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ANNALS OF MATHEMATICS 
Vol. 50, No. a, October, 1949 

DERIVATION ALGEBRAS AND MULTIPLICATION ALGEBRAS OF 
SEMI-SIMPLE JORDAN ALGEBRAS 

By N. JACOBSON 

(Received June 9, 1948) 

In this note we investigate the Lie algebra of derivations and the Lie algebra V 
generated by the multiplications in any semi-simple Jordan algebra (with a 
finite basis) over a field of characteristic 0. We show that the derivation 
algebra Z possesses a certain ideal l consisting of derivations that we call inner 
and that 3 is also a subalgebra of the Lie multiplication algebra S. For semi- 
simple algebras we prove that i = Z. This result is a consequence of a general 
theorem (Theorem 1) on derivations of semi-simple non-associative algebras of 
characteristic 0. It can be seen that another easy consequence of our general 
theorem is the known result that the derivations of semi-simple associative 
algebras are all inner.' Our method can be applied in other cases, too (for 
example, alternative algebras), but we shall not discuss these here. 

An earlier method of obtaining the derivations for the non-exceptional simple 
Jordan algebras has been given in a forthcoming joint paper by F. D. Jacobson 
and the present author.2 We compare the two results and we determine the 
structure of the derivation algebras. A survey of the results shows that one 
obtains in this way all the non-exceptional simple Lie algebras. In a forth- 
coming paper by Chevalley and Schafer the same problems are solved for the 
exceptional simple Jordan algebra. 

1. We recall the definition of a derivation D in a (non-associative) algebra K 
as a linear transformation in W that satisfies 

(1) (xy)D = x(yD) + (xD)y. 

Thus if we denote the right multiplications x -p xa by R. and we replace y by a 
in (1) we see that this equation is equivalent 

(2) [Ra XD] RaD-DRa = RaD. 

Similarly if La is the left multiplication x ax then D is a derivation if and only if 

(3) [La X D] = LaD . 

It is known that the set Z of derivations is a Lie algebra of linear transformations 
acting in W, that is, Z is closed under addition, under scalar multiplication and 
under commutation.3 

If W is an associative algebra then 

(4) RaRb = Rab X LaLb = LbaX [Ra XLb] = 0 

1 [7] pp. 212-215. 
2 [4] 
3 [7], p. 207. 
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and these relations show that D = Rd- Ld satisfies (2) for any d. A derivation 
of this kind is called an inner derivation. Their totality is an ideal in the 
derivation Lie algebra. 

Also if 21 is an abstract Lie algebra in the sense that the multiplication satisfies 

(5) a2 = 0, (ab)c + (bc)a + (ca)b = 0 
then 

(6) Rad = [R.; Rd] 

and this shows that Rd = -Ld is a derivation for every d. Derivations of this 
kind are called inner and again it is well known that their totality is an ideal 
in the derivation algebra. 

We consider now the analogous facts for Jordan algebras. Following Albert 
we define such an algebra by the identities 

(7) ab = ba, (a2b)a = a2(ba). 

The second one of these can be linearized to give 

(8) R(.b)c = R.Rbc + RbRac + RcRb - (R.RcRb + RbRcR.)4 

and this implies that 

(9) [Ra, [Rb, Rc]] = RA(b,a,c) 

where A (b, a, c) is the associator 

(10) A(b, a, c) = (ba)c - b(ac). 

The commutative law gives 
A(b, a, c) = (ab)c - (ac)b = a[Rb, R]. 

Hence 

(11) [Ra , [Rb , RcI] = R,[RbRcl 

Consequently the mapping [Rb, R], or, x -- A (b, x, c) is a derivation. It 
follows also that any mapping of the form x -- >2A (b, x, c) is a derivation. 
Such mappings will be called inner derivations of the Jordan algebra. Clearly 
they form a subspace of the derivation algebra. Also it is easy to verify that 
if we denote x -- A (b, x, c) by Ibc then for any derivation D 

(12) [Ibc, D] = I(bD)c + Ib(cD) 

Hence again the inner derivations form an ideal. 
In addition to the derivation algebra S we shall study in this note the Lie 

multiplication algebra 2 of W. By this we mean the enveloping Lie algebra, that 
is, the Lie algebra generated by the multiplications Ra . Because of (11) the set 
Wr= { Ra} is a Lie triple system of linear transformations, that is, a subspace of 

4[1] p. 549. 
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linear transformations that is closed relative to the ternary operation [A, [B, Cl].5 
It follows that V is the totality of mappings of the form Ra + E3[Rb I R.]. Thus 
the subset 3 of inner derivations is a Lie subalgebra of S. 

