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1 Friday September 22—Course information; Schwarz

inequality (Assignment 1)

1.1 Course Information

• Course: Mathematics 140C MWF 1:00–1:50 ET 204 FALL 2006
Webpage for the course: www.math.uci.edu/∼brusso

• Prerequisite: Math 140AB. Rigorous study of differentiation and integration of
real-valued functions of one real variable. All of this can be found in the six
chapters of the recent text for 140AB, namely, Elementary Analysis:The Theory
of the Calculus, by Kenneth A. Ross. This includes the set of real numbers
and the completeness axiom; sequences of real numbers, continuity, uniform
continuity, sequences and series of functions, differentiation and integration up
to the fundamental theorem of calculus.

• Instructor: Bernard Russo MSTB 263 Office Hours M 2:30-3:30 W 10:30-11:30
and by appointment (a good time for short questions is right after class just out-
side the classroom; appointments can be arranged by email—brusso@uci.edu)

• Discussion section: TuTh 1:00–1:50 HICF 100M

• Teaching Assistant: TBA

• Homework: There will be approximately 35 to 40 assignments with about one
week’s notice before the due date. Most, but not all of these assignments will
be from the textbook (Buck).

• Grading: The in-class exams are “closed book and notes.” Homework and take
home midterm are “open book and notes”.

First midterm (in class) October 20 (Friday of week 4) 20 percent
Second midterm (take home) November 17 (Friday of week 8) 20 percent
Final Exam (in class) December 6 (Wednesday) 40 percent
Homework approximately 35-40 assignments 20 percent

• Holidays: November 10, 23, and 24

• Text: R. C. Buck, Advanced Calculus

• Material to be Covered. (Page numbers refer to the text Buck)

Schwarz inequality Theorem 1, page 13 (1 lecture)

topology §1.5 pp 28–33: open, closed, boundary, interior, exterior, closure,
neighborhood, cluster point (5 lectures)

compactness §1.8 pp 64–67: Heine-Borel and Bolzano-Weierstrass properties
(Theorems 25,26,27, page 65) (3 lectures)
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continuity §§2.2–2.4: Uniform continuity, extreme value theorems (Theorems
1,2,6,10,11,13 on pages 73,74,,84,90,91,93) (3 lectures)

differentiation (of functions) §3.3: Implies continuity, characterization by
approximation (Corollary, page 129 and Theorem 8, page 131) (2 lectures)

integration §4.2: Integrability of continuous functions (Theorems 1,4 on pages
169,176) (5 lectures)

differentiation (of transformations) §§7.2–7.6: Boundedness of linear trans-
formations, characterization by approximation, chain rule, mean value
theorem, inverse function theorem, implicit function theorem (Theorems
5,8,10,11,12,16,17,18 on pages 335,338,344,346,350,358,363,364) (9 lectures)

1.2 Schwarz inequality

Section 1.1 of Buck In 1,2, or 3 dimensions you can use geometry, or geometric
intuition. For dimensions 4, 5, 6 . . . ,∞ you need algebra and analysis as tools.

Section 1.2 of Buck The elements of Rn := {p = (x1, . . . , xn) : xj ∈ R, 1 ≤ j ≤ n}
may be considered as vectors (algebraic interpretation) or points (geometric
interpretation). R is a field which has a nice order structure, in fact, almost
all properties of Rn depend on those of R, which in turn depend on the least
upper bound property of R. Unfortunately, no reasonable order can be defined
on Rn if n > 1. Although we will not consider the vector space structure of Rn

until later, we do need the notion of scalar product: for p = (x1, . . . , xn), q =
(y1, . . . , yn) ∈ Rn,

p · q :=
n∑

j=1

xjyj,

and its properties: p · (q + q′) = p · q + p · q′, etc.

Section 1.3 of Buck The length of a vector p = (x1, . . . , xn) ∈ Rn is

|p| = (p · p)1/2,

the distance between p and q is |p− q|. The famous Schwarz inequality (a true
“theorem” recorded as Theorem 1.1 below) can be phrased compactly as

p · q ≤ |p||q|.

Theorem 1.1 (Schwarz Inequality (Theorem 1, p.13 of Buck)) For any real
numbers x1, . . . , xn and y1, . . . , yn,

n∑
j=1

|xjyj| ≤

 n∑
j=1

|xj|2
1/2 n∑

j=1

|yj|2
1/2

.
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Proof: Let Q := αp−βq where α and β are unspecified real numbers. From |Q|2 ≥ 0
we obtain

α2|p|2 + β2|q|2 − 2αβp · q ≥ 0 for all α, β ∈ R.

Choosing α = |q| and β‖p|, we have 2|p||q|p · q ≤ 2|q|2|p|2 from which the theorem
follows. 2

Assignment 1 (Due September 29)

1. Read sections 1.2,1.3,1.4 in Buck (The lectures will continue with section 1.5).
Do not waste your time reading about the concepts angle, orthogonal, hyper-
plane, normal vector, line, convexity, which are discussed in section 1.3 of Buck.
We have no immediate use for them. Thus, you may skip pages 15-18 and 21-27
for now.

2. • Buck [§1.2 page 10 #5,10,23]

• Buck [§1.3 page 18 #1,2,5,6]

THINKING OUTSIDE THE BOX

• If xj and yj are infinite sequences, then

∞∑
j=1

xjyj ≤

 ∞∑
j=1

x2
j

1/2 ∞∑
j=1

y2
j

1/2

,

provided the series on the left converges.

• If f and g are continuous functions on a closed interval [a, b], then from the
Schwarz inequality applied to Riemann sums

n∑
j=1

f(tj)g(tj)(xj − xj−1) =
n∑

j=1

f(tj)(xj − xj−1)
1/2g(tj)(xj − xj−1)1/2

≤

 n∑
j=1

f(tj)
2(xj − xj−1)

1/2 n∑
j=1

g(tj)
2(xj − xj−1)

1/2

,

you get the Schwarz inequality for functions
∫ b
a f(x)g(x) dx ≤

(∫ b
a f(x)2 dx

)1/2
(
∫
g(x)2 dx)

1/2
.

• If you define f · g =
∫ b
a f(x)g(x) dx, then f · g has the same properties as the

scalar product p · q and the proof above of Theorem 1.1 applies word for word
to give an alternate proof of the Schwarz inequality for functions.
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2 Monday, September 25—The triangle inequality

and open sets (Assignment 2)

2.1 The triangle inequality

Here is an important consequences of the Schwarz inequality.

Corollary 2.1 (Triangle Inequality) For any two vectors p, q, |p+ q| ≤ |p|+ |q|

Proof: |p+q|2 = (p+q)·(p+q) = p·p+p·q+q ·p+q ·q ≤ |p|2+2|p||q|+|q|2 = (p|+|q|)2.
2

2.2 Open sets

A very important type of subset of Rn is a ball. An open ball is defined, for a given
point p ∈ Rn and r > 0 by

B(p, r) := {q ∈ Rn : |p− q| < r}.

The center of B(p, r) is p and the radius is r. Today we want to prove (the two
statements):

Triangle inequality ⇒
{

open ball
is open set

}
⇒
{

characterization
of interior

}

Definition 2.2 Let S ⊂ Rn and q ∈ Rn. The point q is interior to S if there exists
δ > 0 such that B(q, δ) ⊂ S. The interior of S is the set of all points which are
interior to S, notation intS, that is

intS = {q ∈ Rn : ∃δ > 0 such that B(q, δ) ⊂ S}.

Finally, S is an open set if S = intS.

Proposition 2.3 Let p ∈ Rn and r > 0. Then the ball B(p, r) is an open set.

Proof: Let x ∈ B(p, r) so that |x−p| < r. Choose δ := r−|x−p|. Then the triangle
inequality implies that B(x, δ) ⊂ B(p, r), showing that every point of B(p, r) is an
interior point of B(p, r).

MIDTERM ALERT: It is very important that the 10 propositions (i)-
(x) on page 32 of Buck be mastered before the first miderm. Here is one of
them.

Proposition 2.4 ((vi) on p.32 of Buck) Let S be any non-empty subset of Rn.
Then intS is the largest open subset of S; more precisely

(a) intS is an open set;

4



(b) if T is an arbitrary open subset of S, then T ⊂ intS.

Proof: The assertion of (a) is that intS = int (intS) and it suffices to show only that
intS ⊂ int (intS). If p ∈ intS, then there exists δ > 0 with B(p, δ) ⊂ S. Since the
ball B(p, δ) is open, for each point x ∈ B(p, δ) there exists δ′ > 0 with B(x, δ′) ⊂
B(p, δ). However, since B(p, δ) ⊂ S, we have B(x, δ′) ⊂ S so that x ∈ intS, and thus
B(p, δ) ⊂ intS. By definition then, p ∈ int (intS). This proves (a).

Let T ⊂ S and let T be an open set. If x ∈ T , then there exists δ > 0 with
B(x, δ) ⊂ T . Therefore B(x, δ) ⊂ S and so T ⊂ intS, proving (b). 2

Assignment 2 (Due October 6)

• Buck [§1.4 page 27 #3,15,16]

• Buck [§1.5 page 36 #1,5,9,13]

3 Wednesday September 27—More on open sets;

closed sets, boundary, and closure (Assignments

3,4,5,6)

3.1 The final word on open sets (just kidding!)

Assignment 3 (Due October 6) Fix p ∈ Rn. Show that {q ∈ Rn : |q− p| > 2} is an
open set.

The next assignment outlines another proof of Schwarz’s inequality, by asking
you to prove Young’s inequality which is as follows. The two corollaries (including
Hölder’s inequality) are proved for you. You get the Schwarz inequality from Hölder’s
inequality by taking p = 2.

Theorem 3.1 (Young Inequality) Let ϕ be differentiable and strictly increasing
on [0,∞), ϕ(0) = 0, limu→∞ ϕ(u) = ∞, ψ := ϕ−1, Φ(x) :=

∫ x
0 ϕ(u) du, Ψ(x) :=∫ x

0 ψ(u) du. Then for all a, b ∈ [0,∞),

ab ≤ Φ(a) + Ψ(b). (1)

Moreover, equality holds in (1) if and only if b = ϕ(a).

Corollary 3.2 For p ∈ (1,∞), and a, b ∈ [0,∞),

ab ≤ ap

p
+
bq

q
,

where q ∈ (1,∞) is defined by
1

p
+

1

q
= 1.
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Proof: Take ϕ(u) = up−1 in the theorem. 2

Corollary 3.3 (Hölder Inequality) Let x1, . . . , xn and y1, . . . , yn be real numbers
and let p ∈ (1,∞). Then with q := p/(p− 1),

n∑
j=1

|xjyj| ≤

 n∑
j=1

|xj|p
1/p n∑

j=1

|yj|q
1/q

.

Proof: Take a = |xj|/‖x‖p and b = |yj|/‖y‖p in the corollary, where ‖x‖p denotes(∑n
j=1 |xj|p

)1/p
. 2

Assignment 4 (Due October 13)
Give a rigorous proof of Theorem 3.1. More precisely,

Step 1 First establish, for c ∈ [0,∞), the formula

∫ c

0
ϕ(u) du+

∫ ϕ(c)

0
ψ(v) dv = cϕ(c). (2)

Step 2 Use (2) to prove (1).

Step 3 Prove the “moreover” statement.

Remark 3.4 Every open set in Rn is the union of (not necessarily disjoint) open
balls.

Assignment 5 (Due October 13)

• Show that in R1, the open balls can be assumed to be disjoint

• Show that every open set in Rn is the union of a countable collection of open
balls. (Hint: The answer is somewhere in the minutes for my 140C class of Fall
2005)

Here are the first two propositions on page 32 of Buck. The proofs are written out
in detail in Buck on pages 32–34.

(i) If A and B are open sets, then so are A ∩B and A ∪B.
(ii) If {Aα : α ∈ I} is an arbitrary family of open sets, then ∪α∈IAα is an open set.

3.2 Closed sets

Definition 3.5 A subset S of Rn is said to be a closed set if its complement Rn \ S
is an open set.

Remark 3.6 Assignment 3 shows that the set {q ∈ Rn : |q − p| ≤ r} is a closed set
for any p ∈ Rn and r > 0. Needless to say, we call such a set a “closed ball”.
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In order to facilitate the study of closed sets, we recall De Morgan’s laws. If
{Aα : α ∈ I} is an arbitrary family of sets, then

Rn \ ∪α∈IAα = ∩α∈I(R
n \ Aα)

and
Rn \ ∩α∈IAα = ∪α∈I(R

n \ Aα).

Using De Morgan’s laws we obtain immediately from (i) and (ii) the following
propositions ((iii) and (iv)) on page 32 of Buck. From the definition of closed set, (v)
is obvious, and (vi) has already been proved in Proposition 2.4 above.

(iii) If A and B are closed sets, then so are A ∩B and A ∪B.
(iv) If {Aα : α ∈ I} is an arbitrary family of closed sets, then ∩α∈IAα is a closed

set.
(v) A set is open if and only if its complement is closed.

3.3 Boundary and closure

Definition 3.7 Let S ⊂ Rn and let p ∈ Rn. We say that p is a boundary point of S
if every ball with center p meets both S and its complement Rn \S, that is, for every
δ > 0, B(p, δ) ∩ S 6= ∅ and B(p, δ) ∩ (Rn \ S) 6= ∅. The boundary of S, denoted by
bdyS, is the set of all boundary points of S. The closure of S, notation S is defined
to be S ∪ bdyS.

The following proposition is the analog for closed sets of (vi) on page 32 of Buck.
It will be proved in the next lecture.

Proposition 3.8 ((vii) on p.32 of Buck) Let S be any subset of Rn. Then S is
the smallest closed set containing S. (you know what this means.)

Assignment 6 (Due October 6) Prove the following assertions:

(a) intS = ∪{G : G is open , G ⊂ S}

(b) S = ∩{F : F is closed , S ⊂ F}

4 Friday, September 29—more on closed sets; clus-

ter points (Assignment 7)

4.1 More on closed sets and boundary

We already mentioned the next proposition last time.

Proposition 4.1 ((iii) and (iv) on p.32 of Buck)

(a) If A and B are closed subset of Rn, then so are A ∩B and A ∪B.
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(b) If {Ak}∞k=1 is a sequence of closed sets, then ∩∞k=1Ak is closed but ∪∞k=1Ak need
not be closed.

(c) If {Aα : α ∈ Λ} is a family of closed sets, then ∩α∈Λ is closed.

First proof: use De Morgan’s law:

Rn \ ∩∞k=1Ak = ∪∞k=1(R
n \ Ak).

Second proof: Let S := ∩∞k=1Ak and let p be a cluster point of S. We shall show
that p ∈ S. Since S ⊂ Ak for every k, for every δ > 0, B(p, δ) ∩ S ⊂ B(p, δ) ∩ Ak.
Thus p is a cluster point of Ak. Since Ak is closed, p ∈ Ak for every k, that is, p ∈ S.

The same proofs work for (c). 2

Proposition 4.2 (Part of (viii) on page 32 of Buck) For any subset S of Rn,
its boundary bdyS is a closed set.

Proof: Just note that for any set S, we have the decomposition1

Rn = intS ∪ bdyS ∪ int (Rn \ S)

of Euclidean space Rn into three mutually disjoint subsets. It follows that bdyS =
Rn \ (intS ∪ int (Rn \ S)) is the complement of an open set. 2

Note that bdyS = bdyRn \ S, for any set S ⊂ Rn.

Proposition 4.3 (Another part of (viii) on p.32 of Buck) For any subset S of Rn,

bdyS = S ∩ (Rn \ S).

Proof:

S ∩ (Rn \ S) = (S ∪ bdyS) ∩ ((Rn \ S) ∪ bdy (Rn \ S))

= (S ∪ bdyS) ∩ ((Rn \ S) ∪ bdyS)

= bdyS.

4.2 Cluster points

Definition 4.4 p is a cluster point of S if every ball with center pmeets S in infinitely
many points, that is, for every δ > 0, the set B(p, δ) ∩ S contains infinitely many
points. We denote the set of cluster points of a set S by clS.

Remark 4.5 Although it is hard to believe, the point p ∈ Rn is a cluster point of
S ⊂ Rn if and only if every ball with center p contains at least one point of S different
from p. (Reminder: p need not be an element of S).

1Be sure to check this carefully
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Proposition 4.6 ((ix) on p.32 of Buck) Let S be any subset of Rn. Then S is a
closed set if and only if every cluster point of S belongs to S.

Proof:
Step1: If S is a closed set, then every cluster point of S must belong to S.

Proof: Indirect. Suppose p is a cluster point of the closed set S. If p 6∈ S, then
since Rn \ S is open, there exists a ball B(p, δ) ⊂ Rn \ S, that is, B(p, δ) ∩ S = ∅.
But B(p, δ) ∩ S is an infinite set, contradiction, so step 1 is proved.

Step 2: If a set S contains all of its cluster points, then S is a closed set.

Proof: Let S be a set containing all of its cluster points. We shall show that Rn\S
is open. Let p ∈ Rn \ S, that is, p 6∈ S. It follows from our assumption that p is not
a cluster point of S. This means that for some δ > 0, the set B(p, δ) ∩ S consists of
only finitely many points, say p1, . . . , pm. Since these points are in S and p 6∈ S, if we
set

δ′ = min{|p− pk| : 1 ≤ k ≤ m},
then δ′ > 0. Moreover, B(p, δ′) ∩ S = ∅, that is, B(p, δ′) ⊂ Rn \ S. Thus Rn \ S is
open, and S is closed. Step 2 is proved.

Steps 1 and 2 constitute a proof of Proposition 4.6. 2

Assignment 7 (Due October 6) [Buck §1.5 page 36 #2,6,10,11]

4.3 Proof of Proposition 3.8 ((vii) on page 32 of Buck)

Proof of Proposition 3.82

Step 1: S is a closed set.

