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Abstract. This paper gives a survey of some ways to improve the ef-
ficiency of discrete log-based cryptography by using the restriction of
scalars and the geometry and arithmetic of algebraic tori and abelian
varieties.

1 Introduction

This paper is a survey, intended to be readable by both mathematicians and
cryptographers, of some of the results in [24–26], along with a new result in §3.6.
It can be viewed as a sequel to the Brouwer-Pellikaan-Verheul paper “Doing
more with fewer bits” [8].

The overall objective is to provide greater efficiency for the same security.
The idea is to shorten transmissions by a factor of n

ϕ(n) , by going from a finite
field Fq up to the larger field Fqn , and using “primitive subgroups”. Here, ϕ(n)
is the Euler ϕ-function. Note that n/ϕ(n) goes to infinity (very slowly), as n
goes to infinity.

The first goal is to obtain the same security as the classical Diffie-Hellman
and ElGamal cryptosystems, while sending shorter transmissions. More precisely,
the goal is to do discrete log-based cryptography, relying on the security of F×qn ,
while transmitting only ϕ(n) elements of Fq, instead of n elements of Fq (i.e.,
one element of Fqn). We use algebraic tori. The next goal is to improve pairing-
based cryptosystems. Here, we use elliptic curves E and primitive subgroups of
E(Fqn).

As pointed out by Dan Bernstein, the techniques discussed here can be viewed
as “compression” techniques, adding more flexibility for the user, who might
? Rubin was partially supported by NSF grant DMS-0140378.
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choose to send compressed information when the network is the bottleneck and
uncompressed information when computational power is the bottleneck.

In §2 we discuss some background and past results on compressing the trans-
missions in discrete log-based cryptography for the multiplicative group. In §3
we give an exposition of torus-based cryptography; we give a new implementa-
tion of CEILIDH in §3.6. In §4 we show how to compress the transmissions in
pairing-based cryptosystems. In §5 we discuss some of the underlying mathe-
matics, including an elementary introduction to the Weil restriction of scalars;
we define “primitive subgroup” in §5.5. In §6 we discuss the mathematics un-
derlying torus-based cryptography, and interpret some earlier systems in terms
of quotients of algebraic tori.

For technical details, see the original papers. See also [11] (especially §3.2)
for the use of primitive subgroups in cryptography.

Acknowledgments: The authors thank Dan Bernstein, Steven Galbraith, and
Paul Leyland for helpful comments on a draft of the paper.

2 Some background

We first recall the classical Diffie-Hellman key agreement scheme [10, 21].

2.1 Classical Diffie-Hellman

In classical Diffie-Hellman key agreement, a large finite field Fq is public (q ≈
21024), as is an element g ∈ F×q of large (public) multiplicative order ` (> 2160).
Alice chooses a private integer a, random in the interval between 1 and ` − 1,
and Bob similarly chooses a private integer b.

– Alice sends ga to Bob.
– Bob sends gb to Alice.
– They share gab = (ga)b = (gb)a.

Tautologically, the security is based on the difficulty of the Diffie-Hellman
Problem in F×q .

Note that when this is performed using Fqn in place of Fq, then the transmis-
sions are elements of Fqn (i.e., n elements of Fq). If one can do Diffie-Hellman
transmitting only ϕ(n) elements of Fq while relying on security coming from
F×qn , then one would like to have n log(q) large for high security, and ϕ(n) log(q)
small for high bandwidth efficiency. In particular, for maximal efficiency per
unit of security (i.e., to achieve a system that is n

ϕ(n) times as efficient as Diffie-
Hellman), one would like n

ϕ(n) to be as large as possible. Thus, the most useful
n’s to consider are those in the sequence

1, 2, 2 · 3 = 6, 2 · 3 · 5 = 30, 2 · 3 · 5 · 7 = 210, . . .

(whose i-th entry is the product of the first i− 1 primes). We will discuss some
ways to do this, below.
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2.2 A brief tour of some history

As noted in [17, 8], one can achieve greater efficiency per unit of security by
choosing g in the subgroup of F×qn of order Φn(q), where Φn(x) is the n-th
cyclotomic polynomial. (The polynomial Φn(x) has integer coefficients, and its
(complex) roots are the primitive n-th roots of unity.)

Diffie-Hellman key agreement is based on the full multiplicative group F×q ,
which is a group of order q − 1 = Φ1(q).

In [22, 31, 32, 28, 29, 25], analogues of the classical Diffie-Hellman key agree-
ment scheme are introduced that rely on the security of F×p2 while transmitting
only one element of Fp. One now takes the element g to lie in the subgroup of
F×p2 of order p + 1 (= Φ2(p)). Since n = 2, we have n/ϕ(n) = 2, and achieve
twice the efficiency of Diffie-Hellman for comparable security. The papers [22,
31, 32, 28, 29] use Lucas sequences [20], to give what are known as Lucas-based
cryptosystems. See [4] for a critique of [28, 29]. In [25] (see §3.4 below) we in-
troduced the T2-cryptosystem, which is a torus-based system. It is related to
the Lucas-based cryptosystems (see §6.5 below), and has some advantages over
them.

