Research Interests

I have always been interested in the algebraic structure of nonassociative systems, primarily
Jordan algebras, superalgebras, triples, and pairs, with excursions into associative and alternative
algebras. Jordan algebras arose out of quantum mechanics as a way to capture the algebraic essence
of hermitian operators on Hilbert space, where only hermitian operators correspond to physical
observables. Thus if x,y are observables, so are %(xy + yz) and x?, but not zy. Pascual Jordan
found it philosophically unsatisfying to study the algebraic structure using products derived from
xy when that product itself was un-observable, so he attempted to develop the entire theory in
terms of an observable product z -y (corresponding to the Jordan product %(my + yx) for hermitian
operators), without ever referring to an un-observable product zy determining the structure from
behind the scenes. A Jordan algebra is an algebra whose product is commutative, x -y = y - x, and
satisfies the Jordan identity (z*-y) -x =22 - (y - z).

An associative algebra A always gives rise to a Jordan algebra A via the Jordan product (just
as it gives rise to a Lie algebra A~ via the Lie product [z,y] := zy —yz). If A carries an involution *
then the hermitian or symmetric elements z* = x form a Jordan (but not an associative) subalgebra
(just as the skew elements form a Lie subalgebra). Inside the Clifford algebra C of a bilinear form
(v,w) on a vector space V over a field F, the defining relation vw + wv = (-,-)1 shows that
the subspace F'1 & V is closed under the Jordan product, and so forms a Jordan subalgebra of
C*. A Jordan algebra is special if its product comes from the Jordan product in some associative
algebra, i.e. arises as a Jordan subalgebra of some AT, otherwise it is ezceptional. Jordan sought
an exceptional setting for quantum mechanics. In their classical 1934 paper, Jordan, von Neumann,
and Wigner showed that in finite dimensions all formally real Jordan algebras are direct sums of
simple algebras, and all simple algebras are either of Clifford type (determined by the dot product
on R") or of hermitian type (n X n hermitian matrices over the reals, complexes, quaternions,
or (for n = 3 only) octonions). In all cases except the 27-dimensional “Albert algebra” of 3 x 3
hermitian matrices over the nonassociative algebra of octonions, the Jordan algebra was special, its
product came from the product xy in some associative algebra, in which case a behind-the-scenes
associative product was inescapable. Von Neumann tried to extend this to infinite-dimensional
algebras, but was unable to do so. In 1979 Zel’'manov finally showed that, even in infinite dimensions,
the only simple Jordan algebras which are exceptional (do not come from a lurking associative
algebra) are the Albert algebras of dimension 27, too small to encompass quantum mechanics.
Indeed, he classified all simple (even prime) Jordan algebras: they were of Clifford type (coming
from nondegenerate bilinear forms), Hermitian type (spaces of hermitian elements in an associative
algebra with involution), or Albert algebras. Zel'manov went on over the next few years to single-
handedly settle most of the outstanding structure theory questions for Jordan systems (algebras,
triples, pairs, and superalgbras), then moved on to the Restricted Burnside Theorem and a Fields
Medal.

These Jordan algebras (especially the Albert algebras) have unexpectedly turned out to play im-
portant roles in many different areas of mathematics: Lie groups and algebras, differential geometry
(real symmetric spaces and complex bounded symmetric domains), projective geometry (Moufang
planes), probability, and statistics, among others.



I have devoted much of my effort to understanding Jordan structures where there is no scalar
% available (e.g. Jordan rings over the integers, or over fields of characteristic 2), which necessitate
a quadratic approach based on the product xyx instead of %(:Uy + yz). Jacobson introduced the
ancillary product Uy := 2z-(z-y) —x?-y in any Jordan algebra (reducing to ryz in special algebras)
to help establish results about inverses and isotopes: x is an invertible element iff U, is an invertible
operator. The product U,y is not bilinear, it is linear in y but quadratic in z; by linearizing
the quadratic term we obtain a trilinear Jordan triple product {x,y,z} := %Um,zy (reducing to
+(zyz + zyz) in special algebras). Just as any invertible element u in an associative algebra A
induces a new associative structure A* with new product z,y = zuy and new unit 1, = u™!, so
any invertible element in a Jordan algebra induces a new Jordan structure J® with new product
z,y = {x,u,y} and unit u~'. Jacobson conjectured, but could not prove, the Fundamental Formula
Uu,y2 = UyU, U,z for these U-operators. This was proven in 1958 by I.G. Macdonald, as part of
Macdonald’s Theorem that any Jordan expression in three variables z,y, z linear in z will vanish
identically in all Jordan algebras as soon as it vanishes in all special Jordan algebras. In 1966 I
gave an axiomatization of quadratic Jordan algebras based on the U-operators: a unital quadratic
Jordan algebra is a space with unit element 1 and quadratic product U,y (think: zyz) satisfying
Uy =1d, Uy,y = UUyUy, Vo Uy = UpVya (also Vi y = Vi u,e) where Vy (2) = (Upy2— U, —Uz) (y)
is the Jordan triple product {z,y, z} (think xyz + zyz, but beware: in order to avoid %, the triple
product ~ zyz + zyx in quadratic Jordan algebras is twice that ~ %(:Cyz + zyz) in linear Jordan
algebras, yet we use exactly the same symbol {z,y, z} in both cases). When a scalar % is available,
there is a 1-1 correspondence between these quadratic Jordan algebras and unital linear Jordan
algebras, via z -y := +{z,1,y} and Uy := 2z - (z - y) — z* - .

