Fat Tailed Kelly

Steve Schulist
2/10/2016
schulist@pimco.com

Normal Returns

http://demonstrations.wolfram.com/KellyPortfolioAnalysis

Assumptions

- Trade continuously in any size, long or short, with no bidask spread
- Known, normal, distribution

Results

$$-R_t^{\gamma} \sim N(r_{\gamma}t, \gamma^T \cdot \Sigma \cdot \gamma t)$$

$$-r_{\gamma} = r_0 + \gamma^T \cdot (\mu - r_0 1) - \frac{1}{2} \gamma^T \cdot \Sigma \cdot \gamma$$

$$-\sigma_{\gamma}^2 = \gamma^T \cdot \Sigma \cdot \gamma$$

$$-\mu_i = r_i + \frac{1}{2} \Sigma_{ii}$$

$$-\gamma^* = \Sigma^{-1} \cdot (\mu - r_0 1)$$

Stable Distribution

Univariate

https://en.wikipedia.org/wiki/Stable distribution

 $X \sim S(\alpha, \beta, \mu, c)$ means its log characteristic function is $\psi(k) = ik\mu - |kc|^{\alpha} [1 - i\beta \operatorname{sign}(k) \tan(\alpha \frac{\pi}{2})].$

Multivariate

https://en.wikipedia.org/wiki/Multivariate stable distribution

$$X \sim S(\alpha, \mu, \Gamma)$$
 means

$$\psi(k) =$$

$$ik^T \cdot \mu - \int_{s \in \mathbb{S}} [|k^T \cdot s|^{\alpha} - i \operatorname{sign}(k^T \cdot s) \tan(\alpha_{\frac{\pi}{2}}^{\underline{\pi}})] d\Gamma(s).$$

Further, $\gamma^T \cdot X \sim S(\alpha, \beta_{\gamma}, \mu_{\gamma}, c_{\gamma})$ where

$$c_{\gamma}^{\alpha} = \int_{s \in \mathbb{S}} |\gamma^{T} \cdot s|^{\alpha} d\Gamma(s),$$

$$\beta_{\gamma} = \int_{s \in \mathbb{S}} |\gamma^T \cdot s|^{\alpha} \operatorname{sign}(\gamma^T \cdot s) \, d\Gamma(s) / c_{\gamma}^{\alpha},$$

$$\mu_{\nu} = \gamma^T \cdot \mu$$
.

Infinite variance when $\alpha < 2$; infinite mean when $\alpha < 1$. Generalized Central Limit Theorem

Levy Measure

$$dF(x) = d\Gamma(s)dr/r^{\alpha+1}$$
 where $r = |x|$ and $s = x/r$.

Empirically, Returns have Fat Tails

Markets Price Fat Tails

Symmetric Stable Returns (1 Asset)

Symmetric Stable Kelly Criterion (1 Asset)

THE MATH

Levy-Khitchine

- The pdf of a random variable is the Fourier transform of its characteristic function.
- A semi-martingale process is defined by its characteristic triplet (b, c, F) (and a truncation function h).
- The log characteristic function is given by the Levy-Khitchine formula:

$$\psi(k) \equiv ik^T \cdot b - \frac{1}{2}k^T \cdot c \cdot k + \int (\exp(ik^T \cdot x) - 1 - ik^T \cdot h(x))dF(x)$$

Ito's Lemma

Lemma 5.5 (Itô's formula) Let U be an open subset of \mathbb{R}^d and X a U-valued semimartingale such that X is U-valued as well. Moreover, let $f:U\to\mathbb{R}$ be a function of class C^2 . Then f(X) is a semimartingale, and we have

$$f(X_t) = f(X_0) + \int_0^t Df(X_{s-})^\top dX_s + \frac{1}{2} \sum_{i,j=1}^d \int_0^t D_{ij}^2 f(X_{s-}) d\langle X^{i,c}, X^{j,c} \rangle_s$$

$$+ \int_{[0,t] \times \mathbb{R}^d} \left(f(X_{s-} + x) - f(X_{s-}) - Df(X_{s-})^\top x \right) \mu^X(ds, dx)$$
 (5.7)

for any $t \in \mathbb{R}_+$. Here, $Df = (D_1 f, \dots, D_d f)$ and $(D_{ij}^2 f)_{i,j=1,\dots,d}$ denote the first and second derivatives of f, respectively.