2. We shall call a non-associative algebra with a finite basis right (left, two- 
sided) semi-simple if it can be expressed as a direct sum of minimal right (left, 
two-sided) ideals none of which are right (left, both ways) annihilated by the 
algebra. Thus W is right semi-simple if and only if the set Wr of right multiplica- 
tions is completely reducible and the set of induced mappings in any non-zero 
invariant subspace (i.e., right ideal) includes non-zero mappings. Similar 
remarks hold for left semi-simplicity and for (two-sided) semi-simplicity. Of 
course, all of these concepts coincide for commutative algebras. They coincide 
also for Lie algebras since multiplication is skew-symmetric in such algebras. 

We assume now that W is an arbitrary right (left, two-sided) semi-simple 
algebra that has an identity and a finite basis over a field of characteristic 0. 
Let e and S, respectively, be the associative and the Lie algebras of linear 
transformation generated by the right (left, right and left) multiplications in W. 
Then e and 3 are completely reducible. It follows that e is semi-simple and 
that 3 = 2' (D L where (E is the center and where T', the derived algebra, is 
semi-simple.6 

Now let D be a derivation in W. The mapping D: X -- [X, D] is a derivation 
in the associative algebra and in the Lie algebra of all linear transformations in 
the vector space W. By (2) ((3), (2) and (3)) the subspaces e and 2 are mapped 
into themselves by D. Hence D induces derivations in e and in S. Clearly D 
maps S' into itself and it maps the center (E of 2 into itself. If C e (S, C is also in 
the center of A. Since the center of e is a direct sum of separable fields any 
derivation in e maps the elements of the center of e into 0. Thus CD = 0. 
Now it is a well-known result of Cartan's that any derivation of a semi-simple 
Lie algebra 5' over a field of characteristic 0 is inner.' It follows that any 
derivation of a direct sum 3' (D (E that maps (E into 0 is also inner. Thus there 
exists an element U in V such that [R., D] = [R. X U] ([La X D] = [La) U], both 
conditions) hold for all a in W. Consequently 

(13) aD = 1RaD = 1[R., D] = 1[Ra , U] 
(13) -~~~~ aU - (1U)a 

or 
(13') D = U - Liu. 

Similarly if W is left semi-simple then there is a U in the enveloping Lie algebra 
of the left multiplications such that 
(14) D = U-RRu. 

5 Systems of this type are considered in [9]. 
6 The result on associative algebras is well known. See for example [5] p. 70. The Lie 

algebra result is given in [6] p. 878. 
7 [2] p. 113 or [3] p. 689. 
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Finally if W is semi-simple then there exists a U in the Lie algebra generated by 
the R. and the Lb such that (13') and (14) hold. Either one implies that D 
is in V. 

THEOREM 1. Let 2 be a right (left, two-sided) semi-simple algebra with an 
identity that has a finite basis over a field of characteristic 0. Then if D is any 
derivation in 21 there exists an element U in the enveloping Lie algebra of the right 
(left, right and left) multiplications of 21 such that D = U - L1u (D = U -Ru, 
D= U). 

3. Albert has defined the radical of a Jordan algebra to be the maximal 
solvable ideal.8 Solvability is defined as for Lie algebras; 25 is solvable if the 
sequence of dyadic powers of A, namely, S2 = 25S 

l = -22, - - - leads to 0. 
If S is solvable it is nilpotent in the sense that there exists a positive integer N 
such that any product of N factors is 0. If the base field has characteristic 0 then 
Albert has proved that the radical can be determined by a trace condition. 
Let r(a) = trace Ra , then the radical 91 is the totality of elements z such that 

(15) r(xz) = 0 

for all x in 21. Also Albert has shown that if 9 = 0 then 21 is semi-simple and 
possesses an identity. 

Conversely suppose that 21 is semi-simple in our sense. Since the radical 9 
is an ideal, complete reducibility of the set JR,,} implies the existence of a com- 
plementary ideal e such that 2 = 9 G A. If 9 5 0 the nilpotencey of 9 
implies that there are elements z F 0 in 9 such that z9 = 0. The set 3 of 
these elements satisfies 391 = O and 3Q1 _ 9 f e3 = 0. Hence 321 = O contrary 
to the definition of semi-simplicity. Thus 9 = O. Also Albert's results now 
show that 2 has an identity. 