Proof: We have to prove that the complement Rn \ S is an open set, so let q ∈
Rn \ S. We must find a ball B(q, δ) ⊂ Rn \ S. Since q 6∈ S = S ∪ bdyS, q 6∈ S and
q 6∈ bdyS. The latter implies that there is a δ > 0 such that either B(q, δ)∩S = ∅ or
B(q, δ)∩(Rn\S) = ∅. The point q belongs to the latter set, so for sure B(q, δ)∩S = ∅,
that is, B(q, δ) ⊂ Rn \ S. We complete the proof of Step 1 by showing that in fact
B(q, δ) ⊂ Rn \ S. If this were not true, there would be a point q′ ∈ B(q, δ) ∩ S.
Since B(q, δ) ⊂ Rn \ S, in fact we have q′ ∈ B(q, δ)∩ bdyS. Since B(q, δ) is an open
set, there is ε > 0 such that B(q′, ε) ⊂ B(q, δ). Since q′ is a boundary point of S,
B(q′, ε) ∩ S 6= ∅, a contradiction. This proves that S is a closed set.

Step 2: If F is a closed set and S ⊂ F , then S ⊂ F .

Proof: Since S = S∪bdyS, and we are given that S ⊂ F , we have to show only that
bdyS ⊂ F . Suppose that p ∈ bdyS and p 6∈ F . If we arrive at some contradiction,
we will be done. Since F is closed, Rn \ F is open, so there exists δ > 0 such that
B(p, δ) ⊂ Rn \ F , that is, B(p, δ) ∩ F = ∅. By the definition of boundary point,
B(p, δ) ∩ S 6= ∅. This is the desired contradiction, since B(p, δ) ∩ S ⊂ B(p, δ) ∩ F .

Steps 1 and 2 constitute a proof of Proposition 3.8. 2

2This proof was not done in class. Please make sure you read and understand it
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5 Monday October 2—Compactness I (Assignment

8)

5.1 Bolzano-Weierstrass and Heine-Borel properties

Definition 5.1 Let S be any subset of Rn.

BW S satisfies the Bolzano-Weierstrass property if every infinite sequence from S
has a cluster point in S. In other words, if T = {p1, p2, . . .} ⊂ S is infinite, then
there exists a point p ∈ S such that for every δ > 0, B(p, δ) ∩ T is an infinite
set.

HB S satisfies the Heine-Borel property if every open cover of S can be reduced
to a finite subcover. In other words, if G is a collection of open sets and if
S ⊂ ∪G∈GG, then there is a finite subset G1, . . . , GN of G such that S ⊂
G1 ∪G2 ∪ · · · ∪GN .

EXAMPLES:

• (0, 1) does not satisfy BW or HB.

• [0,∞) does not satisfy BW or HB.

• [0, 1] satisfies BW. This is the Bolzano-Weierstrass theorem, which you learned
in Mathematics 140A or 140B. You can also find it in Buck [Theorem 21,p. 62].

• [0, 1] satisfies HB. This is [Theorem 24,p.65] in Buck..

We shall show that the two properties are equivalent, that is, an arbitrary set S ⊂ Rn

either satisfies both properties or neither property. This will be stated in a proposition
below.

Definition 5.2 Let S be any subset of Rn. We say S is compact if it satisfies HB.

Assignment 8 (Due October 13) Prove directly the following three assertions. The
fourth assertion will be proved in class.

(a) If S satisfies BW, then S is a closed set.

(b) If S satisfies BW, then S is a bounded set.

(c) If S satisfies HB, then S is a bounded set.

(d) (This will be done in class, not part of the homework—it is included here for
comparison purposes only) If S satisfies HB, then S is a closed set.

These assertions are stated in Buck as [§1.8 page 69 #1,2]

10



5.2 HB implies closed

Proposition 5.3 Every compact set in Rn is closed.

Proof: Let S be a compact subset of Rn. We show directly that Rn \ S is an open
set by using the Heine-Borel property HB. Let p ∈ Rn \ S. For each q ∈ S, let
δq := |p− q|/2. Since p 6= q, δq > 0. Now cover S:

S ⊂ ∪q∈SB(q, δq).

By HB, there exist finitely many points q1, . . . , qm ∈ S such that S ⊂ ∪m
j=1B(qj, δqj

).
Then V := ∩m

j=1B(p, δqj
) is an open set3 containing p, in fact it is an open ball

B(p,min{δqj
: 1 ≤ j ≤ m}). Since B(p, δqj

) is disjoint from B(qj, δqj
), it follows that

V is disjoint from ∪m
j=1B(qj, δqj

), and hence from S, that is, V ⊂ Rn \ S. Thus S is
closed. This completes the proof.

6 Wednesday October 4—Compact sets II

6.1 Equivalence of HB and BW

Proposition 6.1 Let S be any subset of Rn. Then S satisfies BW if and only if it
satisfies HB.

Proof:
Step 1: HB⇒ BW.
Proof: Let T be an infinite sequence in S, and suppose that T has no cluster point

in S. We seek a contradiction, which will then complete the proof of Step 1.
Since no point of S is a cluster point of T , there is, for each p ∈ S, a δp > 0 such

that B(p, δp) ∩ T is a finite set. We have

T ⊂ S ⊂ ∪p∈SB(p, δp),

and by HB, a finite number of the balls B(p, δp) cover S, say

T ⊂ S ⊂ ∪m
k=1B(pk, δpk

).

Then
T = T ∩ (∪m

k=1B(pk, δpk
)) = ∪m

k=1[T ∩B(pk, δpk
)].

This is a contradiction, since T is infinite and ∪m
k=1[T ∩B(pk, δpk

)] is finite.

Step 2: Every open cover of any set S ⊂ Rn can be reduced to a countable cover
of S.

Proof: Let S be covered by a family G of open sets. For each p ∈ S choose a set
Gp ∈ G containing p. Since Gp is open, choose an open ball B(p, δp) ⊂ Gp. Since Q
is dense in R, we can find a rational number rp ∈ (0, δp), hence p ∈ B(p, rp) ⊂ Gp.

3because it is a finite intersection!! (this is the beauty of the Heine-Borel property)

11



Again, since Q is dense in R, we can find a vector qp with rational coordinates such
that qp ∈ B(p, rp/2). By the triangle inequality, B(qp, rp/2) ⊂ B(p, rp) (Check this!),
so for each p ∈ S, we have p ∈ B(qp, rp/2) ⊂ Gp. The collection {B(qp, rp/2) : p ∈ S}
is countable, so we can enumerate it as {B(qpj

, rpj
/2)}∞j=1, where {pj} is a sequence of

points in S. For each j = 1, 2, . . . pick the corresponding Gpj
∈ G. Then S ⊂ ∪∞j=1Gpj

.

Step 3: BW⇒ HB.
Proof: Assume that S satisfies BW. By step 2, it suffices to prove that any count-

able open cover of S can be reduced to a finite subcover.
Let S ⊂ G1 ∪G2 ∪ · · ·. We must find N such that S ⊂ G1 ∪G2 ∪ · · · ∪GN . If this

is not true, then for every n = 1, 2, . . .

S 6⊂ G1 ∪ · · · ∪Gn.

For each n there is thus a point pn ∈ S such that4 pn 6∈ {p1, . . . , pn−1} and

pn 6∈ Gk for 1 ≤ k ≤ n. (3)

Because S satisfies BW, there is a cluster point, say p of the infinite sequence T =
{p1, p2, . . . , } and p ∈ S. Since p ∈ S, there is a k0 such that p ∈ Gk0 . Since Gk0 is
an open set, there is a δ > 0 such that B(p, δ) ⊂ Gk0 . Since p is a cluster point of
T , B(p, δ) ∩ T is infinite, therefore B(p, δ) ∩ T = {pn1 , pn2 , . . . , } is a subsequence,
so n1 < n2 < · · · → ∞. We now have a contradiction: take any nj > k0. Then
pnj

∈ Gk0 , which contradicts (3). Step 3 is proved and this completes the proof of
Proposition 6.1. 2

7 Friday October 6—Compactness III

7.1 Corrected proof of Step 3 of Proposition 6.1

Let S ⊂ G1 ∪ G2 ∪ · · ·. Since S 6⊂ G1, choose p1 ∈ S − G1. Choose n1 such that
p1 ∈ Gn1−(G1∪· · ·∪Gn1−1). Since S 6⊂ G1∪· · ·∪Gn1 , choose p2 ∈ S−(G1∪· · ·∪Gn1)
and choose n2 such that p2 ∈ Gn2−(G1∪· · ·∪Gn2−1). Continuing in this way we obtain
a sequence of distinct points T := {pk}∞k=1 ⊂ S and a subsequence n1 < n2 < · · · such
that for each k ≥ 1,

pk ∈ [S − (G1 ∪ · · · ∪Gnk−1
)] ∩ [Gnk

− (G1 ∪ · · · ∪Gnk−1)]. (4)

By BW, there is a point p ∈ clT ∩ S. Choose k0 such that p ∈ Gk0 and then choose
δ > 0 such that B(p, δ) ⊂ Gk0 . Since B(p, δ) ∩ T is infinite, there exists m > k0 such
that pm ∈ B(p, δ) and thus pm ∈ Gk0 . But by (4), pm 6∈ G1 ∪ · · · ∪ Gnm−1. This
contradicts the fact that pm ∈ Gk0 , since k0 < m ≤ nm − 1. 2

4This does not seem to be true; however all you need to know is that the sequence {pk}∞k=1 is
actually infinite. See subsection7.1

12



7.2 Closed and Bounded implies Compact

Theorem 7.1 Let S be any subset of Rn. If S is closed and bounded, then S is
compact.

We shall prove this theorem by showing that a closed and bounded set satisfies BW.
In this form, the theorem is known as the Bolzano-Weierstrass theorem (in Rn). Of
course you may want to prove this theorem by showing that a closed and bounded
set satisfies HB. In that form, the theorem is known as the Heine-Borel theorem (in
Rn). You will find the Heine-Borel theorem in Buck as Theorem 24 on page 65 (for
n = 1) and Theorem 25 on page 65 of Buck for arbitrary n.

The following two lemmas, well known facts (by now) about subsequences of se-
quences of real numbers are the main tools in the proof of Theorem 7.1.

Lemma 7.2 (Bolzano-Weierstrass theorem in R) Every bounded sequence of real
numbers has a convergent subsequence.

Lemma 7.3 Every subsequence of a convergent sequence of real numbers converges
to the same limit as the sequence.

Proof of Theorem 7.1:
Since S is bounded, there is a ball B(0,M) with S ⊂ B(0,M). Obviously

B(0,M) ⊂ ∩n
j=1{p = (a1, . . . , an) ∈ Rn : −M ≤ aj ≤M}.

Now let T = {p1, p2, . . .} ⊂ S be an infinite sequence. We must find a point p ∈ S
which is a cluster point of T .

Choose a subsequence T1 = {q1, q2, . . .} of T such that the sequence of first coor-
dinates converges (you used Lemma 7.2 here since the first coordinates of T lie in the
closed interval [−M,M ]). Call the limit of the sequence of first coordinates x1.

Now choose a subsequence T2 = {r1, r2, . . .} of T1 such that the sequence of second
coordinates converges (Lemma 7.2 again) and call this limit x2. By Lemma 7.3, the
first coordinates of T2 also converge to the previous x1.

Continuing in this way, you obtain subsequences

Tn ⊂ Tn−1 ⊂ · · · ⊂ T1 ⊂ T

such that the n coordinate sequences of Tn each converge to some number. We
have decided to call these numbers x1, . . . , xn, and we have thus defined a point
p = (x1, . . . , xn) ∈ Rn.

Our proof will be complete as soon as we show that p is a cluster point of T . For
then, since T ⊂ S, p will be a cluster point of S, and since S is closed, p will belong
to S.

To help us prove that p is a cluster point of T , we need some notation. Let
Tn = {s1, s2, . . .} and let

sk = (x
(k)
1 , . . . , x(k)

n ) k = 1, 2, . . . ,

13



so that
lim
k→∞

x
(k)
j = xj 1 ≤ j ≤ n. (5)

Let δ > 0. We must show that B(p, δ) ∩ T is infinite. Obviously, it is enough to
show that B(p, δ) ∩ Tn is infinite, that is, we must show that

|p− sk| < δ for infinitely many k.

By (5), there exist Nj (1 ≤ j ≤ n) such that

|xj − x
(k)
j | < δ/

√
n for k ≥ Nj.

Then for k ≥ N := max{N1, . . . , Nn} we have |p − sk|2 =
∑n

j=1(xj − x
(k)
j )2 ≤

n(δ2/n) = δ2. Therefore

{sN , sN+1, . . .} ⊂ Tn ∩B(p, δ).

This completes the proof of Theorem 7.1. 2

8 Monday October 9—Continuity I (Assignment

9)

8.1 Overview

Here is a preview of our next topic: continuous functions. There are two major
theorems. The rest is either trivial modification of what you learned in 140AB or
consequence of these two theorems.

The main theorems on continuous functions deal with compact sets. They are

• Theorem 13 on page 93 of Buck5: The continuous real valued image of a compact
subset of Rn is a compact subset of R.

• Theorem 6 on page 84 of Buck: A continuous real valued function on a compact
subset of Rn is uniformly continuous.

Both of these theorems are well known to you in the following forms for n = 1.

• (Ross, Theorem 18.1, p. 95) A continuous function on a closed interval [a, b] is
bounded, and assumes a maximum and minimum on [a, b]; that is, there exist
points α, β ∈ [a, b] (not necessarily unique) such that f(α) ≤ f(x) ≤ f(β) for
every x ∈ [a, b]. (This is stated for functions defined on compact subsets of Rn

as Theorem 10 on page 90 and Theorem 11 on page 91 of Buck, which will be
proved below.)

5Do not read the proof of Theorem 13 in Buck, we will present a better one
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• (Ross, Theorem 19.2, p. 103) A continuous real valued function on a closed and
bounded interval in R is uniformly continuous on that interval. (Application:
a continuous function on a closed interval in R is Riemann integrable)

Here is a description of the first five theorems of Chapter 2 of Buck

Theorems 1,2 page 73-74 These concern a characterization of continuity at a point
in terms of convergence of sequences, and are extremely useful. At least one of
these will be proved below.

Theorem 3 page 76 This is a global characterization of continuity. It becomes
messy if the domain D is not an open set, and for this reason we shall not
spend any time on it right now.

Theorem 4 page 77 This concerns the “algebra” of continuous functions, that is
sums, products, quotients, and is familiar from elementary calculus. This is
important to know but we shall not spend time on it. It is used in Buck to
give a proof of the extreme value theorem ([Theorem 11,page 91] of Buck), but
we shall give an independent proof of the extreme value theorem, using only
compactness.

Theorem 5 page 78 This involves composite functions and we shall discuss it in
connection with our study of the chain rule, later in this course.

In [Buck, Section 2.3] we will discuss Defintion 2 on page 82 and Theorem 6 on
page 84. We will not have time for Definition 3 and Theorem 7, which can be ignored.

In [Buck, Section 2.4] Theorems 10 and 11 follow easily from Theorem 13, as we
will show. Before we do that, let us note that Theorems 8 (p. 89), 9 (p. 90) and 12
(p. 92) can be skipped (we need Theorem 8 later, but we can wait and prove it later).
Theorems 14 (p. 93), 15 (p. 94), 16 (p. 95) involve connectedness and we shall skip
them now.

8.2 Continuous functions—continuous image of a compact
set

Definition 8.1 Let f : D → R be a function, where D is any subset of Rn, and let
p0 ∈ D. We say that f is continuous at p0 if

∀ε > 0,∃δ > 0

such that6

|f(p)− f(p0)| < ε for all p ∈ D with |p− p0| < δ.

6δ depends in general on p0 as well as on ε
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It is important to realize that this lengthy definition can be put in the compact 7

form
∀ε > 0,∃δ > 0 such that f [D ∩B(p0, δ)] ⊂ B(f(p0), ε).

Here, we are using the notation

f(A) := {f(p) : p ∈ A} if A ⊂ D.

We refer to f(A) as the image of A under f .
Please note that the above definition is a “local” one, that is, concerns a single

point p0, together with “neighboring” points. We say f is continuous on D if it is
continuous at each point of D. This gives a “global” definition of continuity.

Assignment 9 (Due October 27) [Buck, §2.2 page 80 #1 or 2, #3 or 4, #7 or
8, #12 or 13, #14 or 17] You are to hand in 5 problems, one from each of these 5
pairs. You will of course be responsible for all of the problems.

Theorem 8.2 The continuous image of a compact set is compact. In other words,
if f : D → R is a continuous function on D, and D is a compact subset of Rn, then
f(D) is a compact subset of R.

Proof: We shallo show that f(D) satisfies the HB property. By Lemma ??, we only
need to deal with countable open covers. We shall use the fact that D satisfies the
HB property (for arbitrary covers!).

Let
f(D) ⊂ ∪∞k=1Gk

be an open cover of f(D). For each p ∈ D, f(p) ∈ f(D) and so there is a member of
the cover, say Gkp , with f(p) ∈ Gkp . Since the cover is an open cover, Gkp is an open
set so there is εp > 0 such that B(f(p), εp) ⊂ Gkp . Since f is continuous at every
point of D, there exists δp > 0 such that

f [B(p, δp) ∩D] ⊂ B(f(p), εp)

We can now cover D8:
D ⊂ ∪p∈DB(p, δp).

Since D is compact, the HB property tells us there are a finite number of points
p1, . . . , pm say, such that

D ⊂ ∪m
j=1B(pj, δpj

).

It follows that D = ∪m
j=1[B(pj, δpj

) ∩D], and therefore that

f(D) = ∪m
j=1f [B(pj, δpj

) ∩D] ⊂ ∪m
j=1B(f(pj), εpj

) ⊂ ∪m
j=1Gpj

.