PROOF. This follows immediately from Jacod (1979), (2.54). Note that $\bigcup_{n\in\mathbb{N}}[0,R_n]=\mathbb{R}_+$ if X_- is U-valued.

We now consider the effect of C^2 -mappings on the characteristics.

Corollary 5.6 Let X, U be as in the previous lemma. Moreover, let $f: U \to \mathbb{R}^n$ be a function of class C^2 . If (B, C, ν) denote the characteristics of X, then the characteristics $(\widetilde{B}, \widetilde{C}, \widetilde{\nu})$ of the \mathbb{R}^n -valued semimartingale f(X) are given by

$$\widetilde{B}_{t}^{k} = \int_{0}^{t} Df^{k}(X_{s-})^{\top} dB_{s} + \frac{1}{2} \sum_{i,j=1}^{d} \int_{0}^{t} D_{ij}^{2} f^{k}(X_{s-}) dC_{s}^{ij}
+ \int_{[0,t] \times \mathbb{R}^{d}} \left(h_{n}^{k} (f(X_{s-} + x) - f(X_{s-})) - Df^{k}(X_{s-})^{\top} h_{d}(x) \right) \nu(ds, dx),$$

$$\widetilde{C}_{t}^{kl} = \sum_{i,j=1}^{d} \int_{0}^{t} D_{i} f^{k}(X_{s-}) D_{j} f^{l}(X_{s-}) dC_{s}^{ij},$$
(5.8)

$$\widetilde{\nu}([0,t] \times G) = \int_{[0,t] \times \mathbb{R}^n} 1_G(f(X_{s-} + x) - f(X_{s-})) \nu(ds, dx)$$
 (5.9)

for $k, l \in \{1, ..., d\}$, $t \in \mathbb{R}_+$, $G \in \mathcal{B}^n$.

Stochastic Exponential

Lemma 4.2 (Exponential Lévy processes) 1. Let \widetilde{L} be a real-valued Lévy process with characteristic triplet $(\widetilde{b}, \widetilde{c}, \widetilde{F})$. Then the process $Z := e^{\widetilde{L}}$ is of the form $\mathscr{E}(L)$ for some Lévy process L whose triplet (b, c, F) is given by

$$b = \widetilde{b} + \frac{\widetilde{c}}{2} + \int (h(e^x - 1) - h(x))\widetilde{F}(dx),$$

$$c = \widetilde{c},$$

$$F(G) = \int 1_G(e^x - 1)\widetilde{F}(dx) \operatorname{for} G \in \mathcal{B}.$$

2. Let L be a real-valued Lévy process with characteristic triplet (b, c, F). Suppose that $Z := \mathscr{E}(L)$ is positive. Then $Z = e^{\widetilde{L}}$ for some Lévy process \widetilde{L} whose triplet $(\widetilde{b}, \widetilde{c}, \widetilde{F})$ is given by

$$\widetilde{b} = b - \frac{c}{2} + \int (h(\log(1+x)) - h(x))F(dx),$$

$$\widetilde{c} = c,$$

$$\widetilde{F}(G) = \int 1_G(\log(1+x))F(dx) \text{ for } G \in \mathcal{B}.$$

Kallsen's Kelly Criterion

Theorem 3.1 (Logarithmic utility) Let $u(x) = \log(x)$. Assume that there exists some $\gamma \in \mathbb{R}^d$ such that

1.
$$F(\{x \in \mathbb{R}^d : 1 + \gamma^\top x \le 0\}) = 0$$

2.
$$\int \left| \frac{x}{1+\gamma^{\top}x} - h(x) \right| F(dx) < \infty$$

3.

$$b - c\gamma + \int \left(\frac{x}{1 + \gamma^{\top} x} - h(x)\right) F(dx) = 0.$$

Let

$$\kappa_t := \frac{\varepsilon}{K_T} \mathcal{E}(\gamma^\top L)_t,$$

$$V_t := \kappa_t (K_T - K_t),$$

$$\varphi_t^i := \frac{\gamma^i}{\widehat{S}_{t-}^i} V_{t-} \text{ for } i = 1, \dots, d, \quad \varphi_t^0 := \int_0^t \varphi_s^\top d\widehat{S}_s - \sum_{i=1}^d \varphi_t^i \widehat{S}_t^i$$

for $t \in [0,T]$, where we set $V_{0-} := 0$. Then $(\varphi, \kappa) \in \mathfrak{P}$ is an optimal portfolio/consumption pair with discounted wealth process V.

