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Normal Returns

http://demonstrations.wolfram.com/KellyPortfolioAnalysis

e Assumptions

— Trade continuously
in any size, long or

e short, with no bid-

ask spread

_— - — Known, normal,
distribution
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Stable Distribution

Univariate
https://en.wikipedia.org/wiki/Stable distribution

X~S(a, B, u, ¢) means its log characteristic function is
W(k) = ikp — |ke|*[1 — iB sign(k) tan(oZ)].

Multivariate
https://en.wikipedia.org/wiki/Multivariate stable distribution

X~S(a,u,T) means
Y(k) =
k" p— [ Gk - s|* — isign(k" - 5) tan(a)]dT(s).

Further, yT - X ~ S(a, By, 1y, ¢,) where
ey = [ ly" - s|*dr(s),

By = [ lv" - s|%sign(y” - ) dI'(s)/cy,
wy =v"-u

Infinite variance when a < 2; infinite mean when a < 1.
Generalized Central Limit Theorem

Levy Measure
dF (x) = dT'(s)dr/r**1 wherer = |x| and s = x /7.
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Empirically, Returns have Fat Tails
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A/Vf/ Tail Skew Drift [/yr] Vol [/yr*0.5] Begin

e Stocks 1.87 -1 10.0% 17.0% 12/31/75
1550 1esn =000 =010 Bonds 1.68 0 7.2% 8.9% 12/31/75
Menthly Returns Commodities 1.87 -0.7 1.6% 17.0% 12/31/90

* 12/31/15 end data and monthly frequency for all




Markets Price Fat Tails

SPX Options, 12/16/2016 Expiry, as of 12/31/2015
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Symmetric Stable Returns (1 Asset)
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Symmetric Stable Kelly Criterion
(1 Asset)
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THE MATH



Levy-Khitchine

e The pdf of a random variable is the Fourier
transform of its characteristic function.

* A semi-martingale process is defined by its
characteristic triplet (b, ¢, F) (and a truncation
function h).

 The log characteristic function is given by the
Levy-Khitchine formula:

Y(k) =ik -b—2kT-c-k+ f(exp(ikT +x) —1—ik? - h(x))dF(x)



Ito’s Lemma

Lemma 5.5 (Ito's formula) Let [’ be an open subset of &' and N a U-valued semimartin-

gale such that X is [7-valued as well. Moreover, let [ : [V — [ be a_function of class ('°.
Then [{X) is a semimartingale, and we have

HX) = F(X) +/ DF(N, ) X, 15 Y / D2 [(X, )d(X'*, X7),
Ju s
+/ (_,r(,\; ba) o (X, DF(X, ) J-)p-\(rfs.d.a-] (5.7)
St et

foranyt € ®.. Here, Df — (Dyf.....D,f) and ['D;_’_‘ f)ij=1. 4 denote the first and
second derivatives of [, respectively.

PROOF. This follows immediately from Jacod (1979). (2.54). Note that L, 1[0, 1,| = I,
if X' is [7-valued. O

We now consider the effect of € “-mappings on the characteristics.

Corollary 5.6 Let X.[7 be as in the previous lemma. Moreover, let [ . U — ' bea
fimetion of class C'°. If (3. (. /) denote the characteristics of X, then the characteristics
(B. (', v) of the " -valued semimartingale [ (X ) are given by

i il "

- 1 ke i

B = [ oy ase 30 [ pas ey
Ju TRl

+ / (MY, +0) - PO ) DFAXG ) hale))o(ds, da),
S0 e

i ot
=y /. D, M D [N dCY,
Lj=1" !

(0.1 % Gy — / a(J(X, +2) - F(X, )u(ds,de)
JIE wETE

fork le{l.... . d,teR,,GeB".

(5.9)
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Stochastic Exponential

Lemma 4.2 (Exponential Lévy processes) I Let L be a real-valued Lévy process with
characteristic triplet (b,¢, F). Then the process Z = ¢ is of the form (L) for
some Lévy process L whose triplet (b, ¢, I') is given by

h = E—I—{—J—l— /:h:{-*'_l) —l:!':.,l'jjlj'w‘:flr.f').

o= .

F(G) = /h,-;f-*'— 1)F(dx) for G € B.

. Let L be a real-valued Lévy process with characteristic triplet (b, c, I'). Suppose that
Z = (L) is positive. Then Z = ¢ L for some Lévy process L whose triplet (b, T, F)
is given by

h = b— {T‘I' /:ffilugil + o)) = h{x)) Fldr).

o= 0,

I:(:) o /J_(,”.U;_’j:l‘l‘f” ! ffrEIIfOF (& B,
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Kallsen’s Kelly Criterion

Theorem 3.1 (Logarithmic utility) Lef uj.) — log(x). Assume that there exists some ~ ¢
[ such that

I Fi{fz e R" : 1 +~'2<0}) =10

2. J - hia) | Flde) < o

14 I

3.