The Gong-Harn system [13] uses linear feedback shift register sequences. In
this case n = 3, so n/ϕ(n) = 1.5. This cryptosystem relies on the security of F×p3

while transmitting only two elements of Fp, using the subgroup of F×p3 of order
p2 + p+ 1 (= Φ3(p)).

The case where n = 6 (so n/ϕ(n) = 3) is considered in [8], [19] (the XTR
system), and [25] (the CEILIDH system). These systems give three times the
efficiency of Diffie-Hellman, for the same security. They rely on the security of
F×p6 while transmitting only two elements of Fp, using the subgroup of F×p6 of
order p2 − p+ 1 (= Φ6(p)).

Arjen Lenstra [18] has asked whether one can use n = 30 to do better than
XTR. Note that ϕ(30) = 8 and

Φ30(x) = x8 + x7 − x5 − x4 − x3 + x+ 1.

Building on a conjecture in [8], conjectures for arbitrary n were given in [6].
Those conjectures were disproved in [6, 25, 26], and it was proposed in [25, 26]
that a conjecture of Voskresenskii should replace those conjectures.

2.3 Classical ElGamal encryption

As before, the public information is a large finite field Fq and an element g ∈ F×q
of order `, along with q and `.
Alice’s private key: an integer a, random in the interval [1, `− 1]
Alice’s public key: PA = ga ∈ Fq

– Bob represents the messageM in 〈g〉 and chooses a random integer r between
1 and `−1. Bob send Alice the ciphertext (c, d) where c = gr and d = M ·P r

A.
– To decrypt a ciphertext (c, d), Alice computes

d · c−a = M · (ga)r · (gr)−a = M.



4 K. Rubin and A. Silverberg

2.4 Classical ElGamal signatures

With public information as before, also fix a public cryptographic hash function
H : {0, 1}∗ → Z/`Z (i.e., H takes bit strings to integers modulo `, is easy to
compute and hard to invert, and its images look “random”).
Alice’s private key: an integer a, random in the interval [1, `− 1]
Alice’s public key: PA = ga ∈ Fq

– To sign a message M ∈ {0, 1}∗, Alice chooses a random integer r between 1
and ` − 1 with gcd(r, `) = 1. Alice’s signature on M is (c, d) where c = gr

and d = r−1(H(M)− aH(gr)) (mod `).
– Bob accepts Alice’s signature if and only if

gH(M) = P
H(c)
A · cd

in the field Fq.

Remark 1 Note that Diffie-Hellman key agreement only requires exponentia-
tions (i.e., computing powers of elements in the group generated by g), while the
ElGamal encryption and signature schemes require multiplications in the finite
field (i.e., M · P r

A, c−a · d, and PH(c)
A · cd).

2.5 Using XTR to illustrate the idea

We give an illustration, in the case n = 6, of the idea behind [8, 13, 19] and the
Lucas-based cryptosystems.

XTR is short for ECSTR, which stands for Efficient Compact Subgroup Trace
Representation.

The trace is the trace map from Fp6 to Fp2 , which is defined by

Tr(h) = h+ hp2
+ hp4

= h+ σ(h) + σ2(h),

where σ generates the Galois group Gal(Fp6/Fp2). (Note that hp6
= h.)

The subgroup is the subgroup of F×p6 of order p2 − p + 1 = Φ6(p). Choose a
generator g of this subgroup.

– Alice sends Tr(ga) to Bob.
– Bob sends Tr(gb) to Alice.
– They share Tr(gab).

Since the transmissions are elements of Fp2 , Alice and Bob are sending 2
(= ϕ(6)) elements of Fp, rather than 6 elements of Fp (i.e., one element of Fp6 ,
as would be the case in classical Diffie-Hellman over the field Fp6). The point
is that the trace gives an efficient compact representation of elements in the
subgroup 〈g〉.

We claim that Alice and Bob now share Tr(gab) ∈ Fp2 . This is proved in [19],
where an efficient way to compute Tr(gab) is given. Let’s convince ourselves that
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Alice and Bob really do have enough information to compute Tr(gab). Suppose
that h is an element of the subgroup of F×p6 of order p2 − p+ 1. Let

Ch = {h, σ(h), σ2(h)}.

The three elementary symmetric polynomials of the set Ch are:

Π1(Ch) = h+ σ(h) + σ2(h) = Tr(h),

Π2(Ch) = h · σ(h) + h · σ2(h) + σ(h) · σ2(h) = Tr(h · σ(h)),

Π3(Ch) = h · σ(h) · σ2(h) = N(h),

where N : Fp6 → Fp2 is the norm map. It turns out that if h is in the subgroup
of order p2 − p+ 1, then Π2(Ch) = Tr(h)p and Π3(Ch) = 1.