We have reduced the given (countable) cover to a finite subcover, so the proof is
complete. 2

7no pun intended
8the redundant cover!
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An alternate proof would show that if S satisfies BW, then f(S) satisfied BW, as
follows. Let {αn}∞n=1 be an infinite sequence in f(S), which we may assume without
loss of generality, consists of distinct points. For each n, choose a point pn ∈ S such
that f(pn) = αn. Since f is a function (well-defined!), {pn}∞n=1 is an infinite sequence
in S so there exists a vector p ∈ S which is a cluster point of {pn}∞n=1. Now verify
that f(p) is a cluster point of {αn}∞n=1 (details omitted).

9 Wednesday October 11—Continuity II (Assign-

ment 10)

9.1 Limits of sequences of points in Rn

Definition 9.1 Let {pk}∞k=1 ⊂ Rn be a subset indexed by the natural numbers, and
let p ∈ Rn. We say the sequence {pk} converges to p if

lim
k→∞

|pk − p| = 0,

that is, for every ε > 0, there exists N such that

|pk − p| < ε for all k > N.

Notation for this is: limk→∞ pk = p or limk pk = p or lim pk = p or pk → p as
k →∞, or just plain pk → p.

Introduce coordinates of the points pk and p:

p = (x1, . . . , xn) and pk = (x
(k)
1 , . . . , x(k)

n ).

Then

|p− pk|2 =
n∑

j=1

(xj − x
(k)
j )2 ≥ (xj − x

(k)
j )2 for all 1 ≤ j ≤ n.

This proves the following:

Theorem 9.2 (Theorem 7 on page 42 of Buck) Let {pk}∞k=1 ⊂ Rn be a sequence,
and let p ∈ Rn. Then

lim
k→∞

pk = p,

if and only if
lim
k→∞

x
(k)
j = xj for 1 ≤ j ≤ n.

Theorem 9.3 (Theorem 3 on page 40 of Buck) A convergent sequence in Rn is
bounded.

Proof: Let pk → p. Choose N such that |pk − p| < 1 if k > N . Then

|pk| ≤ |pk − p|+ |p| < 1 + |p| for k > N

and so {pk}∞k=1 ⊂ B(0,M) where

M = max{1 + |p|, |p1|, . . . , |pN |},

that is, the sequence is bounded. 2
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9.2 Continuity and limits of sequences

Theorem 9.4 (Theorem 1 on page 73 of Buck) Let f : D → R, where D ⊂
Rn, and suppose that f is continuous at the point p0 ∈ D. Then for every sequence
pk from D, which converges to p0, we have

lim
k→∞

f(pk) = f(p0).

Proof: Let ε > 0. We have to prove there is an N such that |f(pk) − f(p0)| < ε for
all k > N . Since f is continuous at p0, there exists δ > 0 such that

f [D ∩B(p0, δ)] ⊂ B(f(p0), ε). (6)

Since pk → p0, and since δ > 0, there exists N such that

pk ∈ B(p0, δ) for k > N. (7)

Putting together (6) and (7) results in f(pk) ∈ B(f(p0), ε) for k > N . 2

Remark 9.5 Theorem 2 on page 74 of Buck is an important converse to Theorem 9.4.
We omit the details of the straightforward (indirect) proof.

Theorem 9.6 (Theorem 10 on page 90 of Buck) A continuous function on a
compact set is bounded. That is, if f : D → R is continuous on D ⊂ Rn and D
is compact, then f is a bounded function on D.

Proof: This is trivial from Theorem 8.2: f(D) is compact, hence bounded. 2

Lemma 9.7 For any subset S ⊂ Rn, the set of cluster points of S coincides with the
limits of sequences of distinct points from S. In particular, a point is a cluster point
of a sequence if and only if it is a limit of a convergent subsequence of the sequence.

Proof: Let p be a cluster point of S. Pick pk ∈ B(p, 1
k
)∩ S. Since this set is infinite,

we can certainly assume that pk 6∈ {p1, . . . , pk−1}. Then |pk − p| < 1/k → 0, so
pk → p, as required. Conversely if p = limk→∞ pk with pk ∈ S all distinct, then for
any δ > 0, there exists N such that {pN+1, pN+2, . . .} ⊂ B(p, δ) ∩ S, so B(p, δ) ∩ S is
an infinite set. 2

Theorem 9.8 (Theorem 11 on page 91 of Buck, Extreme values Theorem)
A continuous function f on a compact set D ⊂ Rn assumes its maximum and its min-
imum at some points of D.

Proof: By Theorem 9.6, f is bounded, that is f(D) is a bounded subset of R. Let

β := sup{f(p) : p ∈ D},
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so that β ∈ R. By definition of supremum, for each k ≥ 1, there is a point pk ∈ D
such that

β − 1

k
≤ f(pk) ≤ β. (8)

Since D is compact, BW implies the existence of a cluster point p0 of the sequence
pk, and p0 ∈ D. By Lemma 9.7, there is a subsequence pkj

such that limj→∞ pkj
= p0.

In particular, from (8), for j = 1, 2 . . .,

β − 1

kj

≤ f(pkj
) ≤ β.

Now let j →∞ to get β ≤ f(p0) ≤ β, that is f assumes its maximum at p0 ∈ D.
Similar proof for minimum. 2

Assignment 10 (Due October 20) [Buck, §1.6 page 54 #1, 2, 3, 4, 32, 35]

10 Friday October 13—Continuity III (Assignment

11)

10.1 Uniform continuity

Definition 10.1 (Definition 2 on page 82 of Buck) A function f : E → R,
where E ⊂ Rn, is uniformly continuous on E if for every ε > 0, there exists δ > 0
such that |f(p)− f(q)| < ε whenever p, q ∈ E and |p− q| < δ.

A function which is uniformly continuous on a set S is certainly continuous at
every point of S, that is, is continuous on S. However, a function continuous on a
set S need not be uniformly continuous on S. There are exceptions, as in the next
theorem.

Theorem 10.2 (Theorem 6 on page 84 of Buck) A function which is continu-
ous on a compact set D is uniformly continuous on D.

Proof: First an outline:

• Given ε, use ε/2 to get a “continuity ball” B(p, δp) for every p ∈ S

• Use δp/2 to get a “covering ball” for every p ∈ S

• Use HB to get a finite number of covering balls and pick δ to be the smallest of
their radii

• Use the triangle inequality to get the uniform continuity
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Now the details. Let ε > 0. For each p ∈ D, there exists δp > 0 such that
f [B(p, δp)∩D] ⊂ B(f(p), ε/2). We shall refer to B(p, δp) as a “continuity ball”. Now
cover D by the corresponding balls with radius halved, that is,

D ⊂ ∪p∈DB(p, δp/2).

We can refer to B(p, δp/2) as a “covering ball”. By compactness, we have D ⊂
∪m

j=1B(pj, δpj
/2). Now set δ = min1≤j≤m{δpj

/2}. It remains to prove that if x, y ∈ D
and |x− y| < δ, then |f(x)− f(y)| < ε.

Since x ∈ D there is a j such that x ∈ B(pj, δpj
/2). Since |x− y| < δ ≤ δpj

/2 we
have |y − pj| ≤ |y − x| + |x − pj| < δ + δpj

/2 ≤ δpj
. In other words, x and y both

belong to the same continuity ball B(pj, δpj
). Thus

|f(x)− f(y)| ≤ |f(x)− f(pj)|+ |f(pj)− f(y)| < ε/2 + ε/2 = ε.

The proof is complete. 2

There are non-trivial uniformly continuous functions on non-compact sets.

(A) f(p) = |p| is uniformly continuous from Rn to R by the “backwards triangle
inequality”: ||p| − |q|| ≤ |p− q|.

(B) g(p) = x1y1 + · · · + xnyn where p = (x1, . . . , xn) ∈ Rn is a variable point and
y1, . . . , yn ∈ R are fixed is uniformly continuous from Rn to R by the Schwarz
inequality: |p · q − p′ · q| = |(p− p′) · q| ≤ |p− p′||q|.

Assignment 11 (Due October 27) [Buck, §2.3 page 88 #1–7]

11 Monday October 16—Differentiability implies

continuity I (Assignment 12)

11.1 Motivation—one variable

Let’s begin by recalling the mean value theorem in one variable. (See Theorem 29.3,
page 163 of Ross) We shall use Lemma 11.1 (a result in one dimension) in the proof
of Theorem 11.3 below (a theorem in n ≥ 1 dimensions).

Lemma 11.1 (Mean Value Theorem in one variable) If f : (a, b) → R is dif-
ferentiable on (a, b), then for every x1, x2 ∈ (a, b) with x1 < x2, there exists c ∈ (x1, x2)
such that

f(x1)− f(x2)

x1 − x2

= f ′(c).

Rhetorical question: is f ′ a continuous function? NO!, in general. (For example,
see Ross, page 160: The function f defined by f(0) = 0 and f(x) = x2 sin(1/x) for
x 6= 0 is differentiable for every real x, but the derivative f ′ is not continuous at x = 0.)
However, only the existence of a derivative, not the continuity of the derivative, is
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required in Lemma 11.1 and Theorem 11.2. This is one difference between these two
one-dimensional results, and the n-dimensional theorem Theorem 11.3.

Now let’s recall the proof in one variable that differentiability implies continuity.

Theorem 11.2 (Differentiability implies continuity—one variable) If f : (a, b) →
R is differentiable at a point c in (a, b), then f is continuous at c. In particular, if f
is differentiable on all of (a, b) then it is continuous on (a, b).

Proof: If f : (a, b) → R is differentiable on (a, b), then for any fixed c ∈ (a, b), and
any x 6= c,

f(x)− f(c) =
f(x)− f(c)

x− c
· (x− c).

Thus, f(x) = f(c) + f(x)−f(c)
x−c

· (x− c) so that

lim
x→c

f(x) = f(c) + f ′(c) · 0 = f(c).2

11.2 Partial Differentiation

We now consider a notion of differentiability for functions f : D → R defined on open
subsets D of Rn. For such a function and a point p0 = (x0

1, . . . , x
0
n) ∈ D, the partial

derivatives at p0 are defined by

D1f(p0) = lim
x1→x0

1

f(x1, x
0
2, . . . , x

0
n)− f(x0

1, x
0
2, . . . , x

0
n)

x1 − x0
1

=
d

dx1

∣∣∣∣∣
x1=x0

1

f(x1, x
0
2, x

0
3, . . . , x

0
n),

D2f(p0) = lim
x2→x0

2

f(x0
1, x2, x

0
3, . . . , x

0
n)− f(x0

1, x
0
2, . . . , x

0
n)

x2 − x0
2

=
d

dx2

∣∣∣∣∣
x2=x0

2

f(x0
1, x2, x

0
3, . . . , x

0
n),

and so forth, until

Dnf(p0) = lim
xn→x0

n

f(x0
1, . . . , x

0
n−1, xn)− f(x0

1, x
0
2, . . . , x

0
n)

xn − x0
n

=
d

dxn

∣∣∣∣∣
xn=x0

n

f(x0
1, . . . , x

0
n−1, xn).

Some common notations for this are

Djf(p0) = fj(p0) = ∂f
∂xj

(p0).

You can also write (if you prefer)

∂f
∂xj

(p0) = lim
t→0

f(x0
1, · · · , x0

j−1, xj + t, x0
j+1, · · · , x0

n)− f(x0
1, x

0
2, . . . , x

0
n)

t
.

Other common notations can be found in [Buck, page 127].
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11.3 Differentiability (+ continuity) implies continuity

We want to prove an analog of Theorem 11.2 for functions of n variables. We will
see that it differs both in statement and difficulty of proof from the case n = 1. The
following example (Problem 4 on page 135 and part of Assignment 12) indicates a
striking difference between one variable and two variables.

Let f(x, y) = xy/(x2 + y2) for (x, y) ∈ R2 − {(0, 0)} and f(0, 0) = 0. Then

• D1f(0, 0) and D2f(0, 0) exist

• f is not continuous at (0, 0)

• D1f and D2f are not continuous at (0, 0)

Theorem 11.3 (Corollary on page 129 of Buck) Let f : D → R be defined on
an open subset D of Rn, and suppose that D1f, . . . , Dnf exist and are continuous at
all points of D,. Then f is continuous on D.

We repeat that if n = 1, you do not have to assume that the derivative is con-
tinuous, only the existence is required. For n > 1, existence and continuity of the
derivatives is required9.

Assignment 12 (Due October 27) [Buck, §3.3 page 134 #4,5]

12 Wednesday October 18—Proof of Theorem 11.3

Proof of theorem 11.3: Fix p0 ∈ D and let p ∈ B(p0, r) ⊂ D for some r > 0.

Outline: We shall travel from p0 = (x0
1, . . . , x

0
n) to p = (x1, . . . , xn) by

going parallel to the coordinate axes, one axis at a time, using only the
existence of each partial derivative fj and the mean value theorem in one
variable to obtain an expression of the form

f(p)−f(p0) = f1(q1)(x1−x0
1)+f2(q2)(x2−x0

2)+ · · ·+fn(qn)(xn−x0
n) (9)

for certain vectors q1, . . . , qn ∈ B(p0, r).
Next we shall use the continuity of the partial derivatives to get |f(p)−

f(p0)| < ε for |p− p0| < δ.

Now for the details. For simplicity, we do the proof in the case n = 3 (otherwise
we will get lost in the notation, but the proof we shall give works in any dimension).
Accordingly, we shall use the notation p0 = (x0, y0, z0) and p = (x, y, z).

9this is a little white lie, see Problem 5 in the next assignment

22



Step 1 Let p1 = (x, y0, z0). Then by the mean value theorem in one variable

f(p1)− f(p0) = ∂f
∂x

(c, y0, z0)(x− x0) for some c between x and x0.

(Question: what does c depend on?)

Step 2 Let p2 = (x, y, z0). Then by the mean value theorem in one variable

f(p2)− f(p1) = ∂f
∂y

(x, d, z0)(y − y0) for some d between y and y0.

(Question: what does d depend on?)

Step 3 Let p3 = (x, y, z) (= p). Then by the mean value theorem in one variable

f(p)− f(p2) = ∂f
∂z

(x, y, e)(z − z0) for some e between z and z0.

(Question: what does e depend on?)

Step 4 Letting q1 = (c, y0, z0), q2 = (x, d, z0), q3 = (x, y, e), we have

f(p)− f(p0) = [f(p1)− f(p0)] + [f(p2)− f(p1)] + [f(p)− f(p2)]

= f1(q1)(x− x0) + f2(q2)(y − y0) + f3(q3)(z − z0).

This proves (9).

By construction, |qk − p0| ≤ |p − p0| for k = 1, 2, 3 and of course |x − x0| ≤
|p−p0|, |y−y0| ≤ |p−p0|, |z−z0| ≤ |p−p0|. The continuity of the partial derivatives,
together with (9) now shows that for any ε > 0 there exists δ > 0 such that |f(p)−
f(p0)| < ε for |p− p0| < δ and p ∈ D. 2

13 Friday October 20—First Midterm

Problem 1 (20 points) Prove rigorously that the set S = {0, 1, 1/2, 2/3, 3/4, . . .}
is a closed subset of R1. Is it a closed subset of R2? (Yes or no, no proof required
for this part of the question). Is S × S := {(x, y) : x, y ∈ S} a closed subset of R2?
(Yes or no, no proof required).

Problem 2 (20 points) Find bdyS, intS, and all cluster points of S if

S = {(x, y) ∈ R2 : x2 + y2 ≤ 4, 1 < x < 2} ∪ {(x, 0) : 0 ≤ x ≤ 1}

Just write down your answer, no proof is required.

Problem 3 (20 points) Show that every point in the boundary of a set is the limit
of a sequence of points from the set.

Problem 4 (20 points) If A and B are compact subsets of R, show that A× B is
a compact subset of R2.

Problem 5 (20 points) Using the fact that the closure of a set is the smallest closed
set containing the set, show that for any two sets A and B,

A ∪B = A ∪B.
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14 Monday October 23—More on closed sets and

closure (Assignments 13,14)

14.1 A discussion of closed sets and closure

A closed set was originally defined to be a set whose complement is an open set and
the closure of a set was originally defined to be the union of the set and its boundary.
These definitions are not always workable so it is desirable to note that the following
five statements are all equivalent to a set S being closed and can therefore serve as
the definition of closed set. (The last one has not been discussed before and is proved
in the next subsection.)

• Rn − S is an open set

• S = S

• clS ⊂ S

• bdyS ⊂ S (I failed to mention this one in class!)

• {limk pk : {pk}∞k=1 ⊂ S, the limit exists} ⊂ S

Besides being defined as the union of the set and its boundary points, the closure
of a set has also been shown to be equivalent to several other statements, listed below.
(The last one is proved in the next subsection.)

• S = S ∪ bdyS

• S is the smallest closed set containing S

• S is the intersection of all closed sets containing S

• S = intS ∪ bdyS

• S = {limk→∞ pk : {pk} ⊂ S, limk pk exists }

14.2 A characterization of closed sets in terms of convergent
sequences

Theorem 14.1 (Theorem 5 on page 40 of Buck) Let S be any subset of Rn.
Then

S = { lim
k→∞

pk : {pk} ⊂ S, lim
k
pk exists }. (10)

Proof: Suppose first that p = limk pk for some sequence pk from S. If p 6∈ S =
bdyS ∪ S, then p 6∈ S and p 6∈ bdyS. Thus there exists δ > 0 such that at least one
of B(p, δ) ∩ S or B(p, δ) ∩ (Rn \ S) is empty. But the first one is non-empty since
it contains some elements of the sequence pk. Thus the second one is empty, which
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means B(p, δ) ⊂ S. This is a contradiction to p 6∈ S. We have proved that the right
side of (10) is contained in the closure of S.

Now let p ∈ S, and suppose first that p ∈ S. Then the sequence pk defined by
pk = p for k = 1, 2, . . . converges to p. Next suppose that p ∈ bdyS, so that for every
k ≥ 1, B(p, 1

k
) ∩ S 6= ∅. Pick a point pk ∈ B(p, 1

k
) ∩ S, so that pk is a sequence from

S which converges to p since |p− pk| < 1/k → 0. 2

Corollary 14.2 (Corollary 2 on page 41 of Buck) A set S is closed if and only
if it contains the limit of each convergent sequence of points from S.