Jordan triples and pairs have a triple product like a quadratic Jordan algebra, but contain no
unit and no bilinear products. Examples of Jordan triples are rectangular m x n matrices over an
associative ring with involution with U,y := xy*z and {z,y, 2z} := zy*z + zy*x (2* the conjugate
transposed matrix), and also a 16-dimensional exceptional triple of 1 x 2 octonion matrices. The
analogous (but more general) Jordan pair would be the pair of spaces J© = Hom(V,W),J~ =
Hom(W, V') acting on each other (but not on themselves) like Jordan triples via U,y ® = z° o
y “oxf (¢ = %) in terms of the ordinary composition o of linear transformations. In differential
geometry it is not Jordan algebras that play a leading role, it is the Jordan triple product which
arises naturally from bounded symmetric domains; even if the triple has invertible elements, hence
isotopes which are Jordan algebras, it is geometrically artificial to elect one of these as unit, so
Jordan triple systems are the natural objects.

Jordan pairs were invented by Ottmar Loos, and were born of the Tits-Kantor-Koecher con-
struction of Lie algebras: if L_; & Ly @ L, is a short 3-graded Lie algebra (L;L; falls in L, , so
vanishes if |i + j| > 2), then (L, L_;) forms a Jordan pair: the Jacobi identity is forces Ly, L_; to
act on each other (but not on themselves) in a Jordan triple fashion. Jordan pairs form a crucial
tool in understanding ordinary Jordan algebras, as Zelmanov’s classification has shown.

Lie superalgebras were invented by physicists to decribe supersymmetry between bosons and
fermions, encompassing both types of particles within one algebraic framework, and in algebra it
has become standard that superobject just means Zs-graded object. Associative superalgebras had
long been known in toplogy: they were simply Z,-graded associative algebras A = Ay @ A; where



A;A; C A;yj (with indices read modulo 2). A typical example would be A = End(V) for a graded
vector space V = Vy @ V) with Ay = End(Vy) & End(V}) consisting of the linear transformations
which preserve degree, and A; = Hom(Vp, V1) @ Hom(V,V;) the transformations which change
degree (as matrices with block decomposition, the even part consists of the two diagonal blocks and
the odd part consists of the two off-diagonal blocks).

In contrast, Lie superalgebras are also Zs-graded algebras L = Lo & Ly, but they are not Lie
algebras, instead they satisfy a graded version of the Lie axioms: the “even part” Ly is a Lie
algebra, and the “odd part” L, is a Lie-bimodule having a Jordan-like symmetric product into L.
Axiomatically, Lie superalgebras satisfy graded anticommutativity z; e y; = —(—1)7y, e z; and the
graded Jacobi identity Y .u.(—1)%*z;  (y; ® z;). Similarly, Jordan superalgebras are not Jordan
algebras, they are graded algebras J = Jy & J; satisfying a graded version of the Jordan axioms:
graded commutativity z; - y; = +(—1)Yy; - x; and the graded Jordan identity chdic(—l)(”@’“(((xi .
Yj) - we) - 2 — (i - y5) - (we - zk)) Thus Jy is a Jordan algebra with J; as bimodule, and J; carries
a Lie-like skew product z; - y; into Jy. A typical example of a Lie superalgebra would be A~
for an associative superalgebra A with super-Lie product z;y; — (—1)y;z;; a Jordan superalgebra
is super-special if it can be imbedded some A** with super-Jordan product &(z;y; + (—1)Yy;a;),
reducing to the Jordan product if at least one factor is even, and to the Lie bracket if both factors
are odd. For example, if * is a super-involution (z;y;)* = (—1)”y}x} on an associative superalgebra
A, then the super-skew elements z¥ = (—1)"z; form a Lie sub-superalgebra of A~*, and the super-
symmetric elements x} = (—1)'z; form a Jordan sub-superalgebra of A™. Jordan superalgebras
form another tool which is important in understanding ordinary Jordan algebras: the “Pchelintsev
monsters”, degenerate prime Jordan algebras which are not of the 3 classical Zelmanovian types
can be understood as the spawn of certain Jordan superalgebras.

As algebraic systems get further away from associativity, they usually become more amorphous
and less important. Besides the great classes of Lie and Jordan algebras, certain other classes
pay a useful supporting role in algebra. One of the most important is that of the alternative
algebras are defined axiomatically as those bilinear algebras satisfying the identities 2%y = z(xy)
and yz® = (yx)x for all elements x,y, equivalently L,» = L? and R, = R2. These are natural
generalizations of the composition algebras (unital algebras carrying a nondegenerate quadratic
form @ which “permits composition” with the algebra product, Q(zy) = Q(x)Q(y) and Q(1) =
1). The classical Hurwitz Theorem shows that a composition algebra over a field has dimension
1,24, or 8, and is either the base field, a quadratic extension thereof, a quaternion algebra, or an
octonion algebra, in particular it is necessarily finite-dimensional and alternative. Over the field
of real numbers the composition algebras with positive-definite quadratic forms are precisely the
reals, complexes, Hamilton’s quaternions, and Cayley’s octonions. The celebrated Bruck-Kleinfeld-
Skornyakov Theorem asserts that the only simple alternative algebras (of arbitrary dimension) are
either associative or are 8-dimensional octonion algebras over their center. This result presaged
Zelmanov’s Theorem that the only simple Jordan algebras are special or 27-dimensional Albert
algebras over their center.

