see 1400 NOTES Sections 5,6,7 pp 10-14

2.3 Submanifolds and Embeddings

140c NOTES Land 26 (see p. 72 of this book The implicit function theorem deals with subsets of a manifold M that are themselves manifolds in the sense of Definition 2.1.3. Such subsets are called submanifolds of M.

Definition 2.3.1 (Submanifold). Let $M \subset \mathbb{R}^k$ be an m-dimensional manifold. A subset $L \subset M$ is called a submanifold of M of dimension ℓ , if L itself is an ℓ -manifold.

Definition 2.3.2 (Embedding). Let $M \subset \mathbb{R}^k$ be an m-dimensional manifold and $N \subset \mathbb{R}^{\ell}$ be an n-dimensional manifold. A smooth map $f: N \to M$ is called an immersion if its differential $df(q): T_qN \to T_{f(q)}M$ is injective (= one) for every $q \in N$. It is called **proper** if, for every compact subset $K \subset f(N)$, the preimage $f^{-1}(K) = \{q \in N \mid f(q) \in K\}$ is compact. The map f is called an embedding if it is a proper injective immersion.

Remark 2.3.3. In our definition of proper maps it is important that the compact set K is required to be contained in the image of f. The literature also contains a stronger definition of proper which requires that $f^{-1}(K)$ is a compact subset of M for every compact subset $K \subset N$, whether or not K is contained in the image of f. This holds if and only if the map f is proper in the sense of Definition 2.3.2 and has an M-closed image. (Exercise!)

Figure 2.5: A coordinate chart adapted to a submanifold.

Theorem 2.3.4 (Submanifolds). Let $M \subset \mathbb{R}^k$ be an m-dimensional manifold and $N \subset \mathbb{R}^{\ell}$ be an n-dimensional manifold.

- (i) If $f: N \to M$ is an embedding then f(N) is a submanifold of M.
- (ii) If $P \subset M$ is a submanifold then the inclusion $P \to M$ is an embedding.
- (iii) A subset $P \subset M$ is a submanifold of dimension n if and only if, for every $p_0 \in P$ there exists a coordinate chart $\phi: U_{\bullet} \to \mathbb{R}^m$ defined on an Mopen neighborhood $U_{e_2} \subset M$ of p_0 (see Figure 2.5) such that

$$\phi(U_{\mathbb{C}}\cap P)=\phi(U_{\mathbb{C}})\cap (\mathbb{R}^n\times\{0\}).$$

Proof. See page 35.

Cef 2.3.1 MCR m-dim'l sonamfold

(This means $\forall p \in M \exists open UCR^k$ with UNM tiffeomorphic to open $Q \subset R^m$)

a subset LCM is a submanifold of M of Lumansian l if LCIR's an l-din't manifold.

(so \ geL] open VCRk unta VnL dyker to open \ \ CR\ \)

fis immersion of dfcq): TqN -> Tf(q) M is one-to-one

 $\left(\begin{array}{cccc} df(q) \ v = \frac{d}{dt} \Big|_{t=0} f(r(t)) = \lim_{k \to 0} \frac{f(r(k)) - f(q)}{k} \in T_{q_1} M \subset \mathbb{R}^k \right)$

Y: R > N F(0)= & F(0)=V So dim (ToN) < dim (Tog) M)

f is proper y \forall compact $K \subset f(N)$ the pre-mage $f'(K) = \{ q \in N : f(q) \in N \}$ is compact.

Theorem 2.3.4 let $f: N \longrightarrow M$ n-dual m-dual

(i) f an embedding \Rightarrow f(N) is a submanifold of MNeed to prove: $f(N) \subset M$ and $f(N) \cap S$ a manifold of some dimension (it twens out that f(N) is an m-dim'l manifold, save as N)

Lemma 2.3.5 (Embeddings). Let M and N be as in Theorem 2.3.4, let $f: N \to M$ be an embedding, let $q_0 \in N$, and define

$$P := f(N), \qquad p_0 := f(q_0) \in P.$$

Then there exists an M-open neighborhood $U \subset M$ of p_0 , an N-open neighborhood $V \subset N$ of q_0 , an open neighborhood $W \subset \mathbb{R}^{m-n}$ of the origin, and a diffeomorphism $F: V \times W \to U$ such that, for all $q \in V$ and all $z \in W$,

$$F(q,0) = f(q) (2.3.1)$$

and

$$F(q, z) \in P \iff z = 0.$$
 (2.3.2)