Remark 14.3 Whenever a set in Rn is defined by inequalities (or equalities) involv-
ing continuous functions, the set is open if all inequalities are strict (> or <), and
closed if all inequalities are not strict (≤ or ≥ or =). Also, the boundary is obtained
by changing one or more of the inequalites to =. As an example, here is a proof of
the fact that the set S = {(x, y, z) ∈ R3 : xy > z} is open in R3 (Problem 3(c) on
page 37 of Buck).

Proof: (Corrected October 31) The function f(x, y, z) := xy−z is continuous. The
set S is defined by the inequality f(p) > 0. If p0 ∈ S, that is, f(p0) > 0, then by the
continuity of f at p0, there exists δ > 0 such that f [S∩B(p0, δ)] ⊂ B(f(p0), |f(p0)|/2).
It follows that B(p0, δ) ⊂ S, proving that S is open. 2

(NOTE: This shows you how to prove the first general statement above)

Assignment 13 (Due November 3 Hint: This was done in class)

(A) Give a proof of Problem 3(c) on page 37 of Buck using Corollary 14.2.

(B) Use Corollary 14.2 to prove that if A and B are closed sets in R, then A×B is
a closed set in R2.

Assignment 14 (Due November 3) Let S be any subset of Rn. Using only the
definitions of cluster point and boundary, prove the following statements.

• cl(clS) ⊂ clS (Hint: See the solution to Problem 8(b) on the first midterm for
Math 140C, Fall 2005, which is at the top of page 26 of the minutes)

• Rn − clS is open

• bdy (clS) ⊂ clS

• {limk pk : pk ∈ clS} ⊂ clS

15 Wednesday October 25—Differential as a Lin-

ear approximation (the case of functions)

15.1 Higher order partial derivatives

When you differentiate a function the result is another function, which you can then
proceed to (try to) differentiate again. This gives rise to higher derivatives in one
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variable, f, f ′, f ′′, f ′′′, . . .. We can do the same thing in several variables, where we
have a lot more variety. That is, given a function f on an open set D in Rn, its
“first” derivatives (when they exist!) are the functions D1f,D2f, . . . , Dnf , which are
themselves functions on D. Each one of these new functions has n partial derivatives,
so the list of “second” derivatives of f is very large, and the number of “third” or
even higher order derivatives grows very quickly (Question: what is that number?)

Higher order partial derivatives are denoted as follows: for example, for order 2,

Di(Djf) = (fj)i = fji = ∂
∂xi

( ∂f
∂xj

) =
∂2f

∂xi∂xj

,

and if i = j,

D2
jf = Dj(Djf) = (fj)j = fjj = ∂

∂xj
( ∂f

∂xj
) =

∂2f

∂x2
j

.

Definition 15.1 Let k be any positive integer, k = 1, 2, . . .. A function f defined on
an open set D in Rn is said to be of class Ck on D, notation f ∈ Ck(D), if all of its
partial derivatives up to and including order k exist and are continuous functions on
D. A continuous function on D is said to be of class C0. 10

To be explicit, a function f is of class C1 on D if the following n functions are all
continuous on D: D1f, . . . , Dnf . The function f is of class C2 if the following n2 +n
functions are all continuous on D:

Djf (1 ≤ j ≤ n), Dm(Dif) (1 ≤ i ≤ n, 1 ≤ m ≤ n).

We have
C1(D) ⊃ C2(D) ⊃ · · · ⊃ Ck(D) ⊃ Ck+1(D) ⊃ · · · (11)

In particular, if n = 1, and D is an open interval I in R, then

C0(I) ⊃ C1(I) ⊃ C2(I) ⊃ · · · ⊃ Ck(I) ⊃ Ck+1(I) ⊃ · · · (12)

Notice that (12) has an extra inclusion at the beginning, namely C0(I) ⊃ C1(I),
due to Theorem 11.2. We have shown in Theorem 11.3 that (11) has an extra inclusion
too, namely C0(D) ⊃ C1(D). (Question: how do these two extra inclusion relations
differ from eachother?)

15.2 Linear Approximation

Let’s examine the equation (9). If we write it in vector notation we get some new
insight which leads us to the notion of gradient (or differential) of a function and to
the notion of approximating a function by a linear function (namely, the differential
of the function). The equation (9) can be rewritten as a dot product of vectors:

f(p)− f(p0) = (f1(q1), f2(q2), · · · , fn(qn)) · (x1 − x0
1, x2 − x0

2, · · · , xn − x0
n), (13)

10In [Buck, Definition 1,page 128], the definition of Ck requires that f be continuous. By Theo-
rem 11.3, Buck’s definition of Ck and our Definition 15.1 are equivalent
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or, f(p)− f(p0) = V · (p− p0), where V is the vector V = (f1(q1), f2(q2), · · · , fn(qn)).
Recall that the assumption is that f ∈ C1(D), D is an open set, p0 ∈ D and the
conclusion is that the points q1, . . . , qn can be chosen in any ball with center p0

containing p.

Two questions can be asked in connection with (13).

1. Can we pick the q1, . . . , qn all to be the same point (call it p∗) lying on the line
segment from p0 to p? The answer is: YES! This is the Mean Value Theorem
in several variables, see [Buck, Theorem 16,page 151] and a theorem below in
the section on Mean Value Theorems. As in the case of one variable, a mean
value theorem may not be so interesting in its own right, but it is an important
tool which will be very useful in our lifetime.

2. Carrying the previous question one step further, we can be greedy and ask
whether the point p∗ can be equal to p0. The answer here is NO!

Informal exercise: Give an example for n = 1 where p∗ cannot
be chosen to be p0. (Hint: almost any example works). What about
n = 2?

The following is a fundamental definition. It has occurred implicitly in the above
two questions.

Definition 15.2 If f : S → R is defined on an open set S ⊂ Rn, the total derivative
of f at p ∈ S is the vector Df(p) = (D1f(p), D2f(p), · · · , Dnf(p)). Of course Df is
defined only at those points of D where all first order partial derivatives of f exist.

For n = 3, Df is the gradient of f : ∇f = (∂f
∂x
, ∂f

∂y
, ∂f

∂z
) and for n = 1, Df = f ′, a

numerical function.

Even though the answer to the second question above is negative, something is,
nevertheless true. To see what it is that interests me, let us just write down the fact,
in a different way, that a function (of one variable) is differentiable. This will enable
us to formulate an analogous property for functions of several variables.

If f is differentiable at the point c ∈ (a, b) ⊂ R with derivative f ′(c), then

lim
x→c

f(x)− f(c)− f ′(c)(x− c)

x− c
= 0.

This is the same as

lim
x→c

|f(x)− f(c)− f ′(c)(x− c)|
|x− c|

= 0. (14)

The following is the analog, for functions of several variables, of (14). It says that
a C1-function can be approximated, in some sense, by an essentially linear function,
namely the function T (p) := f(p0)+∇f(p0) ·(p−p0). Note that (15) is much stronger
than the obvious statement that |f(p) − f(p0) − ∇f(p0) · (p − p0)| → 0 as p → p0,
which follows from the continuity of f at p0.

27



Theorem 15.3 (Theorem 8 on page 131 of Buck) Let f be of class C1 on an
open set D ⊂ Rn. For any p0 ∈ D,

lim
p→p0

|f(p)− f(p0)−∇f(p0) · (p− p0)|
|p− p0|

= 0.

Since we have not used the notation limp→p0, we should explain that it simply means
the following: for every ε > 0, there exists δ > 0 such that

|f(p)− f(p0)−∇f(p0) · (p− p0)|
|p− p0|

< ε whenever p ∈ B(p0, δ) ∩D. (15)

Proof: Let R := f(p)− f(p0)−∇f(p0) · (p− p0). By (13) (which is the main point
in the proof of Theorem 11.3), f(p) − f(p0) = V · (p − p0), where V is the vector
V = (f1(q1), f2(q2), · · · , fn(qn)). Therefore

R = V · (p− p0)−∇f(p) · (p− p0) = [V −∇f(p0)] · (p− p0).

Now use the Schwarz inequality:

|R| = |[V −∇f(p0)] · [p− p0]| ≤ |V −∇f(p0)||(p− p0)|,

that is
|R|

|p− p0|
≤ |V −∇f(p0)|, (16)

and if you write out the coordinates of V − ∇f(p0) you will see that |V − ∇f(p0)|
approaches zero, and hence by (16) |R|/|p−p0|, that approaches zero as p approaches
p0. s Here are the details:

V −∇f(p0) = [f1(q1), f2(q2), · · · , fn(qn)]− [f1(p0), f2(p0), · · · , fn(p0)]

= [f1(q1)− f1(p0), f2(q2)− f2(p0), · · · , fn(qn)− fn(p0)],

so that

|V −∇f(p0)|2 = (f1(q1)−f1(p0))
2 +(f2(q2)−f2(p0))

2 + · · ·+(fn(qn)−fn(p0))
2. (17)

Since each fj is continuous and since

|qj − p0|2 = |((x1, x2, . . . , xj−1, cj, x
0
j+1, . . . , x

0
n)− (x0

1, . . . , x
0
n)|2

=
j−1∑
k=1

(xk − x0
k)

2 + (cj − x0
j)

2 ≤ |p− p0|2

for each j, we see from (16) and (17) that (15) holds.
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16 Friday October 27—Transformations (Assign-

ments 15,16)

16.1 Transformations

We now begin the study of transformations. First a formal definition.

Definition 16.1 A transformation is any function T : D → Rm, where D ⊂ Rn.

Here, m ≥ 1 and n ≥ 1, so this includes the special case of a function f considered
up to now (that is, m = 1, n arbitrary). Every transformation gives rise to coordinate
functions as follows: if p = (x1, · · · , xn) ∈ D, and T (p) = (y1, · · · , ym) ∈ Rm, then
each yj is a function of p = (x1, . . . , xn), which we can denote by fj. Thus

T (p) = (f1(p), · · · , fm(p)),

where each fj : D → R is a function of n variables x1, . . . , xn.
Transformations are the subject of [Buck, Chapter 7] and their geometric prop-

erties are discussed in [Buck, Section 7.2]. Although these geometric properties are
important to know for a better understanding of transformations, we will have to take
the moral high ground and concentrate on analytic properties of transformations, that
is, continuity, and most importantly, differentiability.

Fortunately, the study of continuity of transformations is no more difficult than
the study of continuity of functions of several variables. This will be established in
the following theorem.

The following is the analog of Definition 8.1

Definition 16.2 Let T : D → Rm be a transformation, where D is any subset of
Rn, and let p0 ∈ D. We say that T is continuous at p0 if

∀ε > 0,∃δ > 0

such that
|T (p)− T (p0)| < ε for all p ∈ D with |p− p0| < δ.

This definition can be put in the compact form

∀ε > 0,∃δ > 0 such that T (D ∩B(p0, δ)) ⊂ B(T (p0), ε).

Notice that if f : D → R is a function which is of class C1 on a subset D ⊂ Rn,
then Df is an example of a transformation. In this case, m = n. The main purpose
of the rest of this course, (and much of classical and modern mathematics) is to study
properties of transformations T : D → Rm, such as continuity and differentiability
(suitably defined).

The following is the analog of Definition 10.1
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Definition 16.3 A transformation : T : E → Rm, where E ⊂ Rn, is uniformly
continuous on E if for every ε > 0, there exists δ > 0 such that |T (p) − T (q)| < ε
whenever p, q ∈ E and |p− q| < δ.

Theorem 16.4 Let T : D → Rm be a transformation on a subset D of Rn with
coordinate functions f1, . . . , fm.

(a) (Buck,p. 80,#17 and p. 334,#6) Prove that T is continuous at p0 if and only
if each coordinate function fj, 1 ≤ j ≤ m, is continuous at p0.

(b) If T is continuous at the point p0 ∈ D, then for every sequence pk from D, which
converges to p0, we have

lim
k→∞

T (pk) = T (p0).

(c) (Theorem 4 on page 333 of Buck) If T is continuous on D, and D is a com-
pact subset of Rn, then T (D) is a compact subset of Rm.

(d) (Extreme values Theorem) If T is continuous and D is compact, then there
exist p0, q0 ∈ D such that |T (q0)| ≤ |T (p)| ≤ |T (p0)| for every p ∈ D.

(e) (Uniform Continuity) If T is continuous and D is compact, then T is uni-
formly continuous on D.

Assignment 15 (Due November 3) Prove Theorem 16.4.

Assignment 16 (Due November 3) Show that a linear transformation (see [Buck,
Section 7.3]) is uniformly continuous. (Hint: Use [Buck, Theorem 8,page 338])

17 Monday October 30—Uniqueness of the differ-

ential (Assignment 17)

17.1 The case of functions

Let us begin with the simple case of a real-valued function f of one variable.

Remark 17.1 Let f be a real-valued function defined on an open interval containing
the real number c.

(a) There is at most one number L satisfying

lim
x→c

f(x)− f(c)− L(x− c)

x− c
= 0. (18)

(b) If such a number L exists, then f is differentiable at c and L = f ′(c).
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Proof: The most straightforward proof of (b) is to set R = f(x)−f(c)−L(x−c)
x−c

and write
f(x)−f(c)

x−c
= L+R and then let x→ c:

lim
x→c

f(x)− f(c)

x− c
= lim

x→c
L+ lim

x→c
R = L. (19)

Although (b) implies (a), we shall give a proof of (a) which works in more general
situations. Let L and L′ both satisfy (18). Then,

(L− L′))(x− c) = [−(f(x)− f(c)) + L(x− c)]− (f(x)− f(c))

+ [f(x)− f(c)− L′(x− c)] + (f(x)− f(c))

so that |(L − L′)(x − c)| ≤ 2ε|x − c| for |x − c| < δ = δ(ε, c). This shows that
|L − L′| ≤ 2ε. Since ε is arbitrary, L = L′, proving (a). As noted above, from (19),
(b) follows. 2

A corresponding result11 can be proved for real-valued functions defined on subsets
of Rn.

Proposition 17.2 (Theorem 9 on page 132 of Buck) If f : D → R, where D ⊂
Rn, if p0 ∈ D, u = (u1, . . . , un) ∈ Rn, and if

lim
p→p0

f(p)− f(p0)− u · (p− p0)

|p− p0|
= 0, (20)

then

(a) There is at most one vector u satisfying (20).

(b) If such a vector u exists, then Djf(p0) exists for 1 ≤ j ≤ n and u = Df(p0).

Proof:
Let u1 and u2 both be vectors satisfying (20). For j = 1, 2,

uj · (p− p0) = [uj · (p− p0)− f(p) + f(p0)] + [f(p)− f(p0)].

Thus
|(u1 − u2) · (p− p0)|

|p− p0|
≤ 2ε for |p− p0| < δ = δ(ε, p0). (21)

Let us rewrite (21) as

|(u1 − u2) · q|
|q|

≤ 2ε for |q| < δ = δ(ε, p0). (22)

Now let r be an arbitrary non-zero vector in Rn and put q = δr/2|r| in (22) to get
|(u1−u2) · (r/|r|)| ≤ 2ε for every ε > 0 and every r ∈ Rn. Thus u1−u2 is orthogonal
to every unit vector, hence u1 − u2 = 0. This proves (a).

11Buck assumes that f is continuous, but this does not seem to be needed. The assumption (20)
is very strong
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The limit (20) exists at p approaches p0 in any manner. So let p = p0 + tej where

t ∈ R and ej is the vector with 1 in the jth coordinate and zeros elsewhere. From
(20),

lim
t→0

f(p0 + tej)− f(p0)− u · (tej)

|t|
= 0.

As t→ 0+, this implies

lim
t→0+

f(p0 + tej)− f(p0)− tuj

t
= 0. (23)

As t→ 0−, this implies

lim
t→0−

f(p0 − |t|ej)− f(p0) + |t|uj

|t|
= 0. (24)

Assignment 17 (Due November 10) From (23) and (24), show that Djf(p0) exists.
Hint: Use the property D−ej

f = −Dej
f of directional derivatives (see Buck, page

126)

From (23) and Assignment 17, it now follows that Djf(p0) = uj. 2

17.2 Coordinate free definition of derivative

Definition 17.3 (Coordinate-free definition of derivative) Let T be a trans-
formation defined on a subset A of Rn with T (A) ⊂ Rm. We say that T is dif-
ferentiable at p0 ∈ A if there exists a linear transformation L : Rn → Rm, such
that

lim
p→p0

|T (p)− T (p0)− L(p− p0)|
|p− p0|

= 0. (25)

We denote L by T ′(p0) (this is justified by Proposition 17.4 below) and call it the
derivative of T at p0. (Other names for this are differential, Frechét derivative, . . . ;
other notations are dT |p0 , DT (p0), . . .)

Proposition 17.4 Let T be a transformation defined on a subset A of Rn with
T (A) ⊂ Rm, and let f1, f2, . . . , fm be the coordinate functions of T .

(a) For a fixed p0, at most one linear transformation L can satisfy (25). (This is the
same as Exercise #10, page 352 in Buck)

(b) If such a linear transformation L exists, then Djfi(p0) exists for all 1 ≤ j ≤ n
and 1 ≤ i ≤ m and the matrix [lij] of the linear transformation L is given by
lij = Djfi(p0).
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Proof: For (a), we imitate the proof of Proposition 17.2.
Let L1 and L2 both be linear transformations satisfying (25). For j = 1, 2,

Lj(p− p0) = [Lj(p− p0)− T (p) + T (p0)] + [T (p)− T (p0)].