In studying nonassociative algebras, two convenient notations are the commutator [z,y] =
xy — yx, measuring how far the elements z,y are from commuting, and the associator [x,y, z] :=
(xy)z—x(yz), measuring how far the three elements are from associating. An algebra is commutative



iff [x,y] = 0 for all elements x,y, and is associative iff [x,y,z] = 0 for all z,y,2. The linear
Jordan axioms may be written as [z,y] = [2%,y,2] = 0, and the alternative laws as [z,z,y] =
ly, z, x] = 0. A variety which hugs closely to Jordan theory, but sacrifices the commutative law, is the
noncommutative Jordan algebras: these have a bilinear product satisfying the identities [z2, y, ] = 0
and [z,y,z] = 0 (the flexible law (zy)r = x(yx) being a weakened form of commutativity), or
equivalently the condition that for each element z the left- and right- multiplication operators
Ly, R, L2, R;» all commute with each other. All Jordan, associative, and alternative algebras
are noncommutative Jordan algebras. The structure theory of finite-dimensional noncommutative
Jordan algebras (in characteristic not two) yields as simple algebras (1) the commutative Jordan
algebras, (2) the quasi-associative algebras A®) obtained from the product z-5y := Azy+(1—\)yz in
an associative algebra A for a scalar A # 1 (A = 3 would just give a special Jordan algebra A™), (3)
the flexible degree 2 algebras (where each element satisfies a degree two equation 2? —t(z)z+n(x)1 =
0 for scalars t(x),n(x)), and (4) the degree 1 nodal algebras (which occur only over a field F' of
characteristic p # 0 in the truncated polynomial ring Flzy,...,x,]/(z], ... 2B)).

The most general variety of nonassociative algebras of common interest is that of power associa-
tive algebras, where every element z generates an associative subalgebra, equivalently z"z™ = "™
for all natural numbers n, m. This is the most general setting where one can talk about algebraic
elements and their minimum polynomials, including norm and trace. Once one leaves the confines
of power-associativity, one enters a different realm.

In what follows I have grouped my publications according to the algebraic structures being
investigated.

Linear Jordan Algebras

[LJ1] Jordan algebras of degree 1, Bull. Amer. Math. Soc. 70 (1964), 702. [MR 29 # 2286]

[LJ2] Macdonald’s theorem with inverses, Pacific J. Math. 21 (1967), 315-325. [MR 38 # 1138]
[LJ3] A note on reduced Jordan algebras, Proc. Amer. Math. Soc. 19 (1968), 964-970. [MR 37 #
2826]

[LJ4] Jordan algebras with interconnected idempotents, Proc. Amer. Math. Soc. 19 (1968),
1327-1336. [MR 38 # 203]

[LJ5] Nondegenerate Jordan rings are von Neumann regular, J. Algebra 11 (1969), 111-115. [MR
38 # 2180]

[LJ6] Malcev’s theorem for Jordan algebras, Comm. Algebra 5 (1977), 937-967. [MR 58 # 28107|
[LJ7] Middle nucleus = center in Jordan algebras, Proc. Amer. Math. Soc. 86 (1982), 21-24 (with
Ng Seong Nam). [MR 84a:17013]

The Fundamental Formula made it child’s play to establish the basic facts about inverses and
isotopes. [LJ1] showed how the U-operator could be used to drastically simplify a complicated
result of Jacobson in the structure theory (showing that a central simple Jordan algebra with only
one nonzero idempotent (of “degree 1”) was just a 1-dimensional copy of the base field. [LJ2]
extended Macdonald’s Theorem to polynomial expressions in z, 27!, y,y~! linear in 2. (Extending
this to rational expressions, such as Hua’s formula (z + U,y~™')™' + (z + y)~! = 27!, remains an
open problem to this day.)



A Jordan algebra is nondegenerate if it has no nonzero trivial elements z with U, = 0. Jacobson
had introduced this as the natural semisimpliicity condition for his celebrated Artin-Wedderburn
structure theory for Jordan algebras with d.c.c. on inner ideals. (Nondegeneracy later proved to be
exactly the correct condition for Zelmanov’s structure theory for arbitrary algebras.) [LJ5] showed
that finite-dimensional nondegenerate Jordan algebras are regular in the sense of von Neumann: all
x € J have x € U,J (associatively this means x = zyz for some y, implying x has a “generalized
inverse” ).

Jacobson’s structure theory of Jordan algebras made heavy use of his Coordinatization Theorem,
that if J had unit 1 = }_ e; a sum of n > 3 orthogonal idempotents e; which were pairwise connected
(each pair e;, e; is connected by an element ug; € J; of the off-diagonal Peirce subspace, u7; = w;;+u;;
for elements wuyy invertible in the subalgebra Jix, k& = i,7j). Connection is a strong condition to
impose, though it held in Jacobson’s case where the subaglebras Ji; were division algebras. [LJ4]
introduced a more general notion of interconnection (that e; € U, (J;; - Ji;), showed that orthogonal
idempotents in any simple Jordan algebra are interconnected in this sense, and that interconnected
algebras are special if n > 4.