Let

Vi = wmi(Ky — Iy,

i r Cio | o T o : : PO
i ‘;:. i H i .fﬂj ! ]' """ i, = / 5 r-II.‘L‘-'.'\. - I..H I
[ i P

fort  [0.T|, where weset V', = (. Then (0. ) € 'V is an optimal portfolio/consumption
pair with discounted wealth process | .




Normal Returns

Given (Q, F, IF, P), satisfying the usual conditions. P is the physical (“real
world”) measure.

St = Spexp(R;) where Ry ~ N(rt,2t). Thatis, T(R|P) = (1, X, 0).
S¢ = SoE(Re). Thatis, T(R|P) = (i, %, 0) where p; = 1; + 2%;; and
R; ~ N(ut, Xt).

An asset’s Sharpe ratio is (1; — 1y)/0; where 67 = X;;, and its market

price of risk is (u; — ry)/o;. If u; = ry, then the market price of risk is zero
and the Sharp ratio is -0.5.

V; = Vog(Ry) where dRy = A -y - Drydt +yT - dR,. That is,
T(RYIP) = (ro +¥" - (1 — o), V - 2-y,0).

Ve = Voexp(R)). That is, ']I‘(RV|P) = (1, 0,0) and Rl ~ N(r t,opt)
where 7, —r0+yT (m—rl)—y"-Z- yanday—y Xy,
The Kelly criterionisy* =271 - (u —1r51).



Alpha Stable Returns (1 Asset)

Given (, F, F, P), satisfying the usual conditions. P is the physical (“real world”) measure.

S¢ = Spexp(R;) where R; ~ S(a, B, 1t, (%azt)l/a) and 1 < a < 2. (Note that risk now scales as t'/%, not
t1/2.) Thatis, T(RIP) = (r + 1,0, f) relative to h(x) where f(x) = [c_1(—w,0)(X) + ¢4+ 1(0.00)(x)]/
Ix|'*%, cp = —3(1 £ B);0%T(—a)/cos(a3), and 1, = 2 Th(x) — x]f (x)dx. If, for example, h(x) =
x1_111(x), thenr, = —(cy —c_)/(a —1).

S; = SoE(Ry). Thatis, T(R|P) = (r + 1, + 13, 0, f) relative to h(x) where f(x) = f(log(1 + x))/(1 + x)
forx > —1and r, = ffooo[i_l(ex — 1) — h(x)]f (x)dx. R, has an unnamed distribution.

V, = VoE(RY) where dR! = (1 — y)rydt + ydR;. Per Ito’s lemma,

T(RY|P) = (1 —Y)ro + y(r + 72 + 1) + 1:(¥), 0, f¥) relative to kY (x) where f (x) = f(x/v)/ly| for
x/y > —1landr.(y) = [ [RY (y(e* — 1)) — yh(e* — D]f (x)dx.

The portfolio hazard rate is A = f__; fY(x)dx. Ify <0, then A = c log((y — 1)/y)"%/a;ify > 1, then
A=clog(y/(y — 1) /a.

fO<y<1,thendA=0andV, = Voexp(RZ) where B
T(RYIP)=((1—pY)ro+y(r+1ry+1) +1.(¢) +14(1),0, fY) relative to hY (x), f¥ (x) = f¥(e* — 1)e*
forx > log(1—1y),andry = ffooo[h”(log(l +y(e* —1))) — i (y(e* — 1))]f (x)dx. Rl has an unnamed
distribution, but Ep(R))/t = (1 = Y)ry + y(r + 15 + 1) + 1.(¥) + 174 (y) + 1.(y) where 7, (y) =

ffooo[x — hY(log(1 + y(e* — 1)))]f (x)dx. The portfolio expected returnis Ep(RY)/t = (1 — y)ry + yr +
S, Mog(1 + y(e* — 1))]f (x)dx.

The Kelly criterion is I(y*) = (r — ry)/0? where I(y) = ffooo[(ex — 1)/(1 + y(e* — 1))]f(x)0lx/a2 for
0<y<1l



TBD: Alpha Stable Returns (N Assets)

 Given (Q,F,F, P), satisfying the usual conditions. P is the physical (“real
world”) measure.

e S; =S5pexp(R;) where Ry ~ S(rt,T't)and 1 < a < 2. That s,
T(R|P) = (r + 15,0, F) relative to h(x) = x1g.|x<13(x) where
dF (x) = dU'(s)dr/|r|**%, r = |x|, and s = x/r and

1o = Jp [h(x) — x]dF (x).

e S, =S,E(R.). Thatis, T(R|P) = t(r + 1, + 13,0, F) where 1, =? and
dF (x) =?.
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