Thus
|(L1 − L2)(p− p0)|

|p− p0|
≤ 2ε for |p− p0| < δ = δ(ε, p0). (26)

Let us rewrite (26) as

|(L1 − L2)(q)|
|q|

≤ 2ε for |q| < δ = δ(ε, p0). (27)

Now let r be an arbitrary non-zero vector in Rn and put q = δr/2|r| in (27) to get
|(L1 − L2)(r/|r|)| ≤ 2ε for every ε > 0 and every r ∈ Rn. Thus L1 − L2 vanishes on
every unit vector, and since L1 − L2 is a linear transformation, it vanishes on every
vector. 2

We now prove (b). Let U1, . . . , Um be the rows of the matrix representing L. From

L(p− p0) =


l11 . . . l1n

l21 . . . l2n

. . . . . . . . .
lm1 . . . lmn

×

x1 − x0

1

x2 − x0
2

· · ·
xn − x0

n


= (U1 · (p− p0), · · · , Um · (p− p0)),

it follows that

fi(p)− fi(p0)− Ui · (p− p0)

|p− p0|
≤ |T (p)− T (p0)− L(p− p0)

|p− p0|
→ 0.

Hence, by Proposition 17.2, Djfi(p0) exists and Ui = Dfi(p0). 2

18 Wednesday November 1—Existence of the dif-

ferential

Even though the word “exists” appeared in the previous lecture, that lecture was
about the uniqueness of derivatives (or differentials). Today, we discuss existence.
But there is no free lunch. We have to pay a price, so it is more appropriate to describe
“existence of derivatives” as “sufficient conditions for the existence of derivatives.”

18.1 The case of functions

Let us begin with the simple case of a real-valued function f of one variable. The
following Remark was proved in Remark 17.1.

Remark 18.1 Let f be a real-valued function defined on an open interval containing
the real number c. If L := limx→c

f(x)−f(c)
x−c

exists, then limx→c
f(x)−f(c)−L(x−c)

x−c
= 0.

A corresponding result is true for real-valued functions defined on subsets of Rn

(see Theorem 15.3, which is Theorem 8 on page 131 of Buck).
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18.2 Differential as a linear approximation—the case of trans-
formations

Our next main result is the analog for transformations of (15) in Theorem 15.3. First
we need to define the replacement for the total derivative.

Definition 18.2 If T : D → Rm is defined on an open set D ⊂ Rn, with coordinate
functions f 1, . . . , fm, the differential of T at p ∈ D is the m by n matrix

dT |p =


∂f1

∂x1
(p) . . . ∂f1

∂xn
(p)

∂f2

∂x1
(p) . . . ∂f2

∂xn
(p)

. . . . . . . . .
∂fm

∂x1
(p) . . . ∂fm

∂xn
(p)

 .
Of course dT |p is defined only at those points of D where all first order partial
derivatives of each coordinate function fi exist.

We can also write this in the form

dT |p = [ ∂fi

∂xj
(p)]1≤i≤m,1≤j≤n = [Djfi(p)]1≤i≤m,1≤j≤n

We shall use × to denote matrix multiplication. Thus, for example, if q is any
(row) vector in Rn, dT |p × qt is a (column) vector in Rm, where qt is the transpose
of q. In particular, for the dot product of two (row) vectors p, q, p · q = p× qt.

Later on, for the inverse function theorem for example, we will have m = n, and it
will be very important to consider the Jacobian of T , which is defined to be det dT |p.

At this point it is necessary to include the following obvious definition.

Definition 18.3 A transformation T = (f1, . . . , fm) is said to be of class Ck on an
open set D ⊂ Rn for a fixed integer k ≥ 1, if each of its coordinate functions fi is of
class Ck on D.

Remark 18.4 A transformation of class C1 is continuous. For if T = (f1, . . . , fm)
then by Theorem 11.3, each fi is continuous and by (a) of Theorem 16.4, T is con-
tinuous.

Theorem 18.5 (Theorem 10 on page 344 of Buck) Let T : D → Rm be a trans-
formation of class C1 on an open set D ⊂ Rn. Then12, for any p0 ∈ D,

lim
p→p0

|T (p)− T (p0)− (dT |p0)× (p− p0)
t|

|p− p0|
= 0.

The meaning here is: for every ε > 0, there exists δ > 0 such that

|T (p)− T (p0)− (dT |p0)× (p− p0)
t|

|p− p0|
< ε whenever p ∈ B(p0, δ) ∩D. (28)

12Strictly speaking, T (p) and T (p0) are row vectors and JT (p0)×(p−p0)t is a column vector, so to
be perfectly truthful this should be written as limp→p0

|T (p)t−T (p0)
t−JT (p0)×(p−p0)

t|
|p−p0| = 0. However,

we won’t do this as it makes the notation cumbersome and it is clear that we are talking about
vectors, and it doesn’t matter if we call them row vectors or column vectors.
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19 Friday November 3—More on existence of dif-

ferentials (Assignments 18,19)

19.1 Proof of Theorem 18.5

Proof of Theorem 18.5: Let T = (f1, · · · , fm). By Theorem 15.3, for each 1 ≤ i ≤
m

|fi(p)− fi(p0)−Dfi(p0) · (p− p0)|
|p− p0|

→ 0 as p→ p0. (29)

We have

(dT |p0)× (p− p0)
t =


∂f1

∂x1
(p0) . . . ∂f1

∂xn
(p0)

∂f2

∂x1
(p0) . . . ∂f2

∂xn
(p0)

. . . . . . . . .
∂fm

∂x1
(p0) . . . ∂fm

∂xn
(p0)

×

x1 − x0

1

x2 − x0
2

· · ·
xn − x0

n


= (Df1(p0) · (p− p0), · · · , (Dfm(p0) · (p− p0)).

Thus(
|T (p)− T (p0)− dT |p0)× (p− p0)

t|
|p− p0|

)2

=

(
m∑

i=1

(fi(p)− fi(p0)−Dfi(p0) · (p− p0))
2

|p− p0|2

)

the theorem follows from (29). 2

Assignment 18 (Due November 10) [Buck page 351 #1,2,7,8]

19.2 Two questions on differentials

Recall the following two results.

Proposition 17.4 T differentiable at p implies Djfi(p) exists for every i, j.

Remark 18.4 T of class C1 on an open set D implies T continuous on D.

It is obvious in one dimension (take f(x) = |x|) that the converse to the second
result is false. Here are the two questions.

1. Is it true that T differentiable implies T continuous?

2. Is the converse to the first result above true, that is, if Djfi(p) exists for all p
and all i, j, does it follow that T is differentiable?

The answer to the first question is YES and this will be an important tool in the
proof of the chain rule below. The answer to the second question is NO as shown
by the following example (Problem #4 on page 135 of Buck is another example of a
non-differentiable transformation (in this case, a function) which has all first order
partial derivatives existing.

EXAMPLE: Let f(x, y) = (x3 − y3)/(x2 + y2) for (x, y) 6= (0, 0) and f(0, 0) = 0.
Then
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• D1f and D2f exist everywhere (This is obvious for (x, y) 6= (0, 0) and needs to
be checked for (0, 0)).

• f is not differentiable at (0, 0), that is, there are no vectors u = (u1, u2) such
that

lim
(x,y)→(0,0)

f(x, y)− (u1, u2) · (x, y)
|(x, y)|

= 0.

Assignment 19 (Due November 17) Show that the function of Problem 4 on page
135 of Buck, namely, f(x, y) = xy/(x2 + y2) for (x, y) 6= (0, 0) and f(0, 0) = 0 is not
differentiable at (0, 0).

20 Monday November 6—Chain rule for transfor-

mations

20.1 Composition of transformations; statement of chain rule

Definition 20.1 Let T be a transformation defined on a subset A of Rn with T (A) ⊂
Rm. Suppose that S is a transformation defined on a subset C of Rm with S(C) ⊂ Rk.
We suppose that C ⊂ T (A). Under these circumstances, the composition of S and T
is the transformation S ◦ T (also denoted13 simply by ST ) defined by

S ◦ T (p) = S(T (p)) (p ∈ A).

EXAMPLE: If T (x, y) = (xy, 2x,−y) and S(x, y, z) = (x−y, yz), then ST (x, y) =
S(T (x, y)) = S(xy, 2x,−y) = (xy − 2x,−2xy). In this case, TS is defined and
TS (x, y, z) = T (S(x, y, z)) = T (x− y, yz) = ((x− y)yz, 2(x− y),−yz). Note that in
this case, ST 6= TS.

Proposition 20.2 (Theorem 3, page 333 of Buck) If S : A → Rm is a trans-
formation which is continuous at a point p0 ∈ A ⊂ Rn, and T : B → Rk is a
transformation which is continuous at the point S(p0) ∈ B ⊂ Rm, then the composi-
tion T ◦ S : A→ Rk is continuous at the point p0.

Proof: If pk → p0 in A, then by Theorem 16.4(b), S(pk) → S(p0) in B. Again by The-
orem 16.4(b), T (S(pk)) → T (S(p0)) in Rk. Thus, by the converse of Theorem 16.4(b)
(which is true but was not stated earlier), TS is continuous at p0. 2

Theorem 20.3 (Chain Rule,Theorem 11, page 346 of Buck) Let T : D → Rm

be a transformation which is differentiable on an open set D ⊂ Rn, and let S : E →
Rk be a differentiable transformation on an open subset E of Rm containing T (D).
Then S ◦ T is differentiable on D, and if p ∈ D, then

(S ◦ T )′(p) = S ′(T (p)) ◦ T ′(p).
13There is some logic to this notation: fg (in place of f ◦ g) can be confused with the ordinary

product of the two functions f and g, whereas ST cannot, because you cannot multiply vectors
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20.2 Proof of the one-dimensional chain rule

We first recall the statement and proof of the one-dimensional chain rule that we
encounter as freshmen (or as seniors in high school) and use every day (sometimes
without realizing it). Here, we are very lucky, since we shall write the proof in one-
dimension in such a way that the proof in arbitrary dimensions of the chain rule for
transformations will require only notational changes. The key idea underlying this
scheme is to write every formula “horizontally”, or on a line. In other words, you can
divide by numbers14, but not by vectors.

We denote the composition of functions f, g : R → R by f ◦ g, that is,

f ◦ g(x) = f(g(x)).

In order for this to make sense, the range of g must be a subset of the domain of f .

Theorem 20.4 (One-dimensional chain rule) Let g be a real valued function de-
fined on an open interval containing a ∈ R and suppose that g is differentiable at a
with derivative g′(a). Let f be a real valued function defined on an open interval
containing g(a) and suppose that f is differentiable at g(a) with derivative f ′(g(a)).
Then f ◦ g is differentiable at a with derivative

(f ◦ g)′(a) = f ′(g(a)) g′(a). (30)

The usual false proof of Theorem 20.4 is as follows. As long as g(x) 6= g(a),

f ◦ g(x)− f ◦ g(a)
x− a

=
f ◦ g(x)− f ◦ g(a)

g(x)− g(a)
· g(x)− g(a)

x− a
. (31)

Since g is continuous at a, g(x) → g(a) as x→ a, and so

lim
x→a

f ◦ g(x)− f ◦ g(a)
x− a

= f ′(g(a) · g′(a).

The problem with this argument is that there is no guarantee that g(x) is not a
constant in some open interval containing a, so we would be dividing by zero, a NO
NO. We can try to salvage the argument as follows. There are two possibilities.

• g is a constant (necessarily g(a)) in some interval containg a. In this case,
g′(a) = 0 and since f ◦ g is also a constant in the interval, (f ◦ g)′(a) = 0 as
well, so (30) holds in this case.

• In the contrary case, for each k ≥ 1, there exists xk ∈ (a − 1/k, a + 1/k) with
g(xk) 6= g(a). Since xk → a and g is continuous, g(xk) → g(a), so by (31),

f ◦ g(xk)− f ◦ g(a)
xk − a

→ (f ◦ g)′(a)g′(a).

14Except for zero
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Note that this does not prove Theorem 20.4, since it assumes that (f ◦ g)′(a) exists.

Proof of Theorem 20.4:

Step 1. g′(a) exists Hence ∀ε′ > 0,∃δ′ > 0 such that

|g(x)− g(a)− g′(a)(x− a)| < ε′|x− a| if |x− a| < δ′. (32)

Step 2. f ′(g(a)) exists Hence ∀ε′′ > 0,∃δ′′ > 0 such that

|f(y)− f(g(a))− f ′(g(a))(y − g(a))| < ε′′|y − g(a)| if |y − g(a)| < δ′′. (33)

Step 3. Wish to show ∀ε > 0,∃δ > 0 such that

|f(g(x))− f(g(a))− f ′(g(a))g′(a)(x− a)| < ε|x− a| if |x− a| < δ. (34)

Step 4. g is continuous at a Hence ∃δc > 0 such that

|g(x)− g(a)| < δ′′ if |x− a| < δc. (35)

Step 5. Substitute Step 4 in Step 2 Using (35), replace y in (33) by g(x) to ob-
tain

|f(g(x))−f(g(a))−f ′(g(a))(g(x)−g(a))| < ε′′|g(x)−g(a)| if |x−a| < δc. (36)

Step 6. Rewrite Step 1 Set η(x) := g(x)− g(a)− g′(a)(x− a) so that

g(x)− g(a) = g′(a)(x− a) + η(x) (37)

and by (32),
|η(x)| < ε′|x− a| if |x− a| < δ. (38)

Step 7. Substitute Step 6 in Step 5 Putting (37) into (36) (in two places!) and
setting

A(x) := f(g(x))− f(g(a))− f ′(g(a))[g′(a)(x− a) + η(x)] (39)

we obtain from (36)

|A(x)| < ε′′|g′(a)(x− a) + η(x)| if |x− a| < δ. (40)

Step 8. Prove Step 3 Given ε, choose ε′ and ε′′ such that

ε′′ε′ + ε′′|g′(a)|+ |f ′(g(a))|ε′ < ε. (41)

Then choose δ′ and δ′′ as in Steps 1 and 2, and set δ = min(δc, δ
′). If |x−a| < δ,

we have,
|f(g(x))− f(g(a))− f ′(g(a))g′(a)(x− a)|

= |A(x) + f ′(g(a))η(x)| (by (39))

≤ |A(x)|+ |f ′(g(a))η(x)|
≤ ε′′|g′(a)||x− a|+ ε′′|η(x)|+ |f ′(g(a))||η(x)| (by (40))

≤ [ε′′|g′(a)|+ ε′′ε′ + |f ′(g(a))|ε′]|x− a| (by (38))

< ε|x− a| (by (41).

This proves (34). 2
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21 Wednesday November 8—Proof of the chain

rule for transformations (Assignments 20, 21)

21.1 Two lemmas

To make life simpler, we shall isolate two lemmas, which are themselves of independent
interest. We first met Lemma 21.1 in Assignment 16.

Lemma 21.1 (Theorem 8,page 338 of Buck) A linear transformation L from Rn

to Rm is continuous. In fact, L is uniformly continuous and there is a constant C
such that |L(p)| ≤ C|p| for every p ∈ Rn. More precisely, if L is given by an m× n
matrix A := [aij]1≤i≤m,1≤j≤n as follows:

L(
n∑

j=1

xjej) =
n∑

j=1

xjL(ej) where Lej = A× et
j =

m∑
i=1

aijei

and e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) is the usual basis for
Rn (and e1, . . . , em is the usual basis for Rm!), then

|L(p)| ≤ (
∑

i

∑
j

a2
ij)

1/2|p|.

Proof: With p =
∑n

j=1 xjej,

L(p) =
∑
j

xj

∑
i

aijei =
∑

i

(
∑
j

xjaij)ei,

so, by the Schwarz inequality,

|L(p)|2 =
∑

i

|
∑
j

xjaij|2 ≤
∑

i

(
∑
j

x2
j)(
∑
j

a2
ij) = (

∑
i

∑
j

a2
ij)|p|2. 2

Lemma 21.2 (Differentiability implies continuity II) A transformation which
is differentiable at a point p0 is continuous at that point.

Proof: We know that

lim
p→p0

|T (p)− T (p0)− T ′(p0)(p− p0)|
|p− p0|

= 0.

Let ε = 365. Then there exists a δ > 0 such that

| |T (p)− T (p0)− T ′(p0)(p− p0)|
|p− p0|

| < 365 for |p− p0| < δ.

Writing this “horizontally”, you get

|T (p)− T (p0)− T ′(p0)(p− p0)| < 365|p− p0| for |p− p0| < δ.

Now write T (p)− T (p0) = T (p)− T (p0)− T ′(p0)(p− p0) + T ′(p0)(p− p0) to arrive at

|T (p)− T (p0)| ≤ |T (p)− T (p0)− T ′(p0)(p− p0)|+ |T ′(p0)(p− p0)|
≤ 365|p− p0|+ C|p− p0| = (365 + C)|p− p0|.

(The constant C comes from Lemma 21.1.) Thus T is continuous at p0. 2
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21.2 Proof of the chain rule

We are now ready to prove the chain rule for composition of transformations. There
is very little work to do. In fact, this proof is a word processor’s dream—just make
the notational changes to the proof, already printed above, of Theorem 20.4.

In the proof of Theorem 20.3 which follows, the names of the characters were
changed to protect the innocent. Any similarity with any characters, living or dead,
is purely intentional.

