Space of Ricci flows

Speaker: 

Professor Xiuxiong Chen

Institution: 

Wisconsin

Time: 

Thursday, February 26, 2009 - 4:00pm

Location: 

RH 306

Inspired by the canonical neighborhood theorem of G. Perelman in 3 dimensional, we study the weak compactness of sequence of ricci flow with scalar curvature bound, Kappa non-collapsing and integral curvature bound.

All of these constraints are natural in the Kahler ricci flow in Fano surface and as an application, we give a ricci flow based proof to the Calabi conjecture in Fano surface.

Self assembly and sphere packings

Speaker: 

Michael Brenner

Institution: 

Harvard University

Time: 

Thursday, October 22, 2009 - 4:00pm

Location: 

RH 306

Self assembly is the idea of creating a system whose component parts spontaneously assemble into a structure of interest. In this talk I will outline our research program aimed at creating self-assembled structures out of very small spheres, that bind to each other on sticking. The talk will focus on

(i) some fundamental mathematical questions in finite sphere packings (e.g. how do the number of rigid packings grow with N, the number of spheres);

(ii) algorithms for self assembly (e.g. suppose the spheres are not identical, so that every sphere does not stick to every other; how to design the system to promote particular structures);

(iii) physical questions (e.g. what is the probability that a given packing with N particles forms for a system of colloidal nanospheres); and

(iv) comparisons with experiments on colloidal nanospheres.

Homology of invariant foliations and its applications to dynamics

Speaker: 

Professor Zhihong Jeff Xia

Institution: 

Northwestern University

Time: 

Thursday, April 30, 2009 - 4:00pm

Location: 

RH 306

We define a new topological invariant for foliations of a compact manifold. This invariant is used to prove several interesting results in dynamical systems.
This talk will be accessible to all graduate students in mathematics.

Many-body wave scattering by small bodies and creating materials with a desired refraction coefficient

Speaker: 

Alexander Ramm

Institution: 

Kansas State University

Time: 

Thursday, February 5, 2009 - 4:00pm

Location: 

RH 306

Many-body scattering problem is solved asymptotically when the size of the particles tends to zero and the number of the particles tends to infinity.
A method is given for calculation of the number of small particles and their boundary impedances such that embedding of these particles in a bounded domain, filled with known material, results in creating a new material with a desired refraction coefficient.
iThe new material may be created so that it has negative refraction, that is, the group velocity in this material is directed opposite to the phase velocity.
Another possible application consists of creating the new material with some desired wave-focusing properties. For example, one can create a new material which scatters plane wave mostly in a fixed given solid angle. In this application it is assumed that the incident plane wave has a fixed frequency and a fixed incident direction.
An inverse scattering problem with scattering data given at a fixed wave number and at a fixed incident direction is formulated and solved. Acoustic and electromagnetic (EM) wave scattering problems are discussed.

A.G.Ramm's vita, list of publications and some papers can be printed from the Internet address http://www.math.ksu.edu/~ramm

Can you hear the degree of a map from the circle into itself? An intriguing story which is not yet finished

Speaker: 

Haim Brezis

Institution: 

Rutgers and Technion

Time: 

Thursday, January 22, 2009 - 4:00pm

Location: 

RH 306

A few years ago -- following a suggestion by I. M. Gelfand-- I discovered an intriguing connection between the topological degree of a map from the circle into itself and its Fourier coefficients. This relation is easily
justified when the map is smooth. However, the situation turns out to be much more delicate if one assumes only continuity, or even Holder continuity.
I will present recent developments and open problems.
I will also discuss new estimates for the degree of maps from S^n into S^n, leading to unusual characterizations of Sobolev spaces.
The initial motivation for this direction of research came from the analysis of the Ginzburg-Landau model.

Can we predict turbulence and do wavelets help?

Speaker: 

Marie Farge

Institution: 

Ecole Normale Superieure Paris

Time: 

Thursday, December 4, 2008 - 4:00pm

Location: 

RH 306

Turbulence is a state of flows which is characterized by a combination of chaotic and random behaviours affecting a very large range of scales. It is governed by Navier-Stokes equations and corresponds to their solutions in the limit where the fluid viscosity becomes negligible, the nonlinearity dominant and the turbulent dissipation constant. In this regime one observes that fluctuations tend to self-organize into coherent structures which seem to have their own dynamics.

A prominent tool for multiscale decomposition are wavelets. A wavelet is a well localized oscillating smooth function, e.g. a wave packet, which is translated and dilated. The wavelet transform decomposes a flow field into scale-space contributions from which it can be reconstructed.

We will show how the wavelet transform can decompose turbulent flows into coherent and incoherent contributions presenting different statistical and dynamical properties. We will then propose a new way to analyze and predict the evolution of turbulent flows.

_______________________________________________________________________________

The presentation will use different results obtained in collaboration with:

Kai Schneider (Universite de Provence, Marseille, France),
Naoya Okamoto, Katsunori Yoshimatsu and Yukio Kaneda (Nagoya University, Japan)

Related publications can be downloaded from the web page
http://wavelets.ens.fr

Decay of waves on black hole backgrounds

Speaker: 

Professor Daniel Tataru

Institution: 

University of California Berkeley

Time: 

Thursday, November 13, 2008 - 4:00pm

Location: 

RH 306

The Schwarzchild, respectively the Kerr space-times are solutions for the vacuum Einstein equation which model a spherically symmetric, respectively a rotating black hole. In this talk I will discuss the decay properties of solutions to the linear wave equation on
such backgrounds.

Pages

Subscribe to RSS - Colloquium