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2.3 Submanifolds and Embeddings ]
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The implicit function theorem\deals with subsets of a mamfold M that are M” E CxM

themselves manifolds in the sense of Definition 2.1.3. Such subsets are called -
submanifolds of M.

Definition 2.3.1 (Submanifold). Let A C R* be an m-dimensional man-
ifold. A subset L C M s called a submanifold of M of dimension (, if L
itself is an f-manifold.

Definition 2.3.2 (Embedding). Let M C R¥ be an m-dimensional mani-
fold and N C R* be an n-dimensional manifold. A smooth map f: N — M
is called an immersion if its differential df (q) : TyN — Tyq)M is injective(= eve- to - o )

for every g € N. It is called proper if, for everymsubeet Hic f!NLJ . luc( Ne TES
the preimage f~(K) = {q € N | f(q) € K} is compact. The map f is called \ t7 !
(;L("\‘\v w7 (’)

an embedding if it is a proper injective immersion.
v 10 —l L /
Remark 2.3.3. In our definition of proper maps it is important that the k ‘" 1 i

compact set K is required to be contained in the image of f. The literature T
also contains a stronger definition of proper which requires that f~'(K) is

a compact subset of M for every compact subset K C N, whether or not K

is contained in the image of f. This holds if and only if the map f is proper

in the sense of Definition 2.3.2 and has an M -closed image. (Exercise!)
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Figure 2.5: A coordinate chart adapted to a submanifold.

Theorem 2.3.4 (Submanifolds). Let M < RF be an m-dimensional man-
ifold and N C R be an n-dimensional manifold.

(1) If f: N = M is an embedding then f(N) is a submanifold of M.
(ii) If P € M is a submanifold then the inclusion P — M is an embedding.

(iii) A subset P C M is a submanifold of dimension n if and only if, for
every po € P there exists a coordinate chart ¢ : U, — R™ defined on an M-
open neighborhood U;‘C M of py (see Figure 2.5) such that

o(UNP)= c“)((é) N (R™ x {0}).
Proof. See page 35. O
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Lemma 2.3.5 (Embeddings). Let M and N be as in Theorem 2.3.4,
let f: N — M be an embedding, let qo € N. and define

P:=f(N),  po:= f(q) € P.

Then there exists an M-open neighborhood U < M of po. an N-open neigh-
borhood V- C N of qo, an open neighborhood W C R™ ™ of the origin, and
a diffeomorphism F .V x W — U such that, for all ¢ € V and all z € W,

F(q,0) = f(q) (2.3.1)

and
F(g,z) e P — 2 =0. (2.3.2)

Proof. Choose any coordinate chart ¢p : Uy — R™ on an M-open neighboy-
hood Uy € M of pg. Then the differential

d(o © f)(q0) = doo(f(q0)) © df (qo) : Tge N — R™
is injective. Hence there is a linear map B : R™™" — R™ such that the map
TooN x R™™" - R™ 1 (w, () — d(éo o f)(qo)w + B¢ (2.3.3)
is a vector space isomorphism. Define the set

Q:={(q,2) € N xR "] f(q) € Uy, $o(f(a)) + Bz € ¢o(Uo)} -

This is an open subset of N x R™™" and we define F : Q — M by
F(q,z) = oy (¢0(f(q)) + Bz).

This map is smooth, it satisfies F(q,0) = f(q) for all ¢ € f~1(Uy), and
the derivative dF(qo,0) : T,y N x R™™" — T, M is the composition of the
map (2.3.3) with dog(pg) ™" : R™ — T,,,M and so is a vector space isomor-
phism. Thus the Inverse Function Theorem 2.2.15 asserts that there is an
N-open neighborhood Vy € N of ¢y and an open neighborhood W, ¢ RMm—n
of the origin such that Vo x Wy C Q, the set Uy := F(Vy x W) is M-open,
and the restriction of F' to V x Wy is a diffeomorphism onto Uy. Thus we
have constructed a diffeomorphism F : Vo x Wy — Up that satisfies (2.3.1).