Proof of Theorem 20.3 (Chain Rule):

Step 1. T ′(p0) exists Hence ∀ε′ > 0,∃δ′ > 0 such that

|T (p)− T (p0)− T ′(p0)(p− p0)| < ε′|p− p0| if |p− p0| < δ′. (42)

Step 2. S ′(T (p0)) exists Hence ∀ε′′ > 0,∃δ′′ > 0 such that

|S(q)− S(T (p0))− S ′(T (p0))(q − T (p0))| < ε′′|q − T (p0)| if |q − T (p0)| < δ′′.
(43)

Step 3. Wish to show ∀ε > 0,∃δ > 0 such that

|S◦T (p)−S◦T (p0)−S ′(T (p0))◦T ′(p0)(p−p0)| < ε|p−p0| if |p−p0| < δ. (44)

Step 4. T is continuous at a (by Lemma 21.2) Hence ∃δc > 0 such that

|T (p)− T (p0)| < δ′′ if |p− p0| < δc. (45)

Step 5. Substitute Step 4 in Step 2 Using (45), we may replace q in (43) by
T (p) to obtain

|S(T (p))−S(T (p0))−S ′(T (p0))(T (p)−T (p0))| < ε′′|T (p)−T (p0)| if |p−p0| < δc.
(46)

Step 6. Rewrite Step 1 Set η(p) := T (p)− T (p0)− T ′(p0)(p− p0) so that

T (p)− T (p0) = T ′(p0)(p− p0) + η(p) (47)

and by (42),
|η(p)| < ε′|p− p0| if |p− p0| < δ. (48)

Step 7. Substitute Step 6 in Step 5 Substitute (47) into (46) (in two places!)
and set

A(p) := S(T (p))− S(T (p0))− S ′(T (p0))[T
′(p0)(p− p0) + η(p)] (49)

to obtain from (46)

|A(p)| < ε′′|T ′(p0)(p− p0) + η(p)| if |p− p0| < δ. (50)

40



Step 8. Prove Step 3 Given ε, choose ε′ and ε′′ such that

ε′′ε′ + ε′′C1 + ε′C2 < ε, (51)

where by Lemma 21.1, C1 and C2 are chosen so that

|T ′(p0)(p)| ≤ C1|p| (p ∈ Rn) and |S ′(T (p0))(q)| ≤ C2|q| (q ∈ Rm).

Then choose δ′ and δ′′ as in Steps 1 and 2, and set δ = min(δc, δ
′).

If |p− p0| < δ, we have,

|S(T (p))− S(T (p0))− S ′(T (p0) ◦ T ′(p0)(p− p0)|

= |A(p) + S ′(T (p0))η(p)| ( by (49))

≤ |A(p)|+ |S ′(T (p0))η(p)|
≤ ε′′|T ′(p0)(p− p0)|+ ε′′|η(p)|+ |S ′(T (p0))η(p)| (by (50))

≤ ε′′C1|p− p0|+ ε′′ε′|p− p0|+ C2ε
′|p− p0| (by (48) )

< ε|p− p0| (by (51))

This proves (44). 2

The following is the “coordinatized” version of the chain rule. Notice that there is
nothing to prove, given Theorem 20.3.

Corollary 21.3 Let T be a transformation which is differentiable on an open set D,
and let S be a transformation which is differentiable on an open set containing T (D).
Then S ◦ T is differentiable on D, and if p ∈ D, then

dS ◦ T |p = dS|T (p) × dTp.

As an illustration of the power of Corollary 21.3, we have the following theorem
from [Buck,section 3.4].

Theorem 21.4 (Baby chain rule,Theorem 14, page 136 of Buck) Let F (t) =
f(x, y), where x = g(t), y = h(t), the functions g, h are assumed to be of class C1 on
an open interval containing t0 ∈ R, and the function f is assumed to be of class C1

in an open ball with center p0 = (x0, y0) = (g(t0), h(t0)). Then F is of class C1 on an
open interval containing t0 ∈ R, and for t in that interval,

F ′(t) = ∂f
∂x

(g(t), h(t))g′(t) + ∂f
∂y

(g(t), h(t))h′(t).

Assignment 20 (Due November 17)

(a) Use Theorem 20.3 to prove Theorem 21.4

(b) Let F (x, y) = f(g(x, y), h(x, y)), where f : R2 → R, g : R2 → R, and h : R2 →
R are differentiable. Use Theorem 20.3 to prove that F is differentiable and

D1F (x, y) = D1f(g(x, y), h(x, y))D1g(x, y) +D2f(g(x, y), h(x, y))D1h(x, y)

and

D2F (x, y) = D1f(g(x, y), h(x, y))D2g(x, y) +D2f(g(x, y), h(x, y))D2h(x, y).

Assignment 21 (Due November 17) [Buck page 145 #1,2]
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22 Friday November 10—holiday (Veteran’s Day)

23 Monday November 13—How to use the chain

rule; mean value theorems

23.1 An application of the chain rule

The following is one of the seven examples in [Buck; pp. 137–145] illustrating the
“baby chain rule” (Theorem 21.4).

EXAMPLE: Let w = f(x, u, v), u = g(x, v, y) and v = h(x, y) where f : R3 → R,
g : R3 → R, and h : R2 → R. Then w = F (x, y) = f(x, g(x, h(x, y), y), h(x, y)) and
it is required to find D1f and D2f .

Write this as F = f◦T where T : R2 → R3 is given by T (x, y) = (x,G(x, y), h(x, y))
and G(x, y) = g(x, h(x, y), y). By the chain rule

F ′(x, y) = f ′(T (x, y)) ◦ T ′(x, y),

which is the same as

[Fx, Fy] = [D1f,D2f,D3f ]×

 1 0
Gx Gy

hx hy


Write G(x, y) = g(x, h(x, y), y) as G = g ◦ S where S : R2 → R3 is given by

S(x, y) = (x, h(x, y), y). By the chain rule,

G′(x, y) = g′(S(x, y)) ◦ S ′(x, y),

which is the same as

[Gx, Gy] = [D1g,D2g,D3g]×

 1 0
hx hy

0 1


Carrying out the two matrix multiplications, we obtain

• Gx = D1g + (D2g)hx

• Gy = (D2g)hy +D3g

and

• Fx = D1f + (D2f)Gx + (D3f)hx = D1f +D2f(D1g + (D2g)hx) + (D3f)hx

• Fy = (D2f)Gy + (D3f)hy = D2f((D2g)hy +D3g) + (D3f)hy

This agrees with the result on page 138 of Buck, which in the “taboo” notation
for partial derivatives states that

• ∂w
∂x

= f1 + f2g1 + f3h1 + f2g2h1

• ∂w
∂y

= f2g3 + f3h2 + f2g2h2 2
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23.2 Mean Value Theorems

Up to now we have used the mean value theorem in one variable (Theorem 11.1).
But we mentioned the mean value theorem in several variables above (see the first
question at the beginning of the lecture for October 25), so we might as well talk
about it. There are two several-variable versions, one for functions and one for trans-
formations. We shall state and prove both of them in what follows, and use the one
about transformations to give an alternate proof to Theorem 18.5 (linear approxima-
tion for transformations). This is just one application, and there are many others.
For example, we shall use it to prove the local invertibility of a C1 transformation
(Buck, Theorem 14, page 355)—see Theorem 24.1 below.

We note that the version for functions (Theorem 23.1), nicknamed the “Little
Mean Value Theorem” will be used in the proof of the version for transformations
(Theorem 23.2), nicknamed the “Big Mean Value Theorem”. Also, the “Baby Chain
Rule” (Theorem 21.4) is needed in the proof of the “Little Mean Value Theorem”15.

Theorem 23.1 (“Little” Mean Value Theorem, Theorem 16,page 151 of Buck)
Let f : B(p0, r) → R be of class C1 on a ball B(p0, r) ⊂ Rn. Then for any two points
p1, p2 ∈ B(p0, r), there is another point p∗ on the line16 segment L := {tp2 +(1− t)p1 :
0 ≤ t ≤ 1} connecting p1 and p2 such that

f(p2)− f(p1) = Df(p∗) · (p2 − p1).

Proof: Define a function F : [0, 1] → R by

F (λ) = f(λp2 + (1− λ)p1).

We note that F = f ◦ φ where φ : [0, 1] → Rn is the function φ(λ) = λp2 + (1− λ)p1

and that φ′(λ) = (p2 − p1)
t, ∀λ ∈ [0, 1].

By the one-variable mean value theorem, since f(p2)− f(p1) = F (1)− F (0),

f(p2)− f(p1) = F ′(λ0) (52)

for some λ0 ∈ (0, 1).
Letting p∗ = φ(λ0) we get by the “coordinatized” chain rule (Corollary 21.3),

F ′(λ0) = f ′(φ(λ0))× φ′(λ0) = Df(φ(λ0))× (p2 − p1)
t = Df(p∗) · (p2 − p1). (53)

Compare (52) and (53). 2

Theorem 23.2 (“Big” Mean Value Theorem, Theorem 12,page 350 of Buck)
Let T = (f1, . . . , fm) : D → Rm be a transformation of class C1 on an open set D ⊂
Rn. Let p′, p′′ ∈ D and suppose that the line segment L := {tp′+(1−t)p′′ : 0 ≤ t ≤ 1}
is a subset of D. Then there exist points p∗1, . . . , p

∗
m ∈ L such that17

T (p′′)− T (p′) = M × (p′′ − p′)t,

15We have a little and big mean value theorem. Question: what is the “tiny mean value theorem”?
16Note that this line segment is a subset of B(p0, r)
17Note that in the following equation, vectors of the form T (p) are column vectors
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where M is the matrix (Djfi(p
∗
i ))1≤i≤m,1≤j≤n, that is18,19,

M =


∂f1

∂x1
(p∗1) . . . ∂f1

∂xn
(p∗1)

∂f2

∂x1
(p∗2) . . . ∂f2

∂xn
(p∗2)

. . . . . . . . .
∂fm

∂x1
(p∗m) . . . ∂fm

∂xn
(p∗m)

 .

Proof: Apply the Little mean value theorem (Theorem 23.1) to each fi : D → R to
get points p∗i ∈ L such that

fi(p
′′)− fi(p

′) = Dfi(p
∗
i ) · (p′′ − p′) (1 ≤ i ≤ m). (54)

Now write down the coordinates of the vector T (p′′)−T (p′), thinking of it as a column
vector, and use (54):

T (p′′)− T (p′) = (f1(p
′′), · · · , fm(p′′))t − (f1(p

′), · · · , fm(p′))t

= (f1(p
′′)− f1(p

′), · · · , fm(p′′)− fm(p′))t

= (Df1(p
∗
1) · (p′′ − p′), · · · ,Dfm(p∗m) · (p′′ − p′))t.

On the other hand, writing p′ = (x′1, . . . , x
′
n) and p′′ = (x′′1, . . . , x

′′
n),

M × (p′′ − p′)t =


∂f1

∂x1
(p∗1) . . . ∂f1

∂xn
(p∗1)

∂f2

∂x1
(p∗2) . . . ∂f2

∂xn
(p∗2)

. . . . . . . . .
∂fm

∂x1
(p∗m) . . . ∂fm

∂xn
(p∗m)

×

x′′1 − x′1
x′′2 − x′2
· · ·

x′′n − x′n



=

 Df1(p
∗
1)

· · ·
Dfm(P ∗

m)

×
 x′′1 − x′1

· · ·
x′′n − x′n

 =

 Df1(p
∗
1) · (p′′ − p′)
· · ·

Dfm(p∗m) · (p′′ − p′)

 .
Now compare the last two displayed equations. 2

Assignment 22 (Due November 22) [Buck page 154 #18] (Look in the index of
Buck to find the definitions of convex and Lipschitz condition)

24 Wednesday November 15—Applications of Big

Mean Value Theorem; local invertibility (As-

signment 23)

24.1 Alternate proof of linear approximation for differen-
tiable transformations

For no particularly good reason, we now give an alternate proof to the approximation
property of the Jacobian matrix (Theorem 18.5).

18How does M differ from the Jacobian matrix of T?
19Note that M = (Df1(p∗1), · · · ,Dfm(p∗m))t
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Second Proof of Theorem 18.5: By the Big mean value theorem (Theo-
rem 23.2), T (p)− T (p0) = L∗× (p− p0)

t where L∗ := (Djfi(p
∗
i )). Look at the matrix

entries of L∗ − T ′(p0) = (aij); they are aij = Djfi(p
∗
i ) − Djfi(p0). By Lemma 21.1,

for all column vectors q ∈ Rn,

|(L∗ − T ′(p0))× q| ≤

 m∑
i=1

n∑
j=1

|aij|2
1/2

|q|.

Since T (p)− T (p0)− T ′(p0)× (p− p0)
t = (L∗ − T ′(p0))× (p− p0)

t, we have,

|T (p)− T (p0)− T ′(p0)× (p− p0)
t|

|p− p0|
≤ |(L∗ − T ′(p0))× (p− p0)

t|
|p− p0|

≤

(∑
i,j(aij)

2
)1/2

|p− p0|
|p− p0|

=

∑
i,j

(Djfi(p
∗
i )−Djfi(p0))

2

1/2

→ 0 as p→ p0,

because, as p→ p0, each p∗i → p0 and T is of class C1. 2

24.2 The local invertibility theorem

The following simple one-dimensional illustration gives the flavor of the statement
and proof of the local invertibility theorem, Theorem 24.1. Let f : D → R be
differentiable on an open set D ⊂ R and suppose that f ′(x) 6= 0 for every x ∈ D.
Then f is locally one-to-one on D, that is, for every x0 ∈ D there exists δ > 0 such
that B(x0, δ) ⊂ D and f is one-to-one on B(x0, δ). Proof: Since D is open, given
x0 ∈ D, just choose any interval I = B(x0, δ) ⊂ D and apply the one-variable mean
value theorem: if x′, x′′ ∈ I, then for some x̃ between x′ and x′′,

f(x′′)− f(x′) = f ′(x̃)(x′′ − x′). (55)

If f(x′′) = f(x′), then since f ′(x̃) 6= 0, (55) implies x′′ = x′.

Theorem 24.1 (Local invertibility,Theorem 14,page 355 of Buck) Let T : D →
Rn be a transformation of class C1 defined on an open set D ⊂ Rn and suppose that20

det JT (p) 6= 0 for all p ∈ D.

Then T is locally one-to-one in D, in the sense that for every p0 ∈ D, there is a δ > 0
such that B(p0, δ) ⊂ D and the restriction of T to B(p0, δ) is one-to-one on B(p0, δ).

20note that JT (p) is an n by n matrix, so its determinant makes sense
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Proof: Consider the open21 set Ω := D × · · · ×D ⊂ Rn × · · · ×Rn. The set Ω is a
subset of Rn2

. Here is the trick: define a function F : Ω → R by

F (p1, . . . , pn) = det[Djfi(pi)] for (p1, . . . , pn) ∈ Ω.

We note first that F is a continuous function on Ω since, each T being of class
C1, all of the functions Djf

i are continuous, and F , being a determinant, is a sum of
products of these functions22.

We note next that the value of F at a special point of Ω of the form (p, . . . , p) is
given by F (p, . . . , p) = det[Djfi(p)] = detT ′(p) and so for every p ∈ D, F (p, . . . , p) 6=
0.

It follows from the last two paragraphs23 that, given a point of D, let’s call it p0

now, there is a δ > 0 such that B(p0, δ) ⊂ D and

F (p1, . . . , pn) 6= 0 for every (p1, . . . , pn) ∈ B(p0, δ)× · · · ×B(p0, δ). (56)

CLAIM: T is one-to-one on B(p0, δ)

To prove this claim, we use the Mean value theorem for transformations, The-
orem 23.2. Let p′, p′′ ∈ B(p0, δ) and suppose that T (p′) = T (p′′). We shall prove
that p′ = p′′. Now the line segment L connecting p′ and p′′ lies in B(p0, δ) and the
Mean value theorem tells us that there are points p∗1, . . . , p

∗
n ∈ L such that, with

M = [Djfi(p
∗
i )],

T (p′′)− T (p′) = M × (p′′ − p′)t. (57)

Now detM = F (p∗1, . . . , p
∗
n) 6= 0 by (56), so M is non-singular. Since we are assuming

T (p′′) = T (p′), (57) shows p′′ − p′ = 0. 2

Assignment 23 (Due November 22) [Buck page 361 #11] (The answer to the ques-
tion is NO. Look at the hint in Buck to construct a proof)

25 Friday November 17—Implicit Function Theo-

rem I (Assignment 24)

25.1 Motivation

In much of analysis, the linear functions are the easiest to work with24. Let F : Rn →
R be a linear function, that is, there are real numbers a1, . . . , an such that

F (x1, . . . , xn) =
n∑

j=1

ajxj.

21If (p1, . . . , pn) ∈ D × · · · × D, let B(pj , δj) ⊂ D and let δ := min{δ1, . . . , δn}. Then
B((p1, . . . , pn), δ) ⊂ D × · · · ×D

22Note that F is “jointly” continuous (which is what is needed), and not just separately continuous
23Persistence of sign for continuous functions
24This is not necessarily the case for algebra
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Note that for such a function, ∂F
∂xk

(x1, . . . , xn) = ak, and moreover, if ak 6= 0, we can

solve the equation F (x1, . . . , xn) = 0 for xk in terms of the other n − 1 variables.
Explicitly,

xk = −
n∑

j=1,j 6=k

aj

ak

xj.

Thus we have seen that we can easily solve for one of the variables in terms of the
others if the partial derivative with respect to that variable does not vanish. This is
the idea behind the implicit function theorem for non-linear functions.

For a second example let F (x, y) = x2 + y2 − 1 for (x, y) ∈ R2 so that F : D → R
where D = R2. Note that ∂F

∂y
(x, y) = 2y.

Suppose that (x0, y0) ∈ R2 is such that F (x0, y0) = 0, that is, (x0, y0) is a point on
the unit circle. We wish to find a function φ, defined in an interval (x0−r, x0+r), such
that y = φ(x) is a solution of the equation F (x, y) = 0 for every x ∈ (x0 − r, x0 + r),
that is, x2+(φ(x))2−1 = 0 for every x ∈ (x0−r, x0+r), and φ(x0) = y0. Moreover we
want the function φ to have a continuous derivative at every point of (x0− r, x0 + r).

In this example, it is easy to know when such a function exists and it is also
easy to find it. Obviously we can take r = 1 − |x0|, and set φ(x) = +

√
1− x2

for x ∈ (x0 − r, x0 + r). The only problem arises when |x0| = 1, that is y0 = 0,
which is precisely where ∂F

∂y
vanishes. Another solution is obtained by taking φ(x) =

−
√

1− x2. Before we leave this example, let’s note that we can interchange the roles
of the variables x and y and obtain a function x = ψ(y) satisfying, among other
things (ψ(y))2 + y2 − 1 = 0.