The center of a nonassociative algebra is the set of elements ¢ which commute and associate

with all other elements z,y, [c,z] = [c,x,y] = [z,¢,y] = [z,y,c] = 0; the centroid is the set
of linear operators v which commute with all multiplications, y(z - y) = v(x) -y = x - y(y), i.e.
[v, Ryl = [, Lz] = 0. In a commutative algebra the center condition reduces to [¢, z,y] = [z, ¢, y] =0

and the centroid condition to [y, L] = 0. It is easy to see that [c,y, x] = 0 implies L., L, commute,
so L. lies in the centroid and hence ¢ in the center. In general [z, c,y] = 0 does not by itself imply
centrality, but in [LJ7] Ng Seong Nam and I showed that it does for semiprime algebras.

Quadratic Jordan Algebras
Foundations of Quadratic Jordan Algebras

[QF1] A general theory of Jordan rings, Proc. Nat. Acad. Sci. U.S.A. 56 (1966), 1071-1079. [MR
34 # 2643]

[QF2] The Freudenthal-Springer-Tits constructions of exceptional Jordan algebras, Trans. Amer.
Math. Soc. 139 (1969), 495-510. [MR 39 # 276]

[QF3] The Freudenthal-Springer-Tits constructions revisited, Trans. Amer. Math. Soc. 148 (1970),
203-314. [MR 42 # 6064]

[QF4] Quadratic Jordan algebras and cubing operations, Trans. Amer. Math. Soc. 153 (1971),
265-278. [MR 42 # 3138]

[QF5] Representations of quadratic Jordan algebras, Trans. Amer. Math. Soc. 153 (1971), 279-305.
MR 42 # 3139]

[QF6] Quadratic Jordan algebras of quadratic forms with base points, J. Indian Math. Soc. 35
(1971), 1-45 (with N. Jacobson). [MR 50 # 9999]

[QF7] The generic norm of an isotope of a Jordan algebra, Scripta Math. 29 (1973), 229-236. [MR
53 # 8173]

[QF8] Axioms for inversion in Jordan algebras, J. Algebra 47 (1977), 201-222. [MR 57 # 9776]



[QF9] Localization of Jordan algebras, Comm. Algebra 6 (1978), 911-958 (with N. Jacobson and
M. Parvathi). [MR 58 # 28106]

[QF10] Peirce ideals in Jordan algebras, Pacific J. 78 (1978), 397-414. [MR 81i:17011]

[QF11] Adjoints and Jordan algebras, Comm. Algebra 13 (1985), 2567-2596. [MR 87f:17018]

Identities of Quadratic Jordan Algebras

[QI1] Macdonald’s theorem for quadratic Jordan algebras, Pacific J. Math. 35 (1970), 681-707
(with R. E. Lewand). [MR 45 # 8696]

[QI2] Koecher’s principle for quadratic Jordan algebras, Proc. Amer. Math. Soc. 28 (1971), 39-43.
IMR 45 # 8697]

[QI3] A not-so-natural s-identity, Comm. Algebra 15 (1987), 2099-2118. [MR 88k:17024]

[QI4] Gs and Gy are equivalent Jordan s-identities, Comm. Algebra 17 (1989), 2871-2891 (with A.
D’Amour). [MR 90k:17065]

Quadratic Radicals

[QR1] The radical of the Jordan algebra, Proc. Nat. Acad. Sci. U.S.A. 62 (1969), 671-678. [MR
42 # 3137]

[QR2] A characterization of the radical of a Jordan algebra, J. Algebra 18 (1971), 103-111. [MR
43 # 3316]

[QR3] Solvability and nilpotence for quadratic Jordan algebras, Scripta Math. 29 (1973), 467-483.
MR 53 # 5686]

[QR4] The Zel’'manov nilpotence theorem for quadratic Jordan algebras, J. Algebra 63 (1980),
76-97. [MR 81m:17020]

[QR5] The Zel’'manov annihilator and nilpotence of the nil radical in quadratic Jordan algebras
with chain conditions, J. Algebra 67 (1980), 230-253. [MR 82g:17016]

[QR6] Maximal modular inner ideals and the Jacobson radical of a Jordan algebra, J. Algebra 68
(1981), 155-159 (with L. Hogben). [MR 82g:17015]

[QR7] Strong nilpotence of solvable ideals in quadratic Jordan algebras, J. Algebra 81 (1983),
488-507. [MR 84e:17019)]

[QR8] Amitsur shrinkage of Jordan radicals, Comm. Algebra 12 (1984), 777-826. [MR 85k:17022]
[QRI] Invariance of Jordan radicals, Comm. Algebra 12 (1984), 827-855. [MR 85h:17011]

[QR10] Imbedding nondegenerate Jordan algebras in semiprimitive algebras, Proc. Amer. Math.
Soc. 103 (1988), 1031-1036 (with W. S. Martindale). [MR 89k:17051]

[QR11] Strict proper nilness modulo an absorber, Comm. in Algebra 27(7) (1999), 3067-3091.