We claim that the restriction of F' to the product V' x W of sufficiently
small open neighborhoods V' C N of ¢y and W C R™™" of the origin also
satisfies (2.3.2). Otherwise, there exist sequences ¢; € Vj converging to g
and z; € Wy \ {0} converging to zero such that F(g;, z;) € P. Hence there
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exists a sequence g; € N such that F(g;, 2;) = f(¢}). This sequence converges
to f(go). Since f is proper we may assume, passing to a suitable subsequence
if nocegeary, that ¢/ converges to a point ¢, € N. Then

f(ao) = lim f(g;) = lim F(gi, 2:) = f(qo),

because f and F are continuous. Since f is injective, this implies g, = go.
Hence (g, 0) € Vo x Wy for i sufficiently large and F(q},0) = f(q}) = F(q;, zi).
This contradicts the fact that the map F : Vy x Wy — M is injective. Thus
we have proved Lemma 2.3.5. O

Proof of Theorem 2.3.4. We prove (i). Let go € N, denote py := f(qo) € P,
and choose a diffeomorphism F:V x W — U as in Lemma 2.3.5. Then
set V' C N is diffeomorphic to an open subset of R™ (after schrinking V'
if necessry). the set UN P is P-open because U € M is M-open, and we
have UN P = {F(q,0)|¢ € V} = f(V) by (2.3.1) and (2.3.2). Hence the
map f:V — UNP is a diffeomorphism whose inverse is the composition
of the smooth maps F”':UNP >V xW and VxW =V : (q,2) = q.
Hence a P-open neighborhood of pg is diffeomorphic to an open subset of R”.
Since pg € P was chosen arbitrary, this shows that P is an n-dimensional
submanifold of M.

We prove (ii). The inclusion ¢: P — M is obviously smooth and in-
jective (it extends to the identity map on R¥). Moreover, T,P C T,M for
every p € P and the differential di(p) : T,P — T,,M is the obvious inclusion
for every p € P. That ¢ is proper follows immediately from the definition.
Hence ¢ is an embedding.

We prove (iii). If a coordinate chart ¢y as in (iii) exists then the
set Up N P is P-open and is diffeomorphic to an open subset of R”. Since the
point pg € P was chosen arbitrary this proves that P is an n-dimensional
submanifold of M. Conversely, suppose that P is an n-dimensional sub-
manifold of M and let po € P. Choose any coordinate chart ¢q : Uy — R™
of M defined on an M-open neighborhood Uy C M of py. Then ¢o(Uy N P)
is an n-dimensional submanifold of R™. Hence Theorem 2.1.10 asserts
that there are open sets V,IWW C R™ with py € V C ¢o(Up) and a diffeo-
morphism ¢ : V' — W such that

do(po) €V, ¥(VNgo(UoNP)) =Wn(R"x{0})

Now define U := @51(‘/) C Up. Then py € U, the chart ¢q restricts to a dif-
feomorphism from U to V, the composition ¢ := 1 0 ¢o|y : U = W is a dif-
feomorphism, and ¢(U N P) = (V Ngo(Up N P)) = W N (R™ x {0}). This
proves Theorem 2.3.4. &l
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Example 2.3.6. Let S' C R? = C be the unit circle and consider the map
f: St = R? given by f(z,y) := (z,xy). This map is a proper immersion but
is not injective (the points (0,1) and (0, —1) have the same image under f).
The image f(S') is a figure 8 in R? and is not a submanifold (Figure 2.6).

Figure 2.6: A proper immersion.

Example 2.3.7. Consider the restriction of the map f in Example 2.3.6 to
the submanifold N := '\ {(0, —1)}. The resulting map f : N — R? is an
injective immersion but it is not proper. It has the same image as before
and hence f(N) is not a manifold.

Example 2.3.8. The map f : R — R? given by f(t) := (¢*,¢3) is proper
and injective, but is not an embedding (its differential at = = ¢ is not
injective). The image of f is the set f(R) =C := {(z,y) € R?|z® = y?}
(see Figure 2.7) and is not a submanifold. (Prove this!)

Figure 2.7: A proper injection.

Example 2.3.9. Define the map f : R — R? by f(t) := (cos(t), sin(¢)). This
map is an immersion, but it is neither injective nor proper. However, its
image is the unit circle in R? and hence is a submanifold of R2. The
map R — R?: ¢t f(¢3) is not an immersion and is neither injective nor
proper, but its image is still the unit circle.