If 21 is a Jordan algebra with an identity 1, then the set (1) of multiples of 1 is 
characteristic relative to derivations in the sense that it is mapped into itself by 
every D in the derivation algebra. For it is clear that iD = 0 for any D. 
Another characteristic subspace is defined by the condition r(y) = 0. This is 
clear from (2). The space &o defined by this condition is either the whole space 
21 or it has dimension n - 1, n the dimension of 21. If 21 has an identity it is 
clear that (1); O21 . Hence 21 = (1) 0 2Og. 

We can use the trace condition also to prove that the radical 9 is characteristic. 
For if z e 9 and D is a derivation then 

r(x(zD)) = trace R,.(xD) = trace R(xZ)D-(xD)z 

= trace R(XZ)D - trace R(,D)Z = 0 

for all x. Hence zD e W. 
We consider now the theory of derivations for semi-simple Jordan algebras. 

We prove first the following 

I The results on the structure theory of Jordan algebras that are stated here without 
proofs are given in Albert's paper [1]. 
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THEOREM 2. Every derivation of a semi-simple Jordan algebra with a finite 
basis over a field of characteristic 0 is inner. 

PROOF. We have shown that W has an identity. Hence Theorem 1 is appli- 
cable. Also we know that V is the set of mappings of the form Rd + a [RbI Rc]. 
Hence D = Rd + Z[Rb, RJ]. Hence iD = d + Z(bc - cb). Since iD = 
0O d = OandD = >,[Rb, Rc]. 

4. We shall determine next the structure of the derivation algebras of semi- 
simple Jordan algebras. It is easy to see that we have a direct sum reduction 
to the case of simple Jordan algebras. Hence we restrict our attention to these. 

The simple Jordan algebras over a field of characteristic 0 fall into three 
"great" classes and one exceptional class.9 The first great class consists of the 
Jordan algebras that are obtained by using the multiplication as b = 1/2(ab + ba) 
in simple associative algebras 21. We denote by 2j the Jordan algebra that is 
obtained from a particular associative algebra 2 by this process. The second 
great class consists of the Jordan subalgebras (2, J) of J-symmetric elements 
in a simple involutorial algebra 2 with involution J. The third great class is 
constituted by the algebras that define Clifford systems. These have bases 
1, u1, u2, * U* *,n such that 1 is the identity and 

(16) 4 = a#i 0 UiUj = 0 if i # j. 

Finally we have the exceptional Jordan algebras corresponding to the system Ma 
discovered by Jordan, v. Neumann and Wigner. These have 27 dimensions 
over their centers. 

The derivation algebras of the non-exceptional Jordan algebras have been 
determined in a joint paper by F. D. Jacobson and the present author using the 
above representations of these algebras.10 For the first type we showed that 
any derivation has the form x -* [x, d] xd - dx. If we denote this mapping as 
Dd it is clear that Dd = 0 if and only if d is in the center. The correspondence 
d -* Dd is linear and D[dl ,d2] = [Ddl, Dd2]. It follows that the derivation algebra 
Z of 2 is isomorphic to 2b/ S where WI is the Lie algebra obtained by replacing 
ordinary multiplication in 2 by commutation and G is the center. It is also 
easy to see that 2, = 21 I G where WI is the derived algebra. Hence -- 2I. 

We now compare these results with those that can be obtained from Theorem 
2. Applying Theorem 2 we see that any derivation in 2s has the form 
x -H A (b, x, c). We can verify that 

(17) A(b, x, c) = (b * x) * c-b * (x - c) = 1/4[x, [b, c]]. 

Hence the inner derivations x -* ZA (b, x, c) has the form x -* [x, d] noted above. 
For the Jordan algebra t (A, a) it has been proved that the derivations have 

the form x -* [x, d] where d is J-skew."1 The enveloping associative algebra of 

9 [4] and [10]. 
10 [4]. 
11 [4]. 
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&(W, J) is W. Hence if the derivation Dd = 0, d is in the center of K. If J is 
an involution of first kind the elements of the center are symmetric.12 It 
follows that if d is skew and Dd = 0 then d = 0. It follows that the derivation 
algebra Z is isomorphic to the Lie algebra e(K, J) of J-skew elements (commuta- 
tion as the product). By Theorem 2 and (17) we see that any derivation in 
S(A, J) has the form 

x -* [x, Z[b, c]] 

where b and c are J-symmetric. Now it is clear that the commutator of two 
J-symmetric elements is J-skew. Hence this checks with the above. We 
remark also that it is a consequence of these results that any J-skew element 
can be expressed as a sum of commutators of J-symmetric elements if J is of the 
first kind. In a similar manner we see that if J is of second kind, then the 
derivation algebra of S&(2t, J) is isomorphic to 5(2t, J)'. Moreover, any element 
of S(K, J)' can be written as a sum of commutators of J-symmetric elements. 

