Speaker: 

Maciej Zworski

Institution: 

UC Berkeley

Time: 

Thursday, February 18, 2010 - 4:00pm

Location: 

RH 306

Quantum resonances describe metastable states created by phenomena such as tunnelling, radiation, or trapping of classical orbits. Mathematically they are elegantly defined as poles of meromorphically continued operators such as the resolvent or the scattering matrix: the real part of the pole gives the rest energy or frequency, and the imaginary part, the rate of decay. With that interpretation they appear in expansions of linear and non-linear waves. And they can be found in other branches of mathematics and science: as poles of Eisenstein series and zeta functions in geometric analysis, scattering poles in acoustical and electromagnetic scattering, Ruelle resonances in dynamical systems, and quasinormal modes in the theory of black holes. In my talk I will present some basic concepts and illustrate recent mathematical advances with numerical and experimental examples.