Thus, knowing Tr(h) is equivalent to knowing the values of all the elemen-
tary symmetric polynomials of Ch, which is equivalent to knowing the set Ch.
However, if you know Ch and you know a, then you know Cha , just by taking
every element of Ch to the power a. But we have already noted that knowing
Cha is equivalent to knowing Tr(ha).

To sum up, if h is in the subgroup of F×p6 of order p2 − p + 1, then a and
Tr(h) together determine Tr(ha). Since Alice knows Tr(gb) and a, she has enough
information to compute Tr((gb)a), and similarly Bob can compute Tr((ga)b).

Note that knowing Ch is equivalent to knowing the characteristic polynomial
of h over Fp2 , since that characteristic polynomial is∏

c∈Ch

(X − c) = X3 −Π1(Ch)X2 +Π2(Ch)X −Π3(Ch).

Remark 2 In XTR [19], the Gong-Harn system [13], and the Lucas-based cryp-
tosystems, Alice can compute f(gab) from f(gb) and a, for a suitable function
f (usually a trace). In other words, these cryptosystems can exponentiate, as
is needed for doing (analogues of) Diffie-Hellman. However, they cannot multi-
ply in a straightforward way. If you know Tr(g) and Tr(h), that does not give
you enough information to compute Tr(gh), since Cg and Ch do not determine
the set Cgh (knowing only Cg and Ch, you do not have enough information to
distinguish Cgh from Cg·σ(h), for example). These are examples of “lossy” com-
pression. If one orders the conjugates of h and transmits a couple of extra bits
to specify which conjugate h is, then one can reconstruct h from Tr(h), and
perform multiplications in Fp6 .

3 Torus-Based Cryptography

The goal is to find a computable function f satisfying the following properties:

– the number of bits needed to represent f(h) is less than the number of bits
needed to represent h (ideally, f(h) is ϕ(n)

n as long as h),
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– f(h) and a determine f(ha) and ha,
– f(g) and f(h) determine f(gh) and gh,
– f is defined on almost all elements of the subgroup of F×qn of order Φn(q).

Note that these conditions imply that f has a computable inverse function.
From now on, fix a square-free integer n and a prime power q. (Square-free

means that the only square that divides n is 1.)

Definition 3 Let Tn denote the subgroup of F×qn of order Φn(q).

Example 4 (i) Diffie-Hellman is based on the group T1 = F×q .
(ii) If q is not a power of 2, one can write Fq2 = Fq(

√
d). Then

T2 = {a+ b
√
d : a, b ∈ Fq and (a+ b

√
d)q+1 = 1}

= {a+ b
√
d : a, b ∈ Fq and a2 − db2 = 1} ⊂ F×q2 ,

since (a+ b
√
d)q = a− b

√
d.

Choose a prime power q of about 1024/n bits, such that Φn(q) is divisible
by a large prime. Choose g ∈ Tn whose order ` is divisible by that large prime.
Suppose for now that one has efficiently computable maps

Fϕ(n)
q

j

))f b _ \ X U
Tn

f

jj ifb_\X
(1)

that are inverses of each other. The dotted arrows signify that these maps need
not be defined everywhere; they might be undefined at a “small” number of
elements. In §3.4, §3.6, §6.3, and [25] we discuss the maps f and j, and give
explicit examples. The following protocols are generalized Diffie-Hellman and
ElGamal [21], using the subgroup Tn of F×qn . In §3.7 below we discuss how to
represent the message in 〈g〉. Note that the maps f and j allow one to compress
transmissions not only for Diffie-Hellman and ElGamal, but also for any discrete
log-based system that can use a general group.

3.1 Torus-based Diffie-Hellman key agreement

Alice chooses an integer a randomly in the interval [1, ` − 1]. Similarly, Bob
chooses a random integer b from the same range.

– Alice sends PA = f(ga) ∈ Fϕ(n)
q to Bob.

– Bob sends PB = f(gb) ∈ Fϕ(n)
q to Alice.

– They share (j(PB))a = gab = (j(PA))b, and also f(gab).
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3.2 Torus-based ElGamal encryption

Alice’s private key: an integer a, random in the interval [1, `− 1]
Alice’s public key: PA = f(ga) ∈ Fϕ(n)

q

– Bob represents the message M in 〈g〉 and picks a random r between 1 and
`− 1. The ciphertext is (c, d) where c = f(gr) and d = f(M · j(PA)r).

– To decrypt a ciphertext (c, d), Alice computes M = j(d) · j(c)−a.

3.3 Torus-based ElGamal signatures

Fix a cryptographic hash function H : {0, 1}∗ → Z/`Z.
Alice’s private key: an integer a, random in the interval [1, `− 1]
Alice’s public key: PA = f(ga) ∈ Fϕ(n)

q

– To sign a message M ∈ {0, 1}∗, Alice chooses a random integer r between
1 and ` − 1 with gcd(r, `) = 1. Alice’s signature on M is (c, d) where c =
f(gr) ∈ Fϕ(n)

q and d = r−1(H(M)− aH(c)) (mod `).
– Bob accepts Alice’s signature if and only if

gH(M) = j(PA)H(c) · j(c)d.