In the case of Jordan algebras defined by (16) any derivation maps the space 
spanned by the ui into itself. Thus uiD = fluss iD = 0 and the matrix (M) 
is J-skew where J is the involution defined by (Q) -+ (a) (t)'(a)[1 where 

(a) = diag {Cil, a2, , aV , an I 
It follows that the derivation algebra is isomorphic to the Lie algebra of J-skew 
matrices determined by this J. 

The derivation algebra Z of the exceptional Jordan algebras will be determined 
in a forthcoming joint paper by Chevalley and Schafer. Their result is that if 
the basis field is algebraically closed then the derivation algebra of the (single) 
exceptional Jordan algebra Mg is the exceptional simple Lie algebra F4 of 52 
dimensions. It follows that the derivation algebra of any exceptional Jordan 
algebra is of type F4 in the sense that if its center is extended to its algebraic 
closure, then the resulting algebra is F4 . 

A survey of these results shows that with the exception of a few easily enumer- 
ated cases of low dimensionality the derivation algebras of simple Jordan algebras 
are simple Lie algebras."3 Moreover, every non exceptional simple Lie algebra 
can be obtained in this way. Finally the exceptional Lie algebra of 52 dimen- 
sions can be obtained as a derivation algebra of a simple Jordan algebra. 

5. We shall determine next the structure of the Lie algebras 2 for the simple 
Jordan algebras. It will be convenient to denote the Jordan algebra as before 
by W. For the first two classes we have 1 - 1 imbeddings in associative algebras, 
that is, we have a 1 - 1 mapping a -- Ua where Ua is in the associative algebra 
such that this mapping is linear and 

(18) Uab = U.p Ub3 1/2(UaUb + UbUa). 

12 An involution of a simple associative algebra is of first kind if it leaves the elements 
of the center fixed and it is of second kind if it induces a non-trivial automorphism in the 
center. 

18 [8]. 



872 N. JACOBSON 

For the first class the Ua form a simple associative algebra while in the second 
the U. are the J-symmetric elements of a simple involutorial algebra. In the 
first case we shall replace our original imbedding by a more convenient one. 
This is obtained by forming the direct sum of the imbedding algebra and an 
algebra anti-isomorphic to it. The elements of the new algebra have the form 
U + V where multiplication is multiplication of components and where U 
denotes the image of U under a definite anti-isomorphism between the component 
algebras. The mapping J: U + V -* V + U is an involution in the direct sum, 
whose symmetric elements have the form U + U. The correspondence 
a -> Sa = Ua + UT is a 1 - 1 imbedding of the Jordan algebra W. Thus we 
now have the same situation as for the second class, that is, we have a 1 - 1 
imbedding in an involutorial associative algebra, now denoted as U, such that 
the set of elements corresponding to 2[ is the set & (U, J) of J-symmetric elements. 
For the sake of uniformity we denote the imbedding in both cases by a -+ .14 

Now let A denote the enveloping Lie algebra of the elements Sa . We propose 
to show that V is isomorphic to A. First we shall show that the set t (U, J) is a 
Lie triple system isomorphic to the Lie triple system 2r of multiplications Ra. 
Consider the mapping Ra -* 1/2Sa . This is 1 - 1 and linear. Moreover by 
(9) and (17) 

[Ra I [Rb , Rc]] = RA(b,a,c) -* 1/2 SA(ba c) 

= 1/2((Sb Sa) * Sc - Sb * (Sa * Sc)) 
= 1/8[Sa, [Sb , Sc]] 

= [1/2Sa, [1/2Sb I 1/2Sc]]. 

This proves that the mapping R. -* 1/2 S. is an isomorphism for the Lie triple 
system. 

