal underlying dynamics, such as the colloidal systems (Mackay et al.
2023) or cell collectives (Simpson et al. 2024). We are far from the first to consider
mechanistic models in partnership with spatial point processes in biological systems,
e.g., (Plank and Law 2015; Ovaskainen et al. 2014). The distinction of these studies
in the ecological literature is subtle but important: in our work, the point process is
an emergent statistical description from a birth-death-diffusion process rather than an
assumed statistical model for observations. Although the PDE-constraint on the inten-
sity bares resemblance to classical PDE inverse problems (Aster et al. 2013; Flegg
et al. 2020), we emphasize the key difference in the observation noise. Rather than
observations of the PDE solution (often boundary data) plus additive noise, our inverse
problem corresponds to the observations of stochastic particle positions that serve as
a proxy for the PDE solution. We provide a preliminary investigation of the statistical
properties of this inverse problem, but there are several avenues of promising investi-
gation in discerning similarities and differences in this PDE inverse problem against
their classical counterpart.

On the computational side, this connection to other inverse problems suggests
there are likely improvements toward more efficient inference. Such improvements
will likely be necessary for large-scale inference on now available tissue-scale data
(Eng et al. 2019). The primary bottleneck of our approach is each evaluation of the
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likelihood requires solving the PDE model over all observed domains. The simplicity
of the 1D model allowed for an analytical solution to the PDE and straightforward
MCMC sampling. However, these luxuries break down quickly for more realistic
investigations. Therefore, one may be able to construct improved samplers seen in
other gene model inference (Lin and Buchler 2019; Kilic et al. 2023), or leverage
evaluations of the likelihood in approximate techniques such as variational Bayesian
methods (Blei et al. 2017; Acerbi 2018). However, these approaches still suffer the
bottleneck of each likelihood evaluation requiring the solution to the model over all
observed domains. An alternative avenue to circumvent this may be the use of neural
network or related approaches. Such techniques have served useful in inverse problems
on stochastic chemical reactions (Jiang et al. 2021), classical PDE inverse problems
(Raissi et al. 2019), and particle positions (Chen et al. 2021), including with domain
generalization (Cao et al. 2023). Therefore, this seems like a promising avenue of study
for this problem at the intersection of these topics. Lastly, a variety of investigations
remain in adapting the zoo of techniques in the toolbelt for inverse problems to this
setup, ranging from model selection (Nardini et al. 2021) to optimal experimental
design (Ryan et al. 2016).

The steady-state birth-death-diffusion model was chosen at a deliberate level of
complexity to distill the salient features of the data: snapshots of fluctuating pop-
ulations in a domain. However, there is considerable work that must be done in
incorporating known biological complexities before our framework can be used on
experimental smFISH data.We acknowledge the context of a vast literature on forward
modeling of various non-spatial aspects of stochastic gene expression e.g., (Pauls-
son 2005; Singh and Soltani 2013; Cao and Grima 2020; Gorin and Pachter 2020;
Karamched and Miles 2023). The use of these stochastic models in inference for tran-
scriptomics data is also increasingly prevalent and sophisticated (Herbach et al. 2017;
Gómez-Schiavon et al. 2017; Luo et al. 2022). We hope that our investigation serves
as a segue for the field to transition into spatially resolved models that can be linked
to this already available data. A non-exhaustive list of interesting complexities that
may be included in our model is as follows. The production of RNA for many genes
is known to be bursty (Jones and Elf 2018; Donovan et al. 2019), with short stochastic
intermittent windows of production. A spatial bursting model may be tractable with
generating function techniques (Cottrell et al. 2012) that serve fruitful for analytical
understanding of non-spatial models (Gorin and Pachter 2020, 2022). On the geo-
metric side, the model must be extended to biological datasets of 2D and 3D FISH
imaging (Omerzu et al. 2019). The models can also be extended to multiple compart-
ments (the nucleus, cytoplasm) and serve as a platform for investigating the nature
of RNA export through different possible boundary conditions, e.g., Robin boundary
conditions arising through stochastic gating of particles (Lawley and Keener 2015)
that may approximate the complex dynamics of RNA export (Köhler and Hurt 2007;
Azimi et al. 2014). Lastly, the movement model could be extended to include subdif-
fusive motion seen (Cabal et al. 2006), known to profoundly dictate spatial patterns,
especially near boundaries (Holmes 2019).

In summary, our work serves as a basis for more detailed investigations of inferring
dynamics from spatial dynamics from snapshots of stochastic particle populations,
especially those arising from spatial transcriptomics data. The analytical tractability
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of the model allowed for us to carefully examine the role of cell-to-cell heterogeneities
which are surely present in awide array of biological datasets. This surprising insight of
robustness in inference arising from noise contributes a new dimension to the broader
theme in mathematical biology of how noise can sharpen signals (Hänggi 2002). In an
era where phenomenological statistical analysis of biological data is commonplace,
we hope that our study will inspire others to consider rigorous modeling of biological
data to discover other surprises and insights.

Appendix A Numerical Implementation Details

A.1 Stochastic Simulation Algorithm for Synthetic Data

Algorithm 1 describes the generation procedure for synthetic data used in the inference
setups of Figs. 5 and 6. Importantly, we simulate trajectories of the particle process,
and do inference using the point process theory from Theorem 2.1. The simulation
procedure is exact except for a small 	t -controlled approximation error in comput-
ing whether a Brownian path has exited the domain (Smith and Grima 2019). In all
simulations, we take 	t = 10−5, several orders of magnitude smaller than any other
timescale.

Algorithm 1 Stochastic simulation to generate particle positions for synthetic data.

A.2 Metropolis-in-Gibbs Sampling for Bayesian Inference

See Sect. 3.2 for an explanation of prior choices for λ,μ. The choice of prior for
λ provides a (marginal) conjugate posterior that can be computed analytically, so a
Gibbs-in-Metropolis MCMC approach is used and described in Algorithm 2.

As is standard practice (Gelman et al. 1995), we do a sequence of warm-up phases
to target the range of acceptance probabilities between 0.3 and 0.5, starting with σ = 1
and rounds of 500 steps. After each warm-up round, if the acceptance frequency is
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Algorithm 2MCMC Gibbs-in-Metropolis sampling of posterior distribution.

Fig. 7 Rubin-Gelman R̂-1 demonstrating convergence of MCMC (on the setup in Fig. 5 with M = 10) for
two chains. Convergence is considered good when R̂ − 1 < 10−1, achieved in approximately 103 MCMC
steps

below the target range, σ → σ/2, and if above σ → 2σ . Once in the range, the ending
values of λ,μ are used as initial values, and the full algorithm is run with this step
size σ for a much greater number of steps. The values from the chains for this burn-in
phase are discarded.

To choose the number ofMCMCsteps,we investigate theGelman-Rubin diagnostic
R̂ (Gelman et al. 1995) for the presumed worst-case scenario of M = 10 snapshots
in the setup of Fig. 5. For M = 10, we initialize multiple chains and compute R̂ as a
function of the number of MCMC steps, shown in Fig. 7. Convergence is considered
satisfactory for R̂ < 1.1 (Gelman et al. 1995), which is achieved around 103 MCMC
steps. We take 105 MCMC steps for all setups in the main text and do not monitor
convergence further.
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Data availibility MATLAB code for numerical simulations and inference can be found in the Github repos-
itory https://github.com/chris-miles/particle_inference_1d. Algorithms are described in Section A.
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