Let’s now consider a third example, which is not so easy (in fact, impossible) to
solve with our bare hands. Let F (x, y) = x + 2y + x2y5 − 8, for (x, y) ∈ R2. Note
that F (2, 1) = 0. We wish to find a solution y = φ(x) of the equation F (x, y) = 0 for
all x in an interval of the form (2− r, 2 + r), in such a way that φ(2) = 1, and φ has
a continuous derivative on (2− r, 2 + r). For this example, it is not clear that there
will be a solution y of the equation x + 2y + x2y5 − 8 = 0 for any x (this is a fifth
degree equation in y for each fixed x). But we are greedy and want even more. We
want a function φ which systematically produces a solution φ(x) to the equation for
a given x, and moreover, we want this function to be continuous, even differentiable,
and furthermore, we want the derivative to be continous.

Let’s return to our second example, that is, F (x, y) = x2 + y2 − 1 for (x, y) ∈ R2

so that F : D → R where D = R2. Of course F is a function. Let’s construct a
related transformation TF : D → R2 as follows: TF (x, y) = (x, F (x, y)). Note that if
we set G(x, y) = x then G and F are the coordinate functions of the transformation
TF , that is TF = (G,F ). Hereafter, we’ll just write T instead of TF .

Assignment 24 (Due December 1) Show that, for F = x2 + y2 − 1, T = TF is not
one-to-one on D = R2 and T (R2) is not an open subset of R2.

Suppose again that (x0, y0) ∈ R2 is such that F (x0, y0) = x2
0 + y2

0 − 1 = 0, that
is, (x0, y0) is a point on the unit circle. Note that T (x0, y0) = (x0, 0). Finally we
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construct the derivative of T :

T ′(x, y) =

(
∂G
∂x

(x, y) ∂G
∂y

(x, y)
∂F
∂x

(x, y) ∂F
∂y

(x, y)

)
=

(
1 0

∂F
∂x

(x, y) ∂F
∂y

(x, y)

)
.

It follows that detT ′(x, y) = ∂F
∂y

(x, y).

25.2 Implicit function theorems

Since we have just introduced most of the ideas in its proof, it seems appropriate now
to state a version of the implicit function theorem.

Theorem 25.1 (Theorem 17,page 363 of Buck,“downgraded” to two variables)
Let F : D → R be of class C1 on an open set D ⊂ R2, let (x0, y0) ∈ D, and suppose
that F (x0, y0) = 0 and ∂F

∂y
(x0, y0) 6= 0. Then there exists a r > 0 and a function

φ : (x0 − r, x0 + r) → R of class C1 on (x0 − r, x0 + r), such that φ(x0) = y0 and
F (x, φ(x)) = 0 for all x ∈ (x0 − r, x0 + r).

Before going into the proof of Theorem 25.1, let’s reiterate exactly all that it says.

• There is (theoretically!) a function φ, such that for each x close enough to x0,
y = φ(x) is a solution25 of the equation F (x, y) = 0

• As a function of x, φ is continuous

• Actually, φ is differentiable

• Actually, the derivative of φ is a continuous function26

• Question: Can we calculate φ′(x) by implicit differentiation and the chain
rule?27

The proof of the general Implicit Function Theorem (see the statement below), and
in particular of Theorem 25.1, depends on three main results about transformations
of class C1. These are

• Local Invertibility Theorem

• Open Mapping Theorem

• Inverse Function Theorem

The local invertibility theorem has already been stated and proved as Theo-
rem 24.1. We shall state and use the other two theorems here and prove them in
later lectures.

25This already says a lot! If you stop here you got a bargain.
26This statement implies the previous two statements
27Yes, but it is not entirely satisfactory because the answer is in terms of φ(x)
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Theorem 25.2 (Open mapping,Theorem 15,page 356 of Buck) Let T : D →
Rn be a transformation of class C1 defined on an open set D ⊂ Rn and suppose that

detT ′(p) 6= 0 for all p ∈ D.

Then T (D) is an open subset of Rn.

Theorem 25.3 (Inverse Function Theorem, Theorem 16,page 358 of Buck)
Let T : D → Rn be a transformation of class C1 defined on an open set D ⊂ Rn and
suppose that

detT ′(p) 6= 0 for all p ∈ D.28

Suppose also that T is one-to-one on D. Then the inverse T−1 (which exists and is
defined on the open subset T (D) ⊂ Rn) is of class C1 on T (D) and

(T−1)′(T (p)) = [T ′(p)]−1 for all p ∈ D. (58)

Proof of Theorem 25.1: Define a transformation T = (G,F ) by settingG(x, y) =
x. Let p0 denote (x0, y0). Since T ′(p0) is invertible, by the “local invertibility theo-
rem” (Theorem 24.1), T is locally one-to-one at p0. That is, there is a ball B with
center p0 (contained in D since D is open) such that the restriction of T to this
ball is one-to-one, so has an inverse transformation T−1 : T (B) → B. Since T is
of class C1, by making the radius of B even smaller, we may assume that T ′(p) is
invertible for every p in this smaller ball29. Thus, if we call this new ball B′, then T
is one-to-one on B′ with inverse T−1 on T (B′), and by the “open mapping theorem”
(Theorem 25.2), T (B′) is an open set . Since (x0, 0) = T (x0, y0) ∈ T (B′), there is an
open ball B((x0, 0), r) ⊂ T (B′). Let us write the inverse transformation T−1 in terms
of its coordinate functions, call them g and h: T−1 = (g, h). We have the relation30

(u, v) = T◦T−1 (u, v) = T (T−1(u, v)) = T (g(u, v), h(u, v)) = (g(u, v), F (g(u, v), h(u, v))

for all (u, v) ∈ B((x0, 0), r). In particular, u = g(u, v) and

v = F (g(u, v), h(u, v)) = F (u, h(u, v)). (59)

Substitute for (u, v), any point of the form (x, 0) ∈ B((x0, 0), r). From (59), we
have

0 = F (x, h(x, 0)) for all |x− x0| < r.

Thus, if we define φ(x) = h(x, 0) for |x−x0| < r, we have the desired function φ. Note
that by the “inverse function theorem” (Theorem 25.3), T−1 is of class C1, hence h is
of class C1, and hence φ is of class C1 on (x0− r, x0 + r). This completes the proof.2

28so that (T ′(p))−1 exists
29What is the reason for this?
30We also have the relation (x, y) = T−1 ◦ T (x, y) = T−1(T (x, y)) = T−1(x, F (x, y)) =

(g(x, F (x, y)), h(x, F (x, y))) for all (x, y) ∈ B′, but this is of no use to us
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26 Monday November 20—Implicit Function The-

orem II (Assignment 25)

We now state a version of the implicit function theorem in 3 variables. We refer to
Buck for the proof, which is not significantly different from the above proof.

Theorem 26.1 (Theorem 17,page 363 of Buck—three variables) Let F : D →
R be of class C1 on an open set D ⊂ R3, let (x0, y0, z0) ∈ D, and suppose that
F (x0, y0, z0) = 0 and ∂F

∂z
(x0, y0, z0) 6= 0. Then there exists a r > 0 and a function

φ : B((x0, y0), r) → R of class C1 on B((x0, y0), r), such that φ(x0, y0) = z0 and
F (x, y, φ(x, y)) = 0 for all (x, y) ∈ B((x0, y0), r).

It is now easy to state (and prove) a general theorem of implicit function type in
any number of variables. There are no new ideas needed to prove this theorem so we
do not write the proof here.

Theorem 26.2 Let F : D → R be of class C1 on an open set D ⊂ Rn, let
(x0

1, . . . , x
0
n) be a point of D, and suppose that

F (x0
1, x

0
2, . . . , x

0
n) = 0 and for some k, ∂F

∂xk
(x0

1, x
0
2, . . . , x

0
n) 6= 0.

Then there exists r > 0 and a function

φ : B((x0
1, . . . , x

0
k−1, x

0
k+1, . . . , x

0
n), r) → R

of class C1 on B((x0
1, . . . , x

0
k−1, x

0
k+1, . . . , x

0
n), r) ⊂ Rn−1, such that

φ(x0
1, . . . , x

0
k−1, x

0
k+1, . . . , x

0
n) = x0

k

and
F (x1, . . . , xk−1, φ(x1, . . . , xk−1, xk+1, . . . , xn), xk+1, . . . , xn) = 0

for all (x1, . . . , xk−1, xk+1, . . . , xn) ∈ B((x0
1, . . . , x

0
k−1, x

0
k+1, . . . , x

0
n), r).

If we introduce a little notation we can make the last theorem easier to read.

Let F : D → R be of class C1 on an open set D ⊂ Rn, let p0 =
(x0

1, . . . , x
0
n) be a point of D, and suppose that F (p0) = 0 and ∂F

∂xk
(p0) 6= 0

for some k. Let p
(k)
0 = (x0

1, . . . , x
0
k−1, x

0
k+1, . . . , x

0
n). Then there exists

r > 0 and a function φ : B(p
(k)
0 , r) → R of class C1 on B(p

(k)
0 , r) ⊂ Rn−1,

such that, with p = (x1, . . . , xn) and p(k) = (x1, . . . , xk−1, xk+1, . . . , xn),

we have φ(p
(k)
0 ) = x0

k and F (x1, . . . , xk−1, φ(p(k)), xk+1, . . . , xn) = 0 for all

p(k) ∈ B(p
(k)
0 , r).

There are versions of the implicit function theorem in which more than one of the
independent variables x1, . . . , xn can be solved in terms of the remaining variables.
The situation is described in [Buck, Theorem 18,page 364], and the discussion on
page 366 of Buck.
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Definition 26.3 For m functions φ1, . . . , φm defined on a subset D of Rn (with
m ≤ n) and any choice of m variables xi1 , . . . , xim from x1, . . . , xn we define the
Jacobian of φ1, . . . , φm with respect to xi1 , . . . , xim to be the m by m matrix-valued
function

∂(φ1,...,φm)
∂(xi1

,...,xim )
=


∂φ1

∂i1
· · · ∂φ1

∂im

· · · · ·
∂φm

∂i1
· · · ∂φm

∂im


Theorem 26.4 (Theorem 18,page 364 of Buck) Let F : D → R and G : D →
R be of class C1 on an open set D ⊂ R5, let (x0, y0, z0, u0, v0) ∈ D, and suppose that
F (x0, y0, z0, u0, v0) = G(x0, y0, z0, u0, v0) = 0 and

∂(F,G)
∂(u,v)

(x0, y0, z0, u0, v0) 6= 0.

Then there exists a r > 0 and functions φ : B((x0, y0, z0), r) → R and ψ : B((x0, y0, z0), r) →
R of class C1 on B((x0, y0, z0), r) ⊂ R3 such that φ(x0, y0, z0) = u0, ψ(x0, y0, z0) = v0

and F (x, y, z, φ(x, y, z), ψ(x, y, z)) = 0 and G(x, y, z, φ(x, y, z), ψ(x, y, z)) = 0 for all
(x, y) ∈ B((x0, y0, z0), r).

Proof: Define a transformation T : D → R5 by setting

T (x, y, z, u, v) = (x, y, z, F (x, y, z, u, v), G(x, y, z, u, v)).

Let p0 denote (x0, y0, z0, u0, v0). Then T (p0) = (x0, y0, z0, 0, 0) and for p ∈ D,

T ′(p) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 Fu(p) Fv(p)
0 0 0 Gu(p) Gv(p)


so that detT ′(p) = ∂(F,G)

∂(u,v)
(p), and since detT ′(p0) 6= 0, T has a local inverse at p0,

that is, there exists δ > 0 such that with B = B(p0, δ), T is a one-to-one map of B
onto T (B) with inverse T−1 : T (B) → B. As T (B) is an open set, we can choose
r > 0 such that B((x0, y0, z0, 0, 0), r) ⊂ T (B). Let the coordinate functions of T−1 be
(α, β, γ, f, g) so that for all t = (t1, t2, t3, t4, t5) ∈ T (B),

(t1, t2, t3, t4, t5) = T ◦ T−1(t1, t2, t3, t4, t5) = T (α(t), β(t), γ(t), f(t), g(t))

= (α(t), β(t), γ(t), F (α(t), β(t), γ(t)), f(t), g(t)), G(α(t), β(t), γ(t), f(t), g(t))).

This shows that for all t ∈ T (B), α(t) = t1, β(t) = t2, γ(t) = t3 and

F (t1, t2, t3, f(t1, t2, t3, 0, 0), g(t1, t2, t3, 0, 0)) = 0

and
G(t1, t2, t3, f(t1, t2, t3, 0, 0), g(t1, t2, t3, 0, 0)) = 0.
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We now see that if we define φ(t1, t2, t3) = f(t1, t2, t3, 0, 0) and ψ(t1, t2, t3) = g(t1, t2, t3, 0, 0)
for (t1, t2, t3) ∈ B((x0, y0, z0), r), the theorem is proved. 2

The general form of Theorem 26.4 is now clear: Given m functions φ1, . . . , φm

defined on an open set D ⊂ Rn with m ≤ n, if φi(p0) = 0 for each 1 ≤ i ≤ m and
some point p0 ∈ D, and if

∂(φ1,...,φm)
∂(xi1

,...,xim )
(p0) 6= 0,

then you can solve the system of equations φi(p) = 0, 1 ≤ i ≤ m for each of the vari-
ables xi1 , . . . , xim in terms of the other variables, and in a continuously differentiable
way.

Assignment 25 (Due December 1) [Buck page 366 #2,5,9,11]

27 Wednesday November 22—Proof of Open Map-

ping Theorem (Assignment 26)

In the next theorem, we shall use the following elementary “critical point” result.

Lemma 27.1 (Theorem 11,page 133 of Buck) Let f : D → R be of class C1 on
an open set D ⊂ Rn and suppose that f has a local minimum at a point p0 ∈ D. Then
all the first order partial derivatives of f vanish at p0: Djf(p0) = 0 for 1 ≤ j ≤ n.
Stated another way, Df(p0) = 0.

Proof: The meaning of “local minimum” is that there exists a ball B(p0, r) ⊂ D such
that f(p) ≥ f(p0) for all p ∈ B(p0, r). By definition,

Djf(p0) = lim
t→0

f(p0 + tej)− f(p0)

t
. (60)

In (60), the numerator is non-negative whenever p0 + tej ∈ B(p0, r). Thus if we let
t approach zero through positive values, we get Djf(p0) ≥ 0, whereas if we let t
approach zero through negative values, we get Djf(p0) ≤ 0. Thus Djf(p0) = 0. 2

We shall also use the following fact about compact sets.

Assignment 26 (Due December 1) Prove that if K is a compact set in Rn and
q 6∈ K, then

inf{|p− q| : p ∈ K} > 0.

Proof of the open mapping theorem, Theorem 25.2: Let q0 ∈ T (D). Choose
a point p0 ∈ D such that q0 = T (p0). By Theorem 24.1, there is a δ > 0 such
that T is one-to-one on B(p0, 2δ) ⊂ D. Thus T is one-to-one on the closed ball
N := {p ∈ D : |p − p0| ≤ δ} ⊂ D. The boundary C = {p ∈ D : |p − p0| = δ} of N
is a compact set and therefore so is its image T (C), and clearly q0 6∈ T (C). Thus by
Assignment 26, d := inf{|q0 − q| : q ∈ T (C)} > 0.
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CLAIM 1: B(q0, d/3) ⊂ T (D).

This claim shows that T (D) is an open set. Thus we are done if we prove this
claim. We shall show that each point q1 ∈ B(q0, d/3) belongs to T (D). So fix a point
q1 ∈ B(q0, d/3). Define a function φ : N → [0,∞) by the rule: φ(p) = |T (p) − q1|2.
The function φ is continuous on the compact set N , so by the extreme values theorem,
it attains its minimum at some point, call it p∗ ∈ N . Thus φ(p) ≥ φ(p∗) for all p ∈ N ,
which can be expressed as:

∀p ∈ N, |T (p)− q1|2 ≥ |T (p∗)− q1|. (61)

CLAIM 2: p∗ ∈ intN , that is, p∗ 6∈ C.

To prove31 claim 2, note first that, by the definition of d, for all p ∈ C, |T (p)−q0| ≥
d, and thus by the backwards Schwarz inequality, for p ∈ C,

|T (p)− q1| ≥ |T (p)− q0| − |q0 − q1| ≥ d− d/3 = 2d/3. (62)

Note that p0 ∈ N , T (p0) = q0, and |q0 − q1| < d/3. Suppose now that p∗ ∈ C. Then
we would have on the one hand, by (62), |T (p∗)− q1| ≥ 2d/3, and on the other hand,
by (61), |T (p∗)− q1| ≤ |T (p0)− q1| < d/3, a contradiction, proving claim 2.

By claim 2, p∗ is an interior point of N so that by Lemma 27.1, Djφ(p∗) = 0 for
1 ≤ j ≤ n.

We now need to write down some explicit formulas for the function φ. At this point,
for convenience, we assume that n = 2. We can write T (x, y) = (f(x, y), g(x, y)),
where f and g are the coordinate functions of T , and if we set q1 = (a, b) and
p = (x, y), we have

φ(x, y) = (f(x, y)− a)2 + (g(x, y)− b)2

∂φ
∂x

(x, y) = 2(f(x, y)− a)∂f
∂x

(x, y) + 2(g(x, y)− b) ∂g
∂x

(x, y)

∂φ
∂y

(x, y) = 2(f(x, y)− a)∂f
∂y

(x, y) + 2(g(x, y)− b)∂g
∂y

(x, y)

and so (plugging in p∗)

0 = 2(f(p∗)− a)∂f
∂x

(p∗) + 2(g(p∗)− b) ∂g
∂x

(p∗)

0 = 2(f(p∗)− a)∂f
∂y

(p∗) + 2(g(p∗)− b)∂g
∂y

(p∗).