Normal Returns

- Given $(\Omega, \mathcal{F}, \mathbb{F}, P)$, satisfying the usual conditions. P is the physical ("real world") measure.
- $S_t = S_0 \exp(R_t)$ where $R_t \sim N(rt, \Sigma t)$. That is, $\mathbb{T}(R|P) = (r, \Sigma, 0)$.
- $S_t = S_0 \mathcal{E}(\bar{R}_t)$. That is, $\mathbb{T}(\bar{R}|P) = (\mu, \Sigma, 0)$ where $\mu_i = r_i + \frac{1}{2}\Sigma_{ii}$ and $\bar{R}_t \sim N(\mu t, \Sigma t)$.
- An asset's Sharpe ratio is $(r_i r_0)/\sigma_i$ where $\sigma_i^2 = \Sigma_{ii}$, and its market price of risk is $(\mu_i r_0)/\sigma_i$. If $\mu_i = r_0$, then the market price of risk is zero and the Sharp ratio is -0.5.
- $V_t = V_0 \mathcal{E}(\bar{R}_t^{\gamma})$ where $d\bar{R}_t^{\gamma} = (1 \gamma^T \cdot 1)r_0 dt + \gamma^T \cdot d\bar{R}_t$. That is, $\mathbb{T}(\bar{R}^{\gamma}|P) = (r_0 + \gamma^T \cdot (\mu r_0 1), \gamma^T \cdot \Sigma \cdot \gamma, 0)$.
- $V_t = V_0 \exp(R_t^{\gamma})$. That is, $\mathbb{T}(R^{\gamma}|P) = (r_{\gamma}, \sigma_{\gamma}^2, 0)$ and $R_t^{\gamma} \sim N(r_{\gamma}t, \sigma_{\gamma}^2t)$ where $r_{\gamma} = r_0 + \gamma^T \cdot (\mu r_0 1) \frac{1}{2}\gamma^T \cdot \Sigma \cdot \gamma$ and $\sigma_{\gamma}^2 = \gamma^T \cdot \Sigma \cdot \gamma$.
- The Kelly criterion is $\gamma^* = \Sigma^{-1} \cdot (\mu r_0 1)$.

Alpha Stable Returns (1 Asset)

- Given $(\Omega, \mathcal{F}, \mathbb{F}, P)$, satisfying the usual conditions. P is the physical ("real world") measure.
- $S_t = S_0 \exp(R_t)$ where $R_t \sim S(\alpha, \beta, rt, (\frac{1}{2}\sigma^2 t)^{1/\alpha})$ and $1 < \alpha < 2$. (Note that risk now scales as $t^{1/\alpha}$, not $t^{1/2}$.) That is, $\mathbb{T}(R|P) = (r + r_a, 0, f)$ relative to h(x) where $f(x) = \left[c_- 1_{(-\infty,0)}(x) + c_+ 1_{(0,\infty)}(x)\right]/(|x|^{1+\alpha}, c_{\pm} = -\frac{1}{2}(1 \pm \beta)\frac{1}{2}\sigma^2\Gamma(-\alpha)/\cos(\alpha\frac{\pi}{2})$, and $r_a = \int_{-\infty}^{\infty}[h(x) x]f(x)dx$. If, for example, $h(x) = x1_{[-1,1]}(x)$, then $r_a = -(c_+ c_-)/(\alpha 1)$.
- $S_t = S_0 \mathcal{E}(\bar{R}_t)$. That is, $\mathbb{T}(\bar{R}|P) = (r + r_a + r_b, 0, \bar{f})$ relative to $\bar{h}(x)$ where $\bar{f}(x) = f(\log(1+x))/(1+x)$ for x > -1 and $r_b = \int_{-\infty}^{\infty} [\bar{h}(e^x 1) h(x)] f(x) dx$. \bar{R}_t has an unnamed distribution.
- $V_t = V_0 \mathcal{E}(\bar{R}_t^\gamma)$ where $d\bar{R}_t^\gamma = (1-\gamma)r_0 dt + \gamma d\bar{R}_t$. Per Ito's lemma, $\mathbb{T}(\bar{R}^\gamma \big| P) = ((1-\gamma)r_0 + \gamma(r+r_a+r_b) + r_c(\gamma), 0, \bar{f}^\gamma)$ relative to $\bar{h}^\gamma(x)$ where $\bar{f}^\gamma(x) = \bar{f}(x/\gamma)/|\gamma|$ for $x/\gamma > -1$ and $r_c(\gamma) = \int_{-\infty}^\infty [\bar{h}^\gamma(\gamma(e^x-1)) \gamma \bar{h}(e^x-1)] f(x) dx$.
- The portfolio hazard rate is $\lambda = \int_{-\infty}^{-1} \bar{f}^{\gamma}(x) dx$. If $\gamma < 0$, then $\lambda = c_{+} \log((\gamma 1)/\gamma)^{-\alpha}/\alpha$; if $\gamma > 1$, then $\lambda = c_{-} \log(\gamma/(\gamma 1))^{-\alpha}/\alpha$.
- If $0 \leq \gamma \leq 1$, then $\lambda = 0$ and $V_t = V_0 \exp(R_t^\gamma)$ where $\mathbb{T}(R^\gamma|P) = ((1-\gamma)r_0 + \gamma(r+r_a+r_b) + r_c(\gamma) + r_d(\gamma), 0, f^\gamma)$ relative to $h^\gamma(x)$, $f^\gamma(x) = \bar{f}^\gamma(e^x-1)e^x$ for $x > \log(1-\gamma)$, and $r_d = \int_{-\infty}^\infty [h^\gamma(\log(1+\gamma(e^x-1))) \bar{h}^\gamma(\gamma(e^x-1))] f(x) dx$. R_t^γ has an unnamed distribution, but $E_P(R_t^\gamma)/t = (1-\gamma)r_0 + \gamma(r+r_a+r_b) + r_c(\gamma) + r_d(\gamma) + r_e(\gamma)$ where $r_e(\gamma) = \int_{-\infty}^\infty [x-h^\gamma(\log(1+\gamma(e^x-1)))] f(x) dx$. The portfolio expected return is $E_P(R_t^\gamma)/t = (1-\gamma)r_0 + \gamma r + \int_{-\infty}^\infty [\log(1+\gamma(e^x-1))] f(x) dx$.
- The Kelly criterion is $I(\gamma^*) = (r r_0)/\sigma^2$ where $I(\gamma) = \int_{-\infty}^{\infty} \left[(e^x 1)/\left(1 + \gamma(e^x 1)\right) \right] f(x) dx/\sigma^2$ for $0 \le \gamma \le 1$.