Proof. Choose any coordinate chart $\phi_0: U_0 \to \mathbb{R}^m$ on an M-open neighborhood $U_0 \subset M$ of p_0 . Then the differential

$$d(\phi_0 \circ f)(q_0) = d\phi_0(f(q_0)) \circ df(q_0) : T_{q_0} N \to \mathbb{R}^m$$

is injective. Hence there is a linear map $B: \mathbb{R}^{m-n} \to \mathbb{R}^m$ such that the map

$$T_{q_0}N \times \mathbb{R}^{m-n} \to \mathbb{R}^m : (w,\zeta) \mapsto d(\phi_0 \circ f)(q_0)w + B\zeta \tag{2.3.3}$$

is a vector space isomorphism. Define the set

$$\Omega := \left\{ (q, z) \in N \times \mathbb{R}^{m-n} \, | \, f(q) \in U_0, \, \phi_0(f(q)) + Bz \in \phi_0(U_0) \right\}.$$

This is an open subset of $N \times \mathbb{R}^{m-n}$ and we define $F: \Omega \to M$ by

$$F(q,z) := \phi_0^{-1} (\phi_0(f(q)) + Bz).$$

This map is smooth, it satisfies F(q,0) = f(q) for all $q \in f^{-1}(U_0)$, and the derivative $dF(q_0,0): T_{q_0}N \times \mathbb{R}^{m-n} \to T_{p_0}M$ is the composition of the map (2.3.3) with $d\phi_0(p_0)^{-1}: \mathbb{R}^m \to T_{p_0}M$ and so is a vector space isomorphism. Thus the Inverse Function Theorem 2.2.15 asserts that there is an N-open neighborhood $V_0 \subset N$ of q_0 and an open neighborhood $W_0 \subset \mathbb{R}^{m-n}$ of the origin such that $V_0 \times W_0 \subset \Omega$, the set $U_0 := F(V_0 \times W_0)$ is M-open, and the restriction of F to $V_0 \times W_0$ is a diffeomorphism onto U_0 . Thus we have constructed a diffeomorphism $F: V_0 \times W_0 \to U_0$ that satisfies (2.3.1).

We claim that the restriction of F to the product $V \times W$ of sufficiently small open neighborhoods $V \subset N$ of q_0 and $W \subset \mathbb{R}^{m-n}$ of the origin also satisfies (2.3.2). Otherwise, there exist sequences $q_i \in V_0$ converging to q_0 and $z_i \in W_0 \setminus \{0\}$ converging to zero such that $F(q_i, z_i) \in P$. Hence there

exists a sequence $q_i' \in N$ such that $F(q_i, z_i) = f(q_i')$. This sequence converges to $f(q_0)$. Since f is proper we may assume, passing to a suitable subsequence if necessary, that q_i' converges to a point $q_0' \in N$. Then

$$f(q'_0) = \lim_{i \to \infty} f(q'_i) = \lim_{i \to \infty} F(q_i, z_i) = f(q_0),$$

because f and F are continuous. Since f is injective, this implies $q_0' = q_0$. Hence $(q_i', 0) \in V_0 \times W_0$ for i sufficiently large and $F(q_i', 0) = f(q_i') = F(q_i, z_i)$. This contradicts the fact that the map $F: V_0 \times W_0 \to M$ is injective. Thus we have proved Lemma 2.3.5.

Proof of Theorem 2.3.4. We prove (i). Let $q_0 \in N$, denote $p_0 := f(q_0) \in P$, and choose a diffeomorphism $F: V \times W \to U$ as in Lemma 2.3.5. Then set $V \subset N$ is diffeomorphic to an open subset of \mathbb{R}^n (after schrinking V if necessry), the set $U \cap P$ is P-open because $U \subset M$ is M-open, and we have $U \cap P = \{F(q,0) \mid q \in V\} = f(V)$ by (2.3.1) and (2.3.2). Hence the map $f: V \to U \cap P$ is a diffeomorphism whose inverse is the composition of the smooth maps $F^{-1}: U \cap P \to V \times W$ and $V \times W \to V: (q,z) \mapsto q$. Hence a P-open neighborhood of p_0 is diffeomorphic to an open subset of \mathbb{R}^n . Since $p_0 \in P$ was chosen arbitrary, this shows that P is an n-dimensional submanifold of M.