Suppose now that Ra + Z[Rb , Rd] = 0. Then 1 (Ra + 1i [Rb , Rc]) = 0 and 
this gives a = 0. Hence Ra = 0, Sa = 0 and Z[Rb, Rd] = 0. This last relation 
implies that Z[Rz [Rb, Rc]] = 0 for all x. Hence Z[Sz [Sb , Sc]] = 0. Thus 
Z[Sb , Sc] is in the center of U. Since the enveloping associative algebra of the 
S, is U and U is semi-simple this implies that Z[Sb, Sc] = O.'5 Thus if 
R. + Z[Rb , Rc] = 0 then 1/2 S. + 1/4 Z[Sb , Sc] = 0. Conversely, suppose 
that 1/2 S. + 1/4 Z[Sb , Sc] = 0. Then since S. is J-symmetric and [Sb6 Sc] 
is skew, SL = 0 and Z[Sb, Sj] = O. Since a -* S, is 1 - 1 this implies that 
a = 0 and hence that R. = 0. Also as before Z[Rz X[Rb, Rj]] = 0. By (9) 

A (b, x, c) = 0. Hence x(Z[Rb , Rj) = 0. Thus Z[Rb , Rd = 0. It is now 
immediate that the mapping 

(19) R. + Z[Rb, Rc] -* 1/2 S, + 1/4 Z[Sb, SC] 

is 1 - 1 and linear. Since commutation in V and in A are determined by the 

14 The imbedding a -+ Sa is a "universal" imbedding in the sense of [4]. 
15 [6] Lemma 4, p. 877. 
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ternary commutation in W, and in S~(U, J) respectively it follows that (19) is an 
isomorphism of S into A. 

It is fairly straightforward to determine the elements of A. If K is in the 
second class and J is an involution of first kind then we know that any J-skew 
element is a sum of commutators of J-symmetric elements. Hence any J-skew 
element as well as any J-symmetric element is in A. Thus A = U1 . 

If J is of second kind (E in the second great class) then we assert A = U' (D Go 
where '5o is the set of symmetric elements of the center. Clearly A = ('5o. More- 
over since any element of U is a sum of J-symmetric element and a J-skew ele- 
ment any element of UI' is a sum of elements of the forms [H, H'], [H, S], [S, S'] 
where H, H' are J-symmetric and S, S' are J-skew. Since [H, S] is J-symmetric 
such an element belongs to A. Evidently [H, H'] is in A and as we noted before 
any element of the form [S, S'] is a sum of commutators of elements of S,(U, J). 
Hence any [S, S'] isinA. ThusA: U1 . HenceA 2 U' + Go . If A D U1 + (Yo 
the decomposition U = U1 0 ('5, (E the whole center, shows that A contains an 
element of (E that is not symmetric. It follows that A contains a non-zero skew 
element of the center. On the other hand the elements of A that are J-skew are 
in U1 and this contradicts u1 n f = 0. Thus A = U1 (0 (So. 

In a similar manner we can treat the case in which W is in the first class. We 
observe first that a commutator of J-skew elements is also a commutator of 
J-symmetric elements. For let U - U and V - vP be skew. Then 

[U - . V - 'V = [U. V] + [U. V] = [U + U. V + V]. 

It follows from this that A 2 U . Also A contains (So the totality of elements 
of the form C + C, C in the center of the first component algebra. It follows 
as in the preceding case that A = U' 03 ('o . 

In all of the cases considered thus far A is a direct sum of a commutative Lie 
algebra and one or two simple Lie algebras of type A. 

We consider next the Lie multiplication algebras for the Jordan algebras 
defined by (16). If we use the basis (1, U1, u2, .**, un) the matrix of Rb, 
b = Sol + E ,hu is 

o0 1 * n 

fOiai iOo 

(20) * . 

O~n~en 300 

As before we denote by J the involution (Q) (a) ()'(a)-l in the n X n matrix 
algebra. If we recall that the derivations of W have as matrices relative to 
(1, u1, . , un) the matrices 

(21) (0 ) 
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where (A) is J-skew, we see that e is isomorphic to the Lie algebra of matrices 
that are sums of matrices of the form (20) and of the form (21). The latter Lie 
algebra is a direct sum of a commutative Lie algebra and the Lie algebra of 
matrices of the form 

0 Ond 

(22) G(O) 

I~~~~~~~~~~~ 

It can be verified that this algebra can be characterized as the set of K-skew 
matrices of (n + 1) rows where K is the involution (t) -> (y)(t)'(y)y' where 

(y) = diag {-1, al, a2, * ., an. 

This is a Lie algebra of type B or D. It may be noted also that by Theorem 2 
any matrix of the form (21) is a sum of commutators of matrices of the form (20). 

The determination of 2 for the exceptional Jordan algebra will be given in the 
paper by Chevalley and Schafer referred to above. Here it will be shown that 
if the base field is algebraically closed then 2 = (1) + E6. Where E6 is the 
third exceptional simple Lie algebra (of 78 dimensions). 

YALE UNIVERSITY 
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