The signature length is ϕ(n) log2(q) + log2(`) bits, as opposed to n log2(q) +
log2(`) bits in the classical ElGamal signature scheme over Fqn .

3.4 The T2-cryptosystem

Here, n = 2. Choose a prime power q that has about 512 bits, and such that q+1
2

is a prime. One can write Fq2 = Fq(
√
d) for some non-square d ∈ F×q . Define

j : Fq → T2 by j(a) =
a+

√
d

a−
√
d
.

Define an inverse map (defined on T2 − {1,−1}):

f : T2
//___ Fq by f(a+ b

√
d) =

1 + a

b
.

It is easy to check that if a, b ∈ Fq and a 6= −b, then

j(a)j(b) = j
(ab+ d

a+ b

)
.

In the T2-cryptosystem, one does Diffie-Hellman key agreement and ElGamal en-
cryption and signatures, using the group law on the group T2, while representing
the elements in Fq. Here, it is not necessary to go back and forth between Fq

and T2, since the previous equation translates T2’s multiplication to Fq, i.e.,
multiplication in T2 translates into the following operation on Fq:

(a, b) 7→ ab+ d

a+ b
,

giving a way to compose elements of Fq without having to pass to T2 each time.
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3.5 The CEILIDH public key system

The acronym CEILIDH (pronounced “cayley”) stands for Compact, Efficient,
Improves on LUC, Improves on Diffie-Hellman. The CEILIDH key agreement
(resp., encryption, resp., signature) scheme is torus-based Diffie-Hellman (resp.,
ElGamal encryption, resp., ElGamal signatures) in the case n = 6.

Examples 11 and 12 of [25] give explicit examples of maps f and j (called ρ
and ψ there) when n = 6. We give a new example in §3.6 (and use it in §3.7).

3.6 An explicit example of maps f and j

Take an odd prime power q congruent to 2, 6, 7, or 11 (mod 13) and such that
Φ6(q) is prime. Then Fq(ζ13) ∼= Fq12 , where ζ13 is a primitive 13-th root of unity,
and Fq(z) ∼= Fq6 , where z = ζ13 + ζ−1

13 . Let

y = ζ13 + ζ−1
13 + ζ5

13 + ζ−5
13 ∈ Fq3 .

For u, v ∈ Fq, define

j(u, v) =
r − s

√
13

r + s
√

13
∈ T6

where

r = (3(u2 + v2) + 7uv + 34u+ 18v + 40)y2 + 26uy

− (21u(3 + v) + 9(u2 + v2) + 28v + 42),

s = 3(u2 + v2) + 7uv + 21u+ 18v + 14.

For t ∈ T6, define

f(t) =
( u

w + 1
,
v − 3
w + 1

)
∈ F2

q,

with

t = a+ b
√

13 and
1 + a

b
= wy2 + u(y +

y2

2
) + v

where t is written with respect to the basis {1,
√

13} for Fq6/Fq3 , with a, b ∈
Fq3 = Fq(y), and 1+a

b is written with respect to the basis {y2, y + y2

2 , 1} for
Fq3/Fq , with u, v, w ∈ Fq.

Then f and j are inverses. The map j : F2
q → T6 is defined on all of F2

q. The

map f : T6
//___ F2

q is defined except at 1 and −2z5 + 6z3 − 4z − 1 ∈ T6.

3.7 Representing elements of Fϕ(n)
q in 〈g〉

For torus-based ElGamal encryption, how does one represent a message as an
element of 〈g〉? First, represent the message as an element M in Fϕ(n)

q .
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If g is taken to be a generator of Tn, then taking j(M) represents the message
in 〈g〉 (where j is as in (1)). Note that g is a generator of Tn whenever Φn(q) is
prime.

If g is taken to be in an index s subgroup of Tn for some small integer s, then
by adding a few bits of redundancy to M , after at most a few tries one obtains
an M such that j(M) is in 〈g〉. If g has order `, one can test whether j(M) is in
〈g〉 by checking whether j(M)` = 1.

How does one represent the message in 〈g〉 when n = 6?
Take a prime r and an odd prime power q such that the order of q (mod r)

is divisible by 6 but is not 6 itself, and such that Φ6(q) is prime. (One expects,
but cannot prove, that there are infinitely many such q; it is not hard to find
some in a suitable range for cryptography, e.g., such that q has about 170 bits, to
get 1024-bit security.) These conditions ensure that Fq(ζr) contains Fq6 , where
ζr is a primitive r-th root of unity. (Note that if the order of q (mod r) is 6,
then Φ6(q) is divisible by 6, so is not prime. Note also that the condition that
the order of q (mod r) is divisible by 6 implies that r ≡ 1 (mod 6).) In the case
r = 13, one can use the example given in §3.6. Here, one represents the message
in F2

q, and uses the map j to put it in the prime order group T6 = 〈g〉.
In Example 11 of [25], we have q ≡ 2 or 5 (mod 9). Here, Φ6(q) is divisible

by 3. One can choose the prime power q so that Φ6(q)/3 is prime. If one takes g
to have order Φ6(q), then j(M) is in 〈g〉 = T6.

