MONODROMY MATRICES OF 1D DIFFERENTIAL OPERATOR OF ORDER 4

VADIM TKACHENKO

Let $p(x)$ and $q(x), x \in[0, \pi]$, be a pair of real-valued functions satisfying conditions

$$
\begin{equation*}
\int_{0}^{\pi}\left(\left|p^{\prime}(x)\right|^{2}+|q(x)|^{2}\right) d x<\infty \tag{1}
\end{equation*}
$$

and let \mathcal{L} be the differential operator

$$
\begin{equation*}
\mathcal{L}=\frac{d^{4}}{d x^{4}}+\frac{d}{d x} p(x) \frac{d}{d x}+q(x), \quad x \in(0, \pi) . \tag{2}
\end{equation*}
$$

We denote by $U(x, \lambda), \lambda \in \mathbb{C}$, the fundamental matrix of the equation $\mathcal{L} u=\lambda u$, i.e., we set

$$
U(x, \lambda)=\left\|u_{k}^{(j-1)}(x, \lambda)\right\|_{k, j=1}^{4}, U(0, \lambda)=I
$$

with $u_{k}(x, \lambda), k=1, \ldots, 4$, being solutions to the above equation. It is well known that the monodromy matrix $U(\pi, \lambda)$ contains, one way or another, all data related to the boundary problems generated by L in the interval $[0, \pi]$.

We describe the set of all 4×4 matrices $U(\lambda), \lambda \in \mathbb{C}$, which are the monodromy matrices of operators (2) restricted by condition (1).

The main tool to obtain such a description is the transformation operator introduced by Z.Leibenzon [1]-[2].

References

[1] Z.Leibenzon, Trudy Mosc. Math. Ob.,Trans.MMS, 1966, v.15, 78-163.
[2] Z.Leibenzon, Trudy Mosc. Math. Ob.,Trans.MMS, 1971, v.25, 13-61.

