Speaker: 

Jake Wellens

Institution: 

Caltech

Time: 

Thursday, November 6, 2014 - 2:00pm to 3:00pm

Location: 

rh 340P

 

Abstract:  A classical result of Khinchin says that for almost all real numbers α, the geometric mean of the first n digits ai(α) in the continued fraction expansion of α converges to a number K ≈ 2.6854520 . . . (Khinchin’s constant) as n → ∞. On the other hand, for almost all α, the arithmetic mean of the first n continued fraction digits ai(α) approaches infinity as n → ∞. There is a sequence of refinements of the AM-GM inequality, known as Maclaurin’s inequalities, relating the 1/kthpowers of the kth elementary symmetric means of n numbers for 1 ≤ k ≤ n. On the left end (when k = n) we have the geometric mean, and on the right end (k = 1) we have the arithmetic mean. We analyze what happens to the means of continued fraction digits of a typical real number in the limit as one moves f (n) steps away from either extreme. We also study the limiting behavior of such means for quadratic irrational α.

(Joint work with Francesco Cellarosi, Doug Hensley and Steven J. Miller)