Similarly for Example 12 of [25], we have q ≡ 3 or 5 (mod 7). Now Φ6(q) is
divisible by 7. One can choose q so that Φ6(q)/7 is prime. If g is taken to have
order Φ6(q), then j(M) ∈ 〈g〉 = T6.

The following sample parameters are all the primes q between 2170−105 and
2170 + 105 such that q2 − q + 1 is prime and q has order 12 modulo 13:

1496577676626844588240573268701473812127674923933621,
1496577676626844588240573268701473812127674923946773,
1496577676626844588240573268701473812127674923949251,
1496577676626844588240573268701473812127674924018047,
1496577676626844588240573268701473812127674924027533.

3.8 Comparison between CEILIDH and XTR

The security of CEILIDH is exactly the same as that of XTR, with the same
security proof; they both rely on the security of the “hardest” subgroup of F×q6

(see §3.11). Parameter selection for CEILIDH is exactly the same as for XTR.
The advantage of the T2-cryptosystem and CEILIDH over LUC and XTR is

that T2 and CEILIDH make full use of the multiplication in the group Tn (for
n = 2 and 6). This is especially useful for signature schemes. XTR is efficient for
key agreement and hybrid encryption (i.e., using a Diffie-Hellman-like protocol
to exchange a secret key, and using symmetric key encryption, not public key
encryption). CEILIDH can do efficient key agreement, public key (i.e., non-
hybrid) encryption, and signatures.
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XTR has computational efficiency advantages over CEILIDH (key agreement
can be performed with fewer operations).

3.9 Conjectural Tn-cryptosystems

Whenever f and j exist as in (1), one has a “Tn-cryptosystem”, or Tn com-
pression technique. As in §3.1–§3.3, use f to compactly represent transmissions
in Fϕ(n)

q , and use j to send elements of Fϕ(n)
q to the group Tn, where group

operations can be performed.

3.10 Parameter selection when n = 30

For torus-based ElGamal signatures, finding good parameters when n = 30
amounts to finding prime powers q of about 1024/30 ≈ 35 bits such that Φ30(q)
has a prime factor ` of about 160 bits. Here is a method for doing this:

– choose a 20–30 bit prime p ≡ 1 (mod 30),
– find the x1, . . . , x8 with 1 < xi < p whose orders modulo p are 30,
– find 35-bit primes q congruent to some xi (mod p),
– factor out small (< 90–100 bits) prime divisors from the integer Φ30(q)/p,
– see if what is left is a prime of about 160-bits.

Paul Leyland suggested doing the factorization step by using the Elliptic
Curve Method optimized for 90 – 100 bit factors. Using this, he can obtain a
few examples per hour on a laptop.

Note that the parameters are like Diffie-Hellman parameters — they do not
need to be changed often, and the same q and g can be used for all users.

The table below gives some pairs of primes q and ` where q has 35 bits, ` has
160 or 161 bits, and ` divides Φ30(q). One expects there to be about

717267168(ln(161)− ln(160)) ≈ 4.47× 106

35-bit primes q such that Φ30(q) has a 160-bit prime divisor (717267168 is the
number of 35-bit primes).

q `
18849585563 2721829278598645763229135555203875381215025850251
18859507111 1145377552213689334808880803247608425700596690441
18918018433 2191067457957167273280468413326196522745324110911
18937704077 2622917550423816956639040650402145314798081975731
19020912667 2009907944188511109843286107856362388569736938661
19096959863 2670351518767065322212846696686298421468094820481
19123281371 1089731979081189465083403285791765213322453796291
19200181867 1382108007746224782292716444254570494753142184301
19241156549 1292631930593942028414888386684571922308680383411
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3.11 Security

The security of all the systems discussed thus far is the discrete log security of
the “hardest” subgroup of F×qn , in the following sense. The group F×qn is “almost
the same” as the direct product∏

d|n
Td = Tn ×

∏
d|n
d6=n

Td

(there are homomorphisms between them for which the prime divisors of the
orders of the kernel and cokernel all divide n); see pp. 60–61 of [30].

We have Td ⊂ F×
qd for all d, so for d < n the elements of these subgroups

lie in a strictly smaller field than Fqn . Therefore, these groups Td are weaker
for cryptographic purposes — they are vulnerable to attacks on the discrete
logarithm problem in F×

qd , where now d < n.
Almost none of the elements of Tn lie in a smaller field than Fqn (see Lemma 1

of [6]). Therefore, Tn can be viewed as the cryptographically strongest subgroup
of F×qn .