Structure of Quadratic Jordan Algebras

[QS1] Inner ideals in quadratic Jordan algebras, Trans. Amer. Math. Soc. 159 (1971), 445-468.
MR 43 # 4871]

[QS2] Quadratic Jordan algebras whose elements are all invertible or nilpotent, Proc. Amer. Math.
Soc. 35 (1972), 309-316. [MR 46 # 7332]



[QS3] Quadratic Jordan algebras whose elements are all regular or nilpotent, Proc. Amer. Math.
Soc. 45 (1974), 19-27. [MR 51 # 10402]

[QS4] Zel'manov’s prime theorem for quadratic Jordan algebras, J. Algebra 76 (1982), 297-326.
[MR 83h:17019]

[QS5] Minimal ideals in quadratic Jordan algebras, Proc. Amer. Math. Soc. 88 (1983), 579-583
(with Ng Seong Nam). [MR 84i:17018]

[QS6] The structure of strongly prime quadratic Jordan algebras, Adv. in Math. 69 (1988), 133—222
(with E. Ze'manov). [MR 89k:17042]

[QS7] Little Jordan Clifford algebras, Comm. in Algebra 27(6) (1999), 2701-2732.

[QS8] Outer inheritance in quadratic Jordan algebras, Comm. in Algebra 27(12) (1999), 6127-6145.

Jordan Triple Systems and Pairs

[JT1] Speciality of Jordan triple systems, Comm. Algebra 5 (1977), 1057-1082 (with O. Loos).
IMR 58 # 22214]

[JT2] Peirce ideals in Jordan triple systems, Pacific J. Math. 83 (1979), 415-439. [MR 81i:17012]
[JT3] Compatible Peirce decompositions of Jordan triple systems, Pacific J. Math. 103 (1982),
57-102. [MR 84e:17018]

[JT4] Coordinatization of Jordan triple systems, Comm. Algebra 9 (1981), 1495-1542 (with K.
Meyberg). [MR 82k:17012]

[JT5] Strong prime inheritance in Jordan systems, Algebras Groups Geom. 1 (1984), 217-234. [MR
86¢:17017]

[JT6] Reduced elements in Jordan triple systems, J. Algebra 97 (1985), 540-564. [MR 87b:17016]
[JT7] A characterization of the nondegenerate radical in quadratic Jordan triple systems, Algebras
Groups Geom. 4 (1987), 145-167. [MR 88m:17024]

[JT8] Coordinatization of triangulated Jordan systems, J. Algebra 114 (1988), 411-451 (with E.
Neher). [MR 89d:17027]

[JT9] Prime inheritance in Jordan systems, Algebras Groups and Geometries 5 (1988), 191-225.
[MR 89k:17053]

[JT10] Local algebras, in S. Gonzalez (ed.) Nonassociative Algebra and its Applications, Math.
Appl. 303, Kluwer Acad. Publ., Doordrecht (1994), 279-284. [MR 96{:17037]

[JT11] The local algebras of Jordan systems, J. Algebra 177 (1995), 199-239 (with A. D’Amour).
MR 96k:17047]

[JT12] Jordan centroids, Comm. in Algebra 27(2) (1999), 933-954.[MR 2000b:17041]

[JT13] An elemental characterization of strong primeness in Jordan systems, J. Pure Appl. Algebra
109 (1996), 23-36 (with J.A. Anquela, T. Cortes, O. Loos). [MR 97j:17035]

[JT14] Strong primeness of hermitian Jordan systems, J. Algebra 198 (1997), 311-326 (with J.A.
Anquela, T. Cortes, F. Montaner). [MR 98j:17030]

[JT15] Imbedding nondegenerate Jordan systems in semiprimitive systems, Int. J. of Math., Game
Th., Algebra 9(1) (1999), 1-13.

[JT16] Properness, strictness, and nilness in Jordan systems, Comm. in Algebra 27(7) (1999),
3041-3066.

[JT17] Involutions of rectangular Jordan pairs, J. Algebra 225 (2000), 885-903.



[JT18] The structure of quadratic Jordan systems of Clifford type, J. Algebra 234(2000), 31-89
(with A. D’Amour).

Jordan Super-Algebras

[SJ1] Specialty and non-specialty of two Jordan superalgebras, J. Algebra 149 (1992), 326-351. [MR
93k:17060]

[SJ2] The Kantor construction of Jordan superalgebras, Comm. Algebra 20 (1992), 109-126 (with
D. King). [MR 92}:17032]

[SJ3] Poisson spreads of Lie algebras, Nova J. of Algebra Geom. 1 (1992), 73-110. [MR 93e:17044]
[SJ4] Kaplansky superalgebras, J. Algebra. 164 (1994), 656-694. [MR 95e:17002]

[SJ5] The Kantor doubling process revisited, Comm. Algebra 23(1) (1995), 357-372 (with D. King).
MR 96b:17033]

Associative Algebras and Speciality

[AS1] On Herstein’s theorems relating Jordan and associative algebras, J. Algebra 13 (1969), 382—
302. [MR 40 # 2721]

[AS2] Speciality of quadratic Jordan algebras, Pacific J. Math. 36 (1971), 761-773. [MR 45 # 5185]
[AS3] Posner’s theorem on PI algebras, Kyungpook Math. J. 11 (1971), 53-55. [MR 46 # 3558]
[AS4] Speciality and reflexivity of quadratic Jordan algebras, Comm. Algebra 5 (1977), 903-935.
IMR 56 # 8650]

