Speaker: 

Jay Newby

Institution: 

Ohio State University

Time: 

Monday, June 1, 2015 - 4:00pm to 5:00pm

Host: 

Location: 

RH306

Metastable transitions are rare events, such as bistable switching, that occur under weak noise conditions, causing dramatic shifts in the expression of a gene. Within a gene circuit, one or more genes randomly switch between regulatory states, each having a different mRNA transcription rate. The circuit is self regulating when the proteins it produces affect the rate of switching between gene regulatory states. Under weak noise conditions, the deterministic forces are much stronger than fluctuations from gene switching and protein synthesis. A general tool used to describe metastability is the quasi stationary analysis (QSA). A large deviation principle is derived so that the QSA can explicitly account for random gene switching without using an adiabatic limit or diffusion approximation, which are unreliable and inaccurate for metastable events.This allows the existing asymptotic and numerical methods that have been developed for continuous Markov processes to be used to analyze the full model.