4 Improving Pairing-Based Cryptography

Inspired by and building on a paper of Galbraith [12], in [24] we use the the-
ory of supersingular abelian varieties to improve the efficiency of pairing-based
cryptosystems.

Pairing-based cryptography was conceived of independently by Joux [14]
and by Sakai, Ohgishi, and Kasahara [27]. There are numerous applications of
pairing-based cryptography, including tripartite Diffie-Hellman, identity-based
encryption, and short signatures. See [1] for numerous references and informa-
tion.

The Boneh-Lynn-Shacham (BLS) short signature scheme [5] uses pairings
associated with elliptic curves. The question of whether one can use abelian va-
rieties (which are higher dimensional generalizations of elliptic curves) to obtain
shorter signatures was stated as an open problem in [5], and answered in the
affirmative in [24]. While we arrived at our method (see §4.2 below) for com-
pressing BLS signatures by studying the arithmetic of abelian varieties, in fact
our final algorithm can be performed entirely using elliptic curve arithmetic,
without going to higher dimensional abelian varieties.

The Rubin-Silverberg (RS) modification of the BLS signature scheme mul-
tiplies the security of BLS signatures by n while multiplying the signature size
by ϕ(n). Implementations when n = 3 and n = 5 are given in [24]. We give an
example when n = 5 in §4.2 below.

Our methods can be used to improve the bandwidth efficiency of any pairing-
based cryptosystem, not just the BLS signature scheme.
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4.1 BLS short signature scheme

We give an example of the Boneh-Lynn-Shacham signature scheme, with fixed
parameters.

Let q = 397. Consider the elliptic curve E+ : y2 = x3 − x + 1 over Fq, and
take P ∈ E+(Fq) of (prime) order

` = 2726865189058261010774960798134976187171462721.

Note that #E+(Fq) = 7`.
Use a pairing

e : 〈P 〉 × 〈P 〉 → F×q6

that satisfies
e(aP, bP ) = e(P, P )ab for every a, b ∈ Z,

e(P, P ) 6= 1.

One can use a modified Weil or Tate pairing [15].
The public information is q, E+, P , `, e, and a cryptographic hash function

H : {0, 1}∗ → 〈P 〉.

Alice’s private key: an integer a, random in the interval [1, `]
Alice’s public key: PA = aP

– To sign a message M ∈ {0, 1}∗, Alice computes PM = H(M) and aPM =
(s, t) ∈ 〈P 〉.

– Alice’s signature is s ∈ Fq (and 1 bit to recover the sign of t).
– To verify the signature, Bob computes

t = ±
√
s3 − s+ 1 ∈ Fq,

lets
P ′ = (s, t) ( = aPM ),

and checks that
e(P, P ′) = e(PA, PM ).

4.2 RS compression of BLS signatures

We give an example with fixed parameters, with n = 5. Let q′ = 319 and let
q = (q′)5 = 395. Consider the elliptic curve E− : y2 = x3 − x − 1, and take
P ∈ E−(Fq) of (prime) order

` = 6733238586040336762338876960599521.

Note that
#E−(Fq) = 271 · 1162320517 · `,

#E−(F35) = 271, #E−(Fq′) = 1162320517.
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Take a pairing e and a hash function H as before. Let σ be a generator of
Gal(Fq/Fq′). For Q ∈ E−(Fq),

TrFq/Fq′
(Q) = Q+ σ(Q) + σ2(Q) + σ3(Q) + σ4(Q).

Let
A0 = {Q ∈ E−(Fq) : TrFq/Fq′

(Q) = OE−},

the “trace-0 subgroup” of E−(Fq). Then A0 has order 271 · `. Since P has order
`, we have P ∈ A0.
Alice’s private key: an integer a, random in the interval [1, `]
Alice’s public key: PA = aP

– To sign M , as before, Alice computes PM = H(M) and aPM = (s, t).
– Letting (s0, s1, s2, s3, s4) be the coordinates of s with respect to a basis for

Fq over Fq′ , Alice’s signature is (s1, s2, s3, s4) (and 6 bits to recover s0 and
t).

– To verify the signature, Bob first uses that TrFq/Fq′
(P ) = OE− to reconstruct

s0 (see below).
– Bob then, as before, computes

t = ±
√
s3 − s− 1 ∈ Fq,

lets
P ′ = (s, t) ( = aPM ),

and checks that
e(P, P ′) = e(PA, PM ).

The process of reconstructing s0 and t from s1, s2, s3, s4 is as follows. The
input is (s1, s2, s3, s4) ∈ F4

q′ and the output will be s0, t ∈ Fq′ . Viewing Fq as
Fq′(z) with z5 − z + 1 = 0, let c = S +

∑4
i=1 siz

i and define a0, · · · , a4 ∈ Fq′ [S]
by

4∏
i=0

(Y − σi(c)) = Y 5 + a4Y
4 + a3Y

3 + a2Y
2 + a1Y + a0.

