Speaker: 

Robert Guy

Institution: 

UC Davis, Mathematics Dept.

Time: 

Monday, February 13, 2012 - 4:00pm

Location: 

RH 306

Inside every eukaryotic cell is the nucleus, organelles, and the surrounding cytoplasm, which typically accounts for 50% of the cell volume. The cytoplasm is a complex mixture of water, protein, and a dynamic polymer network. Cells use cytoplasmic streaming to transmit chemical signals, to distribute nutrients, and to generate forces involved in locomotion. In this talk we present two different models related to cytoplasmic streaming in amoeboid cells. In the first part of the talk, we present a computational model to describe the dynamics of blebbing, which occurs when the cytoskeleton detaches from the cell membrane, resulting in the pressure-driven flow of cytosol towards the area of detachment and the local expansion of the cell membrane. The model is used to explore the relative roles in bleb dynamics of cytoplasmic viscosity, permeability of the cytoskeleton, and elasticity of the membrane and cytoskeleton. In the second part of the talk we examine how flow-induced instabilities of cytoplasm are related to the structural organization of the giant amoeboid cell Physarum polycephalum. We use a multiphase flow model that treats both the cytosol and cytoskeleton as fluids each with its own material properties and internal forces, and we discuss instabilities of the sol/gel mixture that produce flow channels within the gel. We analyze a reduced model and offer a new and general explanation for how fluid flow is involved in cytoskeletal reorganization.