
Growth-Optimality against Underperformance

Greg Zitelli

University of California, Irvine

March 2016

Growth-Optimality against Underperformance University of California, Irvine



Large Deviation Theory (Markov’s Inequality)

If X ≥ 0 is a random variable and x > 0, then the Markov
inequality is:

x · P[X ≥ x] ≤ E[X]

P[X ≥ x] ≤ E[X]

x

Now let Xi be random variables, so that for any θ > 0 and x ∈ R
we have

P

[
1

T

T∑
i=1

Xi ≤ x

]
= P

[
e−θ

∑T
i=1Xi ≥ e−θTx

]
≤

E
[
e−θ

∑T
i=1Xi

]
e−θTx
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Large Deviation Theory (Chernoff bounds)

P

[
1

T

T∑
i=1

Xi ≤ x

]
= P

[
e−θ

∑T
i=1Xi ≥ e−θTx

]
≤

E
[
e−θ

∑T
i=1Xi

]
e−θTx

If the Xi are independent, we can split the expectation into the
product, so it follows that

P

[
1

T

T∑
i=1

Xi ≤ x

]
≤ eθTx

T∏
i=1

E
[
e−θ

∑T
i=1Xi

]
= eθTx+

∑T
i=1 logE[e−θXi ]
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Large Deviation Theory (Chernoff bounds)

P

[
1

T

T∑
i=1

Xi ≤ x

]
≤ eθTx

T∏
i=1

E
[
e−θ

∑T
i=1Xi

]
= eθTx+

∑T
i=1 logE[e−θXi ]

The function

λi(θ) = logE
[
eθXi

]
=

∞∑
n=1

κn
n!
θn

is called the cumulant generating function for Xi, where
κ1 = E[Xi] and κ2 = var(Xi). For θ > 0 and Xi independent our
bound is now

P

[
1

T

T∑
i=1

Xi ≤ x

]
≤ eθT(x+

1
T

∑T
i=1 λi(−θ))
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Large Deviation Theory (Chernoff bounds)

Since this holds for all θ > 0, we have

P

[
1

T

T∑
i=1

Xi ≤ x

]
≤ inf

θ>0
eθT(x+

1
T

∑T
i=1 λi(−θ))

If the Xi are i.i.d. then we have

P

[
1

T

T∑
i=1

Xi ≤ x

]
≤ inf

θ>0
e
θT

(
x+λ1(−θ)

)
=
(
einfθ>0[(x−κ1)θ+

κ2
2
θ2−...]

)T
If x− κ1 = x− E[X1] < 0 and the power series for λ(θ) has
nonzero radius then this bound is not trivial. In fact, if the Xi are
normal then κn = 0 for all n ≥ 3.
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Gambling

I Let W0 be our initial wealth.

I We choose to bet 0 ≤ p ≤ 1 fraction of our wealth on a
gamble with odds π > 1/2.

I After T rounds our wealth is

Wp,T =W0

T∏
i=1

Rp,i =W0 exp

(
T∑
i=1

logRp,i

)
where

P [Rp,i = 1 + p] = π, P [Rp,i = 1− p] = 1− π

I The Kelly criterion says to pick p so as to maximize

max
0≤p≤1

E [logRp,i] = max
0≤p≤1

log
(
(1 + p)π(1− p)1−π

)
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Underperforming a benchmark

Suppose we are now concerned about underperforming some
benchmark rate a > 1.

P
[
Wp,T ≤W0a

T
]
= P

[
1

T

T∑
i=1

logRp,i ≤ log a

]

Using large deviations we immediately have

P
[
Wp,T ≤W0a

T
]
≤ inf

θ>0
exp

(
θT
(
log a+ logE

[
e−θ logRp,1

]))

=

(
inf
θ>0

E

[(
Rp,1
a

)−θ])T
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Underperforming a benchmark

P
[
Wp,T ≤W0a

T
]
≤

(
inf
θ>0

E

[(
Rp,1
a

)−θ])T
As T grows, suppose we want to minimize our chances of
underperforming the benchmark. Our goal is to pick a 0 ≤ p ≤ 1
so as to minimize

min
0≤p≤1

inf
θ>0

E

[(
Rp,1
a

)−θ]
Suppose π = 0.6 and the benchmark is 1%, then this becomes

min
0≤p≤1

inf
θ>0

[
0.6

(
1 + p

1.01

)−θ
+ 0.4

(
1− p
1.01

)−θ]
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Kelly Criterion

For π = 0.6 Kelly is

max
0≤p≤1

E [logRp,1] = max
0≤p≤1

0.6 log(1 + p) + 0.4 log(1− p)

= max
0≤p≤1

log
(
(1 + p)0.6(1− p)0.4

)
which is realized when p = π − (1− π) = 2π − 1 = 0.2.