The trace-0 condition can (eventually) be reduced to finding simultaneous solu-
tions of p1 = 0 and p2 = 0, where p1 and p2 are as follows:

p1 = X8−a4X
7+(1+a2

4−a3)X6+(a4−a3
4−a2)X5+(a4−a2

4+a
4
4−a3−a4a2)X4

+ (1− a4 + a2
4 − a5

4 − a3 + a3
4a3 + a2 − a3a2 + a0)X3

+ (−1 + a2
4 − a3

4 + a4
4 + a6

4 + a3 + a4a3 − a2
3 − a3

3 − a2 − a3
4a2 + a4a3a2 + a2

2)X
2

+ (−1− a2
4 − a3

4 − a4
4 − a5

4 − a7
4 + a3 + a4a3 − a2

4a3 − a3
4a3 − a2

3

− a4a
2
3 + a4a

3
3 − a2 − a2

4a2 − a4
4a2 + a3a2 − a2

4a3a2 − a2
3a2)X

+ 1− a2
4 − a6

4 + a8
4 + a3 − a6

4a3 + a3
3 − a2

4a
3
3 + a4

3,
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p2 = X6 −X4 + (−1− a4 − a3
4 + a2)X3 + (−1 + a2

4 − a3 − a4a2 + a1)X2

+ (−1− a4 + a2
4 + a3

4 − a3 − a4a3 − a2 + a2
4a2 − a3a2)X − 1 + a6

4 − a3
3.

Taking the resultant of p1 and p2 eliminates the variable X, and gives a degree
27 polynomial h ∈ Fq′ [S] that has s0 as a root. The extra 6 bits allow one to
decide which root of h to take for s0, and to determine t. The polynomial h(S)
is of the form h1(S3 − S) for a certain degree 9 polynomial h1(S) ∈ Fq′ [S], and
this simplifies finding the roots of h. See §5.1 of [24] for an explanation of this
reconstruction step.

RS compression was arrived at by studying the Weil restriction of scalars
of elliptic curves (which are abelian varieties), and understanding the theory of
abelian varieties. In §5.7 we discuss some of the underlying mathematics.

Remark 5 In elliptic curve point compression and in BLS, an elliptic curve
point (x, y) is compressed to its x-coordinate, giving lossy compression. One
can transmit an extra bit that determines the y-coordinate, in order to fully
reconstruct the point. The signature (s1, s2, s3, s4) above is similarly an example
of lossy compression; the extra 6 bits and the reconstruction step allow one to
fully recover the elliptic curve point (s, t).

4.3 Comparison

RS compression (§4.2) produces signatures that are roughly 4
5 as large as BLS

signatures with comparable security. In both cases, the security is based on the
difficulty of the Elliptic Curve Diffie-Hellman Problem in 〈P 〉. RS signing is
no more work than for BLS. Compared with BLS, RS verification requires an
additional reconstruction step to recover s0. For applications in which the verifier
is powerful, this is not a significant problem.

Note that RS compression (like BLS) only uses elliptic curve arithmetic, and
does not use any abelian variety arithmetic.

Bernstein and Bleichenbacher have compressed RSA and Rabin signatures
([2, 3]). In Table 1 below, BCR stands for Bleichenbacher’s Compressed Rabin
signatures, DSA is the Digital Signature Algorithm, and ECDSA is the Ellip-
tic Curve Digital Signature Algorithm. In the middle column of Table 1, the
signatures are all scaled to 1024-bit RSA security. In the remaining columns
the signatures are scaled to the MOV security of the RS scheme. The MOV
security refers to attacks on the discrete log problem in F×q6 . The DL security
refers to generic attacks on the group 〈P 〉; the relevant value for DL security is
log2(`)-bits, where ` is the order of P . (See [5, 24].)

There is an RS scheme similar to the one in §4.2 (see §5.2 of [24]) that uses
elliptic curves over binary fields F2w . Working over binary fields might yield some
efficiency advantages. However, due to Coppersmith’s attack on the discrete log
problem in low characteristic [9], larger parameters should be used.

To achieve the flexibility of higher characteristic, in §6 of [24] we suggest
the use of (Jacobian varieties of) certain twists of Fermat curves. In a recent
preprint giving an expanded version of [5], Boneh, Lynn, and Shacham suggest
using MNT elliptic curves.
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system

RSA 904 1024 2045
BCR 452 512 1024
DSA 320
ECDSA 320
BLS 152 172 342
RS 127 143 279

Table 1. Signature lengths, in bits, for comparable MOV security

5 The underlying mathematics

5.1 Varieties and algebraic groups

Definition 6 Loosely speaking, an algebraic variety (over a field k) is the so-
lution set of a system of polynomial equations (whose coefficients are in k). An
algebraic group (or group variety) over a field k is a variety over k such that the
group law and the inverse map are quotients of polynomials whose coefficients
are in k.