[AS5] Semiprimeness of special Jordan algebras, Proc. Amer. Math. Soc. 96 (1986), 29-33. [MR
87e:17027]

[AS6] The Zel’'manov approach to Jordan homomorphisms of associative algebras, J. Algebra 123
(1989), 457-477. [MR 90j:17053]

[AS7] Martindale systems of symmetric quotients, Algebras Groups Geom. 6 (1989), 153-237. [MR
92b:16039]

Power-Associative Algebras

[PA1] Finite power-associative division rings, Proc. Amer. Math. Soc. 17 (1966),1173-1177. [MR
34 # 4319]

[PA2] A note on finite division rings, Proc. Amer. Math. Soc. 23 (1969), 598-600. [MR 40 # 7320]
[PA3] Generically algebraic algebras, Trans. Amer. Math. Soc. 127 (1967), 527-551. [MR 35 #
1644]

[PA 1] showed that finite power-associative division rings are fields, generalizing Wedderburn’s
famous theorem that finite associative division algebras are commutative fields (which has the
surprising corollary that all finite projective planes satisfying Desargues’ axiom also satisfy Pappus’
axiom, a geometric theorem for which no purely geometric proof is known).

The generically algebraic algebras introduced by Jacobson are those power-associative algebras
where there is a “generic minimum polynomial” m,(\) = A" +a;(z)\" 1 +... +a,1 of finite degree
satisfied by every element z, m,(z) = 0 (though the coefficients a;(z) change with the element,



being homogeneous polynomial functions of degree n —i in x). Here the minimum polynomial flows
from the generic norm N(z) = (—1)"a,(x). [PA3] extended the basic result to the case where the
algebra need not be finite-dimensional, only the generic minimum polynomial is of finite degree. For
example, composition algebras are generically algebraic of degree 2, > — T'(z)x + Q(x)1 = 0, and
the nondegenerate ones turn out to all be finite-dimensional, and the Jordan algebras of cubic forms
(such as the Albert algebras) are generically algebraic of degree 3, 3 —T(z)z?+ S(z)z — N(x)1 = 0.

Noncommutative Jordan Algebras

[NCJA1] Norms and noncommutative Jordan algebras, Pacific J. Math. 15 (1965), 925-956. [MR
34 # 4317|

[NCJA2| Structure and representations of noncommutative Jordan algebras, Trans. Amer. Math.
Soc. 121 (1966), 187-199. [MR 32 # 5700]

[NCJA3] On a class of noncommutative Jordan algebras, Proc. Nat. Acad. Sci. U.S.A. 56 (1966),
1-4 (with R. D. Schafer). [MR 34 # 5888]

[INCJA4] A note on quasi-associative algebras, Proc. Amer. Math. Soc. 17 (1966), 1455-1459.
IMR 39 # 270]

INCJA5] A proof of Schafer’s conjecture for infinite-dimensional forms admitting composition, J.
Algebra 5 (1967), 72-83. [MR 34 # 4318]

[NCJA6] Noncommutative Jordan rings, Trans. Amer. Math. Soc. 158 (1971), 1-33. [MR 46 #
9127]

[INCJA7] Homotopes of noncommutative Jordan algebras, Math. Ann. 191 (1971), 263-270. [MR
AT # 1888]

[NCJA8] Noncommutative Jordan division rings, Trans. Amer. Math. Soc. 163 (1972), 215-224.
MR 46 # 9127]

The graduate students in the Yale Algebra Seminar run by Jacobson in spring 1964 took turns
presenting chapters from Koecher’s Minnesota lecture notes on Jordan algebras in differential geom-
etry. My turn accidently turned into my dissertation [NCJA1]: it extracted the algebraic essence
of Koecher’s proof that a real w-domain gave rise to a Jordan algebra, showing that a semisim-
ple algebraa which carried a nondegenerate norm form N permitting some sort of composition
N(P(z)y) = p(x)N(y) on over an arbitrary field (naturally of characteristic not 2 in those days)
was necessarily a noncommutative Jordan algebra. This generalized both the Jordan composition
N(U,y) = N(x)®N(y) of Jordan algebras (which Jacobson’s work on the structure group had shown
was so important), and the associative composition N(zy) = N(x)N(y) of alternative algebras. All
the partial derivatives, logarithmic derivatives, and chain rule in Koecher’s differential geometry
made sense for polynomial maps over an arbitrary field, not just for differentiable maps over the re-
als. I could show that the simple Jordan algebras, quasi-associative algebras, and degree 2 algebras
all carried a norm permitting composition, but I couldn’t show the nodal algebras did; Marshall
Osborn soon gave an ingenious proof for these. Later [NCJAS5] extended the results to norms N
of finite degree on infinite-dimensional spaces, showing they were all finite-dimensional except for
some degree 2 algebras, settling a conjecture of Dick Schafer. Jacobson had always been suspicious
of noncommutative Jordan algebras, feeling they were mere axiomatic playthings, but when they



arose as generalized composition algebras he felt somewhat more tolerant of them. [NCJA3] with
Dick Schafer gave a structure theory for noncommutative Jordan algebras with d.c.c. on inner
ideals closely based on Jacobson’s then-fresh Artin Wedderburn structure theory for commutative
Jordan algebras, leading to the same 4 classes of simple algebras plus the (at the time) unanalyzable
division rings.