The matrix of coefficients of this two by two system of linear equations has a non-zero
determinant by assumption. Thus f(p∗)− a = 0 and g(p∗)− b = 0, that is

T (p∗) = (f(p∗), g(p∗)) = (a, b) = q1,

and thus q1 ∈ T (D), proving CLAIM 1 and the theorem. 2

31We still need to prove claim 1
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28 Friday November 24—holiday (Thanksgiving)

29 Monday November 27—Proof of Inverse Map-

ping Theorem

29.1 Automatic continuity of the inverse

The special case of Theorem 29.2 below, in which m = n = 1 and D is a compact
interval, is proved in [Ross 18.4,18.6]. Before stating and proving Theorem 29.2, let’s
state a very simple and very useful lemma, whose (indirect) proof is straightforward.

Lemma 29.1 A sequence of points in Rn converges to a point p ∈ Rn if and only if
every subsequence of the given sequence has a subsequence which converges to p.

Let us also note that if a transformation preserves convergent sequences, then it
is continuous. (Same proof as [Buck, Theorem 2,page 74].)

Theorem 29.2 (Automatic continuity of inverse,Theorem 13,page 353 of Buck)
Let T : D → Rm be a continuous one-to-one transformation defined on a compact set
D ⊂ Rn. Then the inverse transformation T−1 (which exists since T is one-to-one)
is continuous.

Proof: Let pk be a sequence from D, let p ∈ D and suppose that limk→∞ T (pk) =
T (p). By the remark preceding the theorem, all we need to do is prove limk→∞ pk = p.
For this we shall use Lemma 29.1. So let pkj

be a subsequence of pk. By the BW
property there is a further subsequence pkjl

and a point q ∈ D such that

lim
l→∞

pkjl
= q.

Since T is continuous, liml→∞ T (pkjl
) = T (q). But T (pkjl

) is a subsequence of T (pk) so
T (pkjl

) → T (p). Thus T (p) = T (q) and since T is one-to-one, p = q. By Lemma 29.1,
limk pk = p. 2

29.2 The inverse function theorem

The inverse function theorem (Theorem 25.3 below) is the n-dimensional analog of
the following result in one-variable which we state here for comparison purposes.

Theorem 29.3 (Theorem 29.9,page 165 of Ross) Let f be a one-to-one contin-
uous function on an open interval I ⊂ R and let J = f(I). If f is differentiable at
x0 ∈ I, and if f ′(x0) 6= 0, then f−1 is differentiable at f(x0) and

(f−1)′(f(x0)) =
1

f ′(x0)
.
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Proof of the inverse function theorem, Theorem 25.3: Since T is of class
C1, by Theorem 18.5, (considering T (p) and T (p0) as column vectors)

T (p)− T (p0) = T ′(p0)× (p− p0)
t +R(p) (63)

where

lim
p→p0

|R(p)|
|p− p0|

= 0. (64)

By assumption detT ′(p0) 6= 0 so T ′(p0) is non-singular. Multiplying (63) (on the left)
by [T ′(p0)]

−1, you get

[T ′(p0)]
−1(T (p)− T (p0)) = (p− p0)

t + [T ′(p0)]
−1(R(p)). (65)

Let us now denote by q and q0, the column vectors which are the images of pt and pt
0

under T ; that is q = T (pt) and q0 = T (pt
0), so that pt = T−1(q), pt

0 = T−1(q0). Then
by (65),

T−1(q)− T−1(q0) = (p− p0)
t = [T ′(p0)]

−1(T (p)− T (p0))− [T ′(p0)]
−1(R(p)),

that is (eliminating the middle person (p− p0)
t),

T−1(q)− T−1(q0)− [T ′(p0)]
−1(T (p)− T (p0)) = −[T ′(p0)]

−1(R(p)). (66)

If we can show that the right hand side of (66) satisfies

lim
q→q0

|[T ′(p0)]
−1(R(p))|

|q − q0|
= 0, (67)

then (66) will say that (58) is true. So we need to prove (67).
First recall that by Lemma 21.1 there is a constant M such that |[T ′(p0)]

−1(u)| ≤
M |u| for all u ∈ Rn. Therefore,

|[T ′(p0)]
−1(R(p))|

|q − q0|
≤ M |R(p)|

|q − q0|
. (68)

By (65), (p− p0)
t = [T ′(p0)]

−1(T (p)− T (p0))− [T ′(p0)]
−1(R(p)) so

|p− p0| ≤M |q − q0|+M |R(p)|, (69)

and by (64),

|R(p)| ≤ ε|p− p0| for |p− p0| < δ (δ depending on ε). (70)

Therefore, (69) becomes

|p− p0| ≤M |q − q0|+Mε|p− p0|,

or,
(1− εM)|p− p0| ≤M |q − q0|,
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that is,

|p− p0| ≤
M

1− εM
|q − q0| for |p− p0| < δ. (71)

Taking recriprocals in (71) you get

1

|q − q0|
≤ M

1− εM

1

|p− p0|
for |p− p0| < δ. (72)

Now by (68),(72), and (70), we have, for |p− p0| < δ,

|[T ′(p0)]
−1(R(p))|

|q − q0|
≤M |R(p)| M

|p− p0|(1− εM)
≤ εM2

1− εM
.

The quantity
εM2

1− εM

is “just as good” as ε (since it goes to zero as ε does). Therefore (67) holds. Note
that we have used the fact that T−1 is continuous (Theorem 29.2). That is, if q → q0,
then pt = T−1q → T−1q0 = pt

0, so |R(p)|/|p− p0| < ε if |p− p0| < δ.

We still need to prove that T−1 is of class C1. To see this, just notice that the
matrix entries of T ′(p) are continuous functions by assumption and therefore the
entries of the inverse matrix T ′(p)−1 are continuous functions (Why?). By (58) then,
the entries of (T−1)′(T (p)) are continuous functions of q = T (p). 2

30 Wednesday November 29—Mixed Partials The-

orem

30.1 Mixed Partials Theorem—weak version

Theorem 30.1 (Theorem 11,page 189 of Buck) Let f be of class C2 on a closed
rectangle R ⊂ R2 with vertices P1 = (a1, b1), Q1 = (a2, b1), P2 = (a2, b2), Q2 = (a1, b2)
with a1 < a2 and b1 < b2. Then∫

R

∫
D1(D2f)(x, y) dxdy =

∫
R

∫
D2(D1f)(x, y) dxdy = f(P1)−f(Q1)+f(P2)−f(Q2).

Proof: In this proof, let f12 denote D2(D1f) and f21 denote D1(D2f). Then, since
f12, D1f and D2f are continuous, by the Fundamental Theorem of Calculus,

∫
R

∫
f12(x, y) dxdy =

∫ a2

a1

[∫ b2

b1

∂
∂y

(
∂f
∂x

)
dy

]
dx

=
∫ a2

a1

[
∂f
∂x

(x, b2)− ∂f
∂x

(x, b1)
]
dx

= f(a2, b2)− f(a1, b2)− f(a2, b1) + f(a1, b1).
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Similarly, since f21 is continuous, by the Fundamental Theorem of Calculus,∫
R

∫
f21(x, y) dxdy =

∫ b2

b1

[∫ a2

a1

∂
∂x

(
∂f
∂y

)
dx
]
dy

=
∫ b2

b1

[
∂f
∂y

(a2, y)− ∂f
∂y

(a1, y)
]
dy

= f(a2, b2)− f(a2, b1)− f(a1, b2) + f(a1, b1).2

Corollary 30.2 (Corollary, page 190 of Buck) If f is of class C2 on an open set
D ⊂ R2, then D1(D2f) = D2(D1f) on D.

Proof: By the theorem,
∫
R

∫
(f12 − f21)(x, y) dxdy = 0 for every closed rectangle

R ⊂ D. Since f12 − f21 is continuous on D, this implies that f12 − f21 is zero
everywhere on D. 2

30.2 Mixed Partials Theorem—strong version

Theorem 30.3 (Tom M. Apostol, Mathematical Analysis 1957, page 121)
Let D1f,D2f , and D2(D1f) exist and be continuous in a neighborhood of (x0, y0) in
R2. Then D1(D2f)(x0, y0) exists and equals D2(D1f)(x0, y0).

Proof: For notation’s sake, let N := D2f(x0 +h, y0)−D2f(x0, y0). We need to prove
that f21(x0, y0) = limh→0N/h exists and equals f12(x0, y0).

Write

N = lim
k→0

f(x0 + h, y0 + k)− f(x0 + h, y0)

k
− lim

k→0

f(x0, y0 + k)− f(x0, y0)

k
.

Fix k and introduce gk(t) = f(x0 + t, y0 + k)− f(x0 + t, y0) so that by the Mean
Value Theorem,

N = lim
k→0

gk(h)− gk(0)

k
= lim

k→0

hg′k(h)

k

where h lies between 0 and h (and depends on k).
By the chain rule, g′k(t) = D1f(x0 + t, y0 +k)−D1f(x0 + t, y0) so that by the Mean

Value Theorem again,

N

h
= lim

k→0

D1f(x0 + h, y0 + k)−D1f(x0 + h, y0)

k
= lim

k→0
f12(x0 + h, y),

where y lies between y0 and y0 + k (and depends on h).
We remind ourselves that we now need to prove that

lim
h→0

lim
k→0

f12(x0 + h, y) exists, and equals f12(x0, y0).
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Digression: As k → 0, then y → y0 but the dependence of h on k is
unknown. If h were in fact independent of k, then we would have

lim
k→0

f12(z0 + h, y) = f12(x0 + h, y0),

since f12 is continuous in a neighborhood of (x0, y0). Again, by the conti-
nuity of f12 at (x0, y0), we would have

lim
h→0

f12(x0 + h, y0) = f12(x0, y0),

which would complete the proof of the theorem. However, we do not know
that h is independent of k, so this argument is invalid.

Let us now return to the proof of Theorem 30.3. Let F (h) = limk→0 f12(x0 + h, y)
(recall that h and y depend on k as well as on h. Once again, we need to show that

lim
h→0

F (h) exists and equals f12(x0, y0). (73)

Let ε > 0 and choose δ > 0 such that

|f12(x, y)− f12(x0, y0)| < ε/2 if (x, y) ∈ B((x0, y0), δ).

Note that if |h| < δ/2 and |k| < δ/2, then (x0 + h, y) ∈ B((x0, y0), δ). Now keep h
fixed with |h| < δ/2. Then

|f12(x0 + h, y)− f12(x0, y0)| < ε/2 if |k| < δ/2.

Now let k → 0 to get

|F (h)− f12(x0, y0)| < ε/2 if |h| < δ/2.

This proves (73) and the theorem. 2

Remark 30.4 Note that it follows thatD1(D2f)(x, y) exists and equalsD2(D1f)(x, y)
for every (x, y) in the given neighborhood of (x0, y0).

31 Friday December 1—Extensions of (uniformly)

continuous functions; Course summary

31.1 Motivation and statement of the problem

There are two main applications of uniform continuity. In the theory of Riemann
integration the fact that a continuous function on a close rectangle in R2 is integrable
follows very readily the fact that it is automatically uniformly continuous, a closed
rectangle being a compact set.
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Today we consider the another application in the form of a solution to a particular
mathematical problem. Let S be any subset of Rn and let f : S → R be a continuous
function. The problem is: can f be extended to a continuous function, call it f̃ ,
on the closure S of S? Stated again, given f continuous on S, does there exist a
continuous function f̃ on S, such that f̃(p) = f(p) for p ∈ S? Let me repeat this:
given a continuous function f on S, does there exist a continuous function f̃ on S
such that f̃|S = f?

We know already that the answer is no, as the example f(x) = 1/x on S = (0, 1) ⊂
R shows. So to get a positive answer, we must put some restrictions on the function
f and/or on the set S. We will find that if we assume that f is uniformly continuous
on S, then the answer is yes for any set S.

To solve this problem we note first that our hands are tied by Theorems 14.1 and
9.4. That is, we have no choice, we must define the extension f̃ as follows:

f̃(p) =

{
f(p) if p ∈ S;

limk→∞ f(pk) if p ∈ S \ S,

where pk ∈ S is such that limk pk = p.
To make this construction legitimate, we must answer three questions:

• Why does limk f(pk) exist?

• Why is limk f(pk) independent of the sequence pk chosen in S?

• Why is f̃ (which is a function by positive answers to the first two questions)
continuous on S?

In order to get affirmative answers to the first and third questions, we have to
make an assumption on f , but not on S. The first two questions are easy to answer,
so let’s get them out of the way first.

Assume now that f is not merely continuous on S, but uniformly continuous on
S. If pk is any sequence from S which converges32 to p ∈ S, then pk is a Cauchy
sequence, and by uniform continuity of f , f(pk) is a Cauchy sequence in R. Hence
the limit exists and the first question is answered affirmatively.

We now answer the second question. Let {pk} and {qk} be any two sequences
from S which converge to p ∈ S. By the answer to the first question, the limits
α := limk f(pk) and β := limk f(qk) exist. We must show that α = β. To do
this, consider a third sequence, obtained by interlacing the two given sequences:
p1, q1, p2, q2, . . . ,. Obviously, this sequence converges to p also, so the sequence of
function values f(p1), f(q1), f(p2), f(q2), . . . , converges, say to a number γ. Since
every subsequence of this sequence must also converge to γ, it follows that α = γ and
β = γ, so α = β, as required. The second question is answered affirmatively.

32Such a sequence exists by Theorem 14.1
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31.2 The extension theorem

This subsection is devoted to the answer to the third question raised above. Let us
state this as a theorem.

Theorem 31.1 Let f : S → R be a uniformly continuous function defined on a
subset S of Rn. Define a function f̃ : S → R by

f̃(p) =

{
f(p) if p ∈ S;

limk→∞ f(pk) if p ∈ S \ S,

where pk ∈ S is such that limk pk = p. Then f̃ is continuous on S.

Proof: Let p ∈ S and let ε > 0. We shall produce a δ > 0 such that f̃ [B(p, δ)∩ S] ⊂
B(f̃(p), ε), that is,

|f̃(p)− f̃(q)| < ε if q ∈ S and |q − p| < δ.

Discussion: Here are the basic ideas of the proof.

1. The points p, q (∈ S) have “neighbors” pk, qj ∈ S: for example
|p− pk| < 1/k and |q − qj| < 1/j.

2. f̃(p) and f(pk) are “close”; so are f̃(q) and f(qj).

3. if pk and qj are close, so are f(pk) and f(qj).

4. if p and q are close, so are pk and qj.

We now make these statements precise. We begin with the triangle inequality:

|f̃(p)− f̃(q)| ≤ |f̃(p)− f(pk)|+ |f(pk)− f(qj)|+ |f(qj)− f(q)|. (74)

There exists N1 = N1(ε/3, p) such that |f̃(p) − f(pk)| < ε/3 for all k > N1 and
there exists N2 = N2(ε/3, q) such that |f̃(q)−f(qj)| < ε/3 for all j > N2. (This takes
care of the first and third terms on the right side of (74)).

There exists δ1 = δ1(f, ε/3, S) such that |f(x) − f(y)| < ε/3 whenever x, y ∈
S and |x − y| < δ1. In particular, for the middle term on the right side of (74),
|f(pk)− f(qj)| < ε/3 if |pk − qj| < δ1.

Now note that (again by the triangle inequality)

|pk − qj| ≤ |pk − p|+ |p− q|+ |q − qj|. (75)

Thus, if we define δ := δ1/2, then from (75), if |p − q| < δ, and k, j are large
enough, then |pk − qj| will be less than δ1.

Conclusion: if |p−q| < δ, where δ = δ1(f, ε/3, S), then, |f̃(p)− f̃(q)| < ε/3+ε/3+
ε/3 = ε, by (74), where k, j are chosen so that k > N1, j > N2 and 1/k+ 1/j < δ1. 2
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31.3 Course summary—from Buck (and the Minutes)

1.3 Schwarz inequality—Theorem 1,p.13 (Th.1.1); Triangle inequality—Cor. p.14
(Cor.2.1)

1.5 topology—open,closed,interior,boundary,closure,cluster point

1.6 sequences—characterization of closure: Theorem 5,p.30 (Th.14.1)

1.8 compactness—Bolzano Weierstrass,Heine Borel, Theorems 25,26,27, p.65 (Th.7.1)

2.2 continuity—sequential criteria,Theorem 1,p.73 (Th.9.4),Theorem 2,p.74

2.3 uniform continuity—on compact sets, Theorem 6,p.84 (Th.10.2)

2.4 extreme values—Theorem 10,p.90 (Th.9.6), Theorem 11, p.91 (Th.9.8), Theorem
13,p.93 (Th.8.2)

2.6 extension—Theorem 24,p.109 (Th.31.1)

3.3 differentiable implies continuous:Cor.,p.129 (Th. 11.3), existence (= linear ap-
proximation), Theorem 8,p.131 (Th.15.3),uniqueness, Theorem 9,p.132 (Prop.17.2)

3.4 baby chain rule—Theorem 14,p.136 (Th.21.4)

3.5 little mean value theorem—Theorem 16,p.151 (Th.23.1)

4.3 mixed partials theorem—Cor. p.190 (Th.30.1 and Th.30.3)

7.2 transformations—continuity, Theorem 3,p.333 (Th.16.4),compactness, Theorem
4,p.333 (Th.16.4)

7.3 linear transformation-uniform continuity of them, Theorem 8,p.338 (Lemma 21.1)

7.4 coordinate free derivative—existence (=linear approximation) Theorem 10, p.344
(Th.18.5), chain rule, Theorem 11, p.346 (Th.20.3), big mean value theorem,
Theorem 12,p.350 (Th.23.2), uniqueness, Exercise 10,p.352, (Prop.17.4)

7.5 inverse functions—automatic continuity of inverse Theorem 13,p.353 (Th.29.2),
local invertibility Theorem 14,p.355 (Th.24.1), open mapping Theorem 15,p.356
(Th.25.2), inverse function Theorem 16,p.358 (Th.25.3)

7.6 implicit functions—implicit function theorems, Theorem 17,p.363 (Ths.25.1,26.1,26.2),
Theorem 18,p.364 (Th.26.4)
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