TBD: Alpha Stable Returns (N Assets)

- Given $(\Omega, \mathcal{F}, \mathbb{F}, P)$, satisfying the usual conditions. P is the physical ("real world") measure.
- $S_t = S_0 \exp(R_t)$ where $R_t \sim S(rt, \Gamma t)$ and $1 < \alpha < 2$. That is, $\mathbb{T}(R|P) = (r + r_a, 0, F)$ relative to $h(x) = x \mathbf{1}_{\{x:|x| \le 1\}}(x)$ where $dF(x) = d\Gamma(s) dr/|r|^{1+\alpha}$, r = |x|, and s = x/r and $r_a = \int_{\mathbb{R}} \left[h(x) x\right] dF(x)$.
- $S_t = S_0 \mathcal{E}(\bar{R}_t)$. That is, $\mathbb{T}(\bar{R}|P) = t(r + r_a + r_b, 0, \bar{F})$ where $r_b = ?$ and $d\bar{F}(x) = ?$.

References

- Goll, T. and J. Kallsen, "Optimal Portfolios of Logarithmic Utility", Stochastic Processes and Their Applications, 1999.
- Jacod, J. and Shiryaev, A., *Limit Theorems for Stochastic Processes*, Springer, 2002.
- Kallsen, J., "Optimal Portfolios for Exponential Lévy Processes", Mathematical Methods of Operations Research, 51:357-374, 2000.
 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.41.512&rep=rep1&type=pdf
- Karatzas, I. and Shreve, S., Methods of Mathematical Finance, Springer-Verlag, 1998.
- Kelly, J. L., "A New Interpretation of the Information Rate", Bell System Technical Journal, 1956.
- Merton, R., "Lifetime Portfolio Selection Under Uncertainty", *The Review of Economics and Statistics*, 1969.
- Poundstone, W., Fortune's Formula, Hill and Wang, 2005.
- Samorodnitsky, G. and Taggu, M., Stable Non-Gaussian Random Processes, CRC Press, 1994.
- Taleb, N., Fooled by Randomness, Texere, 2004.
- Thorp, E. O., "The Kelly Criterion in Blackjack, Sports Betting, and the Stock Market", Handbook of Asset and Liability Management, Vol I, Elsevier, 2006.