[NCJA4] gave an instrinsic characterization of forms of quasi-associative algebras.

Alternative Algebras

[A1] Bimodules for composition algebras, Proc. Amer. Math. Soc. 17 (1966), 480-486. [MR 32 #
5699]

[A2] A characterization of the Jacobson-Smiley radical, J. Algebra 18 (1971), 565-573. [MR 43 #
3318]

[A3] Homotopes of alternative algebras, Math. Ann. 191 (1971), 253-262. [MR 47 # 1899]

[A4] Alternative algebras satisfying polynomial identities, J. Algebra 24 (1973), 283-292. [MR 47
4 298]

[A5] Malcev’s theorem for alternative algebras, J. Algebra 28 (1974), 484-495. [MR 55 # 446]
[A6] Absolute zero divisors and local nilpotence in alternative algebras, Proc. Amer. Math. Soc.
47 (1975), 293-299. [MR 50 # 7272]

[A7] Finite-dimensional left Moufang algebras, Math. Annalen. 224 (1976), 179-187. [MR 58 #
22217]

[A8] A basic associativity theorem for alternative algebras, Portugal. Math. 38 (1979), 47-53. [MR
85k:17043]

[A9] Composition triples, Algebraist’s homage: papers in ring theory and related topics (New Haven,
1981), Contemporary Math. 13 (1982), 279-286. [MR 84£:17002]

[A10] Quadratic forms permitting triple composition, Trans. Amer. Math. Soc. 275 (1983),
107-130. [MR 84d:17003]

[A11] Nonassociative algebras with scalar involution, Pacific J. Math. 116 (1985), 85-109. [MR
86d:17003]

[A12] Derivations and Cayley derivations of generalized Cayley-Dickson algebras, Pacific J. Math.
117 (1985), 163-182. [MR 87¢:17002]

I have maintained an interest in alternative algebras as cousins of Jordan algebras. Alternative
algebras appear as “coordinates” of Jordan algebras: any composition algebra C' (associative or not)
gives rise to a Jordan algebra H3(C') of 3 x 3 hermitian matrices over C'. The ideals and bimodules for
the Jordan algebra correspond precisely to the ideals and bimodules for the alternative coordinate
algebra. [Al] gave a recipe for obtaining the bimodules for composition algebras C' (and hence the
related Jordan matrix algebras) in terms of regular and Cayley bimodules C' and Ct (the latter
coming from the iterative Cayley-Dickson doubling process C' — CD(C) = C @ Ct for composition
algebras). Much later [A12] related derivations of CD(C') to derivations and Cayley-derivations of
A. Kaplansky has proposed that to be important an algebra should have a rich autmorphism group
and derivation algebra. The Cayley-Dickson doubling process goes on forever, but while the the 8-
dimensional octonion algebras have an important simple automorphism group and derivation algebra



of type G, the algebras past the octonions stop being alternative or permitting composition, and
their automorphism group and derivation algebra stop growing, and therefore by this criterion are
“uninteresting”. [A11] related, over an arbitrary ring of scalars, the existence of a scalar involution
(one whose norms xZ and traces x + Z are scalar multiples of the unit element 1) to the algebra
being alternative with norm permitting composition. [A9] was a talk given at Jacobson’s retirement
conference in New Haven, announcing the results published later in [A10] on composition triples,
nondegenerate quadratic forms ) on a space which permit composition with some triple product,
Q{z,y,2}) = Q(z)Q(y)Q(z); these turned out to be primarily isotopes of ordinary alternative
composition algebras with triple composition x(yz).

Long ago A.A. Albert had developed for nonassociative algebras a notion of isotopies and isotopic
algebras, more general than isomorphism: an isotopy p : A’ — A is a linear bijection such that there
exist associated bijections o, 7 so that p(z ' y) = o(x) - 7(y) for all z,y. For unital algebras an
isotopy is just an isomorphism p(z ' y) = p(z) - p(y) of A" with an “elemental isotope” of A
(given by x -, y := R;'(z) - L;'(y)). Alternative algebras have a smoothly functioning notion of
inverse, in particular L, = L', Ry-1 = R;', 80 T,y := (zu™')- (v'y). [A3] developed a notion
of homotope C®) for alternative algebras C, introducing a new product = -,, y := (zu) - (vy)
parametrized by two (not necessarily invertible) elements w,v. This generalized the concept of
homotopes J® (z -, y := {x,u,y}) of Jordan algebras. [A2] gave a characterization of the Jacobson
radical (the maximal ideal of elements z which are quasi-invertible in the sense that 1—z is invertible
in the unital hull) for alternative algebras, and [A6] related trivial elements (elements z with zzz = 0
for all z) to local nilpotency. The difficult analog of this result for Jordan algebras was one of the
key steps of Zel'manov’s classification of Jordan algebras. [A4] established a theorem on alternative
PI algebras (those satisfying a polynomial identity) which extended (and streamlined the proof of)
a theorem of Shirshov on associative PI algebras.

[A5] obtained a Malcev Theorem for alternative algebras showing that in the “Wedderburn
splitting” A = S & R of a finite-dimensional A into a separable subalgebra S and the radical R, the
separable subalgebra S is unique up to “inner” automorphisms for a suitable notion of “inner”.