We prove (ii). The inclusion $\iota: P \to M$ is obviously smooth and injective (it extends to the identity map on \mathbb{R}^k). Moreover, $T_pP \subset T_pM$ for every $p \in P$ and the differential $d\iota(p): T_pP \to T_pM$ is the obvious inclusion for every $p \in P$. That ι is proper follows immediately from the definition. Hence ι is an embedding.

We prove (iii). If a coordinate chart ϕ_0 as in (iii) exists then the set $U_0 \cap P$ is P-open and is diffeomorphic to an open subset of \mathbb{R}^n . Since the point $p_0 \in P$ was chosen arbitrary this proves that P is an n-dimensional submanifold of M. Conversely, suppose that P is an n-dimensional submanifold of M and let $p_0 \in P$. Choose any coordinate chart $\phi_0 : U_0 \to \mathbb{R}^m$ of M defined on an M-open neighborhood $U_0 \subset M$ of p_0 . Then $\phi_0(U_0 \cap P)$ is an n-dimensional submanifold of \mathbb{R}^m . Hence Theorem 2.1.10 asserts that there are open sets $V, W \subset \mathbb{R}^m$ with $p_0 \in V \subset \phi_0(U_0)$ and a diffeomorphism $\psi : V \to W$ such that

$$\phi_0(p_0) \in V, \qquad \psi(V \cap \phi_0(U_0 \cap P)) = W \cap (\mathbb{R}^n \times \{0\}).$$

Now define $U := \phi_0^{-1}(V) \subset U_0$. Then $p_0 \in U$, the chart ϕ_0 restricts to a diffeomorphism from U to V, the composition $\phi := \psi \circ \phi_0|_U : U \to W$ is a diffeomorphism, and $\phi(U \cap P) = \psi(V \cap \phi_0(U_0 \cap P)) = W \cap (\mathbb{R}^n \times \{0\})$. This proves Theorem 2.3.4.

(III) a subset $P \subset M \subset \mathbb{R}^n$ a submanifold of dimension $m \in \mathbb{R}$) $\iff \forall Po \in P \exists coordinate chart <math>\phi: U \to \mathbb{R}^m$, V an M-open subset of M containing Po, with $\Phi(U \cap P) = \Phi(U) \cap (\mathbb{R}^m \times \{0\})$.

Example 2.3.6. Let $S^1 \subset \mathbb{R}^2 \cong \mathbb{C}$ be the unit circle and consider the map $f: S^1 \to \mathbb{R}^2$ given by f(x,y) := (x,xy). This map is a proper immersion but is not injective (the points (0,1) and (0,-1) have the same image under f). The image $f(S^1)$ is a figure 8 in \mathbb{R}^2 and is not a submanifold (Figure 2.6).

Figure 2.6: A proper immersion.

Example 2.3.7. Consider the restriction of the map f in Example 2.3.6 to the submanifold $N := S^1 \setminus \{(0, -1)\}$. The resulting map $f : N \to \mathbb{R}^2$ is an injective immersion but it is not proper. It has the same image as before and hence f(N) is not a manifold.

Example 2.3.8. The map $f: \mathbb{R} \to \mathbb{R}^2$ given by $f(t) := (t^2, t^3)$ is proper and injective, but is not an embedding (its differential at x = t is not injective). The image of f is the set $f(\mathbb{R}) = C := \{(x, y) \in \mathbb{R}^2 \mid x^3 = y^2\}$ (see Figure 2.7) and is not a submanifold. (Prove this!)

Figure 2.7: A proper injection.

Example 2.3.9. Define the map $f: \mathbb{R} \to \mathbb{R}^2$ by $f(t) := (\cos(t), \sin(t))$. This map is an immersion, but it is neither injective nor proper. However, its image is the unit circle in \mathbb{R}^2 and hence is a submanifold of \mathbb{R}^2 . The map $\mathbb{R} \to \mathbb{R}^2 : t \mapsto f(t^3)$ is not an immersion and is neither injective nor proper, but its image is still the unit circle.