Growth-Optimality against Underperformance University of California, Irvine



Kelly Criterion

max
0≤p≤1

log
(
(1 + p)0.6(1− p)0.4

)
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Underperforming a benchmark

P
[
Wp,T ≤W0a

T
]
≤

(
inf
θ>0

E

[(
Rp,1
a

)−θ])T
Now suppose our goal is minimizing the probability of
underperforming the benchmark 1%. We want to minimize

min
0≤p≤1,θ>0

E

[(
Rp,1
a

)−θ]

= min
0≤p≤1,θ>0

[
0.6

(
1 + p

1.01

)−θ
+ 0.4

(
1− p
1.01

)−θ]
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Underperforming a benchmark of 1%

Dp,θ = 0.6

(
1 + p

1.01

)−θ
+ 0.4

(
1− p
1.01

)−θ
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Underperforming a (smaller) benchmark of 0.1%

Dp,θ0.6

(
1 + p

1.001

)−θ
+ 0.4

(
1− p
1.001

)−θ
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Underperforming a benchmark

I Our goal of minimizing the asymptotic probability

P
[
Wp,T ≤W0a

T
]
≤

(
inf
θ>0

E

[(
Rp,1
a

)−θ])T
leads us to consider a dual optimization in terms of p and θ.

min
0≤p≤1

min
θ>0

E

[(
Rp,1
a

)−θ]
I 1 + θ plays the role of the bettor’s risk aversion. It is not

exogenous, but rather determined by the inner maximization.
For instance, a bettor who is concerned with outperforming
returns of 1% exhibits risk aversion of 1 + θ = 1.43.
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Isoelastic Utility

I Note that our problem

min
0≤p≤1

min
θ>0

E

[(
Rp,1
a

)−θ]

can be rephrased to appear similar to maximizing the
isoelastic utility of our returns:

max
0≤p≤1

max
γ>1

E

[
−
(
Rp,1
a

)1−γ
]

where γ is risk aversion.
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Risk Aversion

I Consider the expected utility for the Blackjack game with
π = 0.6 and varying risk aversion 1 + θ = γ.

max
0≤p≤1

E
[
−R−θp,1

]
= max

0≤p≤1

[
−0.6(1 + p)−θ − 0.4(1− p)−θ

]

Growth-Optimality against Underperformance University of California, Irvine



Risk Aversion

I If θ > 2.76 is a bettor’s exogenous risk aversion then a bettor
considers a bet p = 10% to be unfavorable to a bet of
p = 0%, regardless of their initial wealth W0 or the number of
trials T .
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Measuring Risk Aversion

I Barsky et al. (1997) designed a questionnaire given to
thousands of individuals in person by Federal interviewers, and
about 2/3 of them had relative risk aversion higher than
3.76 = 1 + θ.

I Suppose I offer you the chance to play the blackjack π = 0.6
game 10,000 times instantly on a computer, but if you agree
you must use the strategy p = 10%.

I Using the large deviation bound derived above, the long term
behavior hinges on

P
[
Wp,T ≤W0a

T
]
≤

(
inf
θ>0

E

[(
Rp,1
a

)−θ])T
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Measuring Risk Aversion

I The chances of underperforming an 0.6% benchmark are quite
bad:

P
[
W10%,104 ≤W01.006

104
]
≤

(
inf
θ>0

E

[(
R10%,1

1.006

)−θ])104

≤ 0.99810
4
< 10−8

so it is quite likely you will end up with more than W0 × 1024,
and all you stand to lose is W0.
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Measuring Risk Aversion

I An individual with exogenous risk of 1 + θ = 3.76 or greater
would not want to take this bet because they are principally
interested in maximizing

max
0≤p≤1

E
[
−R−θp,1

]
= max

0≤p≤1

[
−0.6(1 + p)−θ − 0.4(1− p)−θ

]
and the choice p = 10% is worse (according to their expected
utility) than a choice of p = 0%.

I On the other hand, an individual hoping to beat a modest
benchmark of 0.6% is hoping to minimize

min
0≤p≤1

min
θ>0

[
0.6

(
1 + p

1.006

)−θ
+ 0.4

(
1− p
1.006

)−θ]

Growth-Optimality against Underperformance University of California, Irvine



Measuring Risk Aversion

I Such an individual would be willing to take the bet.

Dp,θ = 0.6

(
1 + p

1.006

)−θ
+ 0.4

(
1− p
1.006

)−θ

Growth-Optimality against Underperformance University of California, Irvine



I MacLean, L. C. and W. T. Ziemba (1999). Growth versus
security: Tradeoffs in dynamic investment analysis. Annals of
Operations Research, 85, 193-225.

I Stutzer, M. (2003). Portfolio choice with endogenous utility:
A large deviations approach. Journal of Econometrics, 116,
365-386.

I Barsky, R. B., F. T. Juster, M. S. Kimball, and M. D. Shapiro
(1997). Preference parameters and behavioral heterogeneity:
An experimental approach in the health and retirement study.
Quarterly Journal of Economics, 112(2), 537-579.

Growth-Optimality against Underperformance University of California, Irvine


	..