[A7] gave a short proof that finite-dimensional semisimple left Moufang algebras (satisfying the
left Moufang law (z(yx))z = xz(y(xz)) ) are automatically alternative. This was known for simple
left alternative algebras ([z,x, 2] = 0) in characteristic not 2, and there were known examples in
characteristic 2 to show that left-alternativity did not suffice to give alternativity. It has become
clear that the “proper” notion of left alternativity (e.g. the one which corresponds to “left Moufang
planes” of projective geometry) is really the left Moufang law; this is equivalent to left alternativity
when there is a scalar %, and provides enough tools over arbitrary scalars to force alternativity
in the semisimple case. (This is analogous to the situation in Jordan algebras, where linear and
quadratic Jordan algebras are equivalent in the presence of %, but the quadratic axioms are needed
to obtain the correct theory for general rings of scalars.)

[A8] gave a quick proof that an alternative algebra will be associative as soon as certain “basic
associators” vanish (generalizing Artin’s theorem that an algebra is alternative iff every subalgebra
generated by two elements is associative).



Surveys and Reports

[S1] Quadratic methods in nonassociative algebra, Proceedings of the International Congress of
Mathematicians (Vancouver, 1974), Vol. I, 325-330, Canad. Math. Congress, Montreal, 1975.
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[S5] Jordan supersystems, in Proceedings of Conference on Hadronic Mechanics and Nonpotential
Interactions, Part 1 (Cedar Falls, Towa, 1990), Nova Sci. Publ., Commack N.Y. (1992), 17-36. [MR
95b:17037]

[S6] Jordan Algebras, Proceedings of Oberwolfach Conference (1992), Walter de Gruyter & Co.,
Berlin (1994) (with W. Kaup, H. Petersson, eds.). [MR 95¢:17002]

[S7] A Taste of Jordan Algebras, textbook, Springer Verlag.

[S8] Nathan Jacobson (1910-1999) (with. G. Benkart, I. Kaplansky, D. Saltman, G. Seligman),
Notices of the A.M.S., 47 (9) (2000), 1061-1071.

[J] Enumeration of the positive rationals, Amer. Math. Monthly 67 (1960), 868. [MR 23 # A65]
[U1] Seminormality and root closure in polynomial rings and algebraic curves, J. Algebra 58 (1979),
217-226 (with J. W. Brewer and D. L. Costa). [MR 80e:13002]

[U2] The range of a structural projection, J. Funct. Anal. 139 (1996), 196-224 (with C.M. Edwards,
G.T. Ruettimann). [MR 97d:46085]

On several occasions I have given survey talks about recent results in Jordan theory. My first [S1]
was a talk at the Vancouver Congress on the recent quadratic methods in Jordan, associative, and
alternative algebras. Next [S2] was a colloquium-type talk to an AMS sectional meeting in Huntsville
about Jordan algebras and their applications. Six years later, following Zelmanov’s breakthroughs
in Jordan structure theory, [S3] surveyed the transformation the Russian Revolution had made
on the Jordan landscape. In my first visit to the seat of the revolution in Novosibirsk (when the
Soviet Union was just opening up a crack, but before the mass exodus from Novosibirsk), I surveyed
Jordan triples [S4]. [S5] discussed some recent activity in Jordan superalgebras and supertriples.
The principal lectures at the 1992 Oberwolfach Tagung on Jordan theory were published in book
form [S5], to which my name was attached because I was one of the three co-organizers of the
conference (though Holger Petersson did most of the editorial work!) The final entry along these
lines is my graduate-level textbook [S7], to be published by Springer Verlag, meant to give an
historical account of Jordan structure theory and a taste of both the classical and the Zelmanovian
methods. The book is dedicated to Nathan Jacobson and his wife Florie; I was able to show them
a copy before their deaths. Jake was an important influence on my mathematics and my career,
and I (and all Jake’s students) am indebted to both of them on a personal as well as professional
level. In [S8] I discussed Jake’s contributions to Jordan theory in a memorial article in the A.M.S.
Notices.



A juvenile work [J] (written when I was 18) gave a simple-minded but till-then-overlooked
enumeration of the positive rationals; the usual anti-diagonal method has the disadvantage that
it is not 1-1 on the face of it (the integer 1 is counted over and over again as the boustrophedon
path crosses the main diagonal at 2), but using the prime factorization of positive rationals reduces
the problem to enumerating the positive and negative integers, which can easily be done in several
ways. Two other accidental pieces, in which I played a minor (and largely uncomprehending) role
were [Ul], written during Jim Brewer’s visit to Charlottesville to work with Doug Costa, where
my experience with messy calculations helped at one point in an otherwise-conceptual paper in
commutative algebra, and [U2], written during an intensive month spent in Berne with Martin
Edwards and the (lamentably late) Freddie Ruettimann; I contributed my algebraic knowledge of
the messy intricacies of Peirce decompositions in Jordan triple systems to an otherwise tidy paper
in functional analysis.

PhD Students

I have had 10 Ph.D. students: Robert E. Lewand (1971), Bruce Smith (1975), Fu-Shun-Yu
(1975), Alain D’Amour (1989), John Magnus (1991), Daniel King (1993), Jacqueline Hall (1994),
Daniel Borzynski (1997), Matthew Neal (1998), Bernard Fulgham (2002), James Bowling (2002).