5.2 The Weil restriction of scalars

Suppose that V is a variety over a field L. This means that V is the solution
set of a system of polynomial equations fi(x1, . . . , xr) = 0, 1 ≤ i ≤ s, where the
polynomials fi have coefficients in the field L. Suppose k is a subfield of L, and
n is the degree of L over k. Fix a basis {v1, . . . , vn} for L over k. Write xi =∑n

j=1 yijvj with variables yij . Substitute this into the equations fi(x1, . . . , xr) =
0. Multiplying out, writing everything with respect to the basis {v1, . . . , vn}, and
equating coefficients, one obtains a system of polynomials in the variables {yij},
with coefficients in the field k. The variety defined by these new equations is
denoted ResL/kV , and is called the (Weil) restriction of scalars from L down to
k. It is a variety over k with the property that its k-points are the L-points of
V :

(ResL/kV )(k) ∼= V (L).

Its dimension is n · dim(V ). See for example §3.12 in Chapter 1 of [30] for more
information.

5.3 The multiplicative group Gm

Diffie-Hellman is based on the multiplicative group, denoted Gm. Over any field
F , the F -points on Gm are

Gm(F ) = F× = F − {0},

the multiplicative group of invertible elements of the field F . The algebraic
variety Gm is defined by the equation xy = 1, i.e., it consists of the elements x
such that there exists a y with xy = 1. It is an algebraic group over any field k.
We will view Gm as an algebraic group over the field Fq.
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5.4 The restriction of scalars ResFqn /Fq
Gm

The Weil restriction of scalars ResFqn /Fq
Gm is an algebraic variety (in fact, an

algebraic group) over Fq. We have

(ResFqn /Fq
Gm)(Fq) ∼= F×qn .

Example 7 To find equations defining the two-dimensional algebraic variety
ResF9/F3Gm, write F9 = F3(

√
−1), and write x = x1 + x2

√
−1 and y = y1 +

y2
√
−1. Substituting into xy = 1 and equating coefficients gives the equations:

x1y1 − x2y2 = 1, x1y2 + x2y1 = 0.

5.5 The primitive subgroup G0

Suppose that G is a commutative algebraic group over a field k. In the cases of
interest to us, V will be the multiplicative group Gm or an elliptic curve. For
now, we write G’s group operation as multiplication.

If L is a field that is a finite Galois extension of k, define the primitive
subgroup G0 of ResL/kG to be

G0 = ker[ResL/kG
⊕NL/F−−−−−→

⊕
k⊆F(L

ResF/kG],

where the norm maps NL/F induce the usual norm maps

NL/F : G(L) → G(F ), x 7→
∏

σ∈Gal(L/F )

σ(x).

Then G0 is an algebraic group over k, and G0(k) consists of all elements of
G(L) whose norm down G(F ) is the identity, for every intermediate field F with
F 6= L.

5.6 The algebraic torus Tn

Let Tn (or Tn,q when it is important to keep track of the ground field) denote
the primitive subgroup of ResFqn /Fq

Gm, i.e.,

Tn = Tn,q = ker
[
ResFqn /Fq

Gm

⊕NFqn /F
qd

−−−−−−−→
⊕
d|n
d6=n

ResF
qd/Fq

Gm

]
.

By definition, Tn(Fq) is the group of elements of F×qn that have norm 1 down
to every intermediate field Fqd (for d 6= n). By Lemma 7 of [25],

Tn(Fq) = Tn. (2)
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Example 8 Continuing Example 7, where q = 3 and n = 2, it is easy to write
down embeddings:

Gm ↪→ ResF9/F3Gm, x 7→ (x, 0, x−1, 0),

T2 ↪→ ResF9/F3Gm, x1 + x2

√
−1 7→ (x1, x2, x1,−x2).

The compositions (in both orders) of the resulting map

Gm × T2 → ResF9/F3Gm

with the map
ResF9/F3Gm → Gm × T2

defined by

(x1, x2, y1, y2) 7→ (x2
1 + x2

2, x1y1 + x2y2 + 2x2y1
√
−1)

are the squaring maps. Thus, ResF9/F3Gm is “almost the same” as Gm × T2.

5.7 The trace-0 subgroup of ResFq/Fq′ (E−)

Abelian varieties are, by definition, projective algebraic groups. Elliptic curves
are exactly the one-dimensional abelian varieties.

With E−, q′, q, `, and P as in §4.2, let

B = ResFq/Fq′
(E−),

and let A be the primitive subgroup of B (since the group law is written addi-
tively, the norm map is now the trace):

A = ker[B
TrFq/F

q′−−−−−→ E−].

Then A and B are abelian varieties over Fq′ of dimensions 4 and 5, respectively,
and B is isogenous to E− × A. (See also §3.2 of [11].) The abelian variety A
is simple. Since the group law on an abelian variety is written additively, the
norm map now corresponds to the sum of the conjugates, i.e., the trace defined
in §4.2. We have

〈P 〉 ⊂ A0 = {Q ∈ E−(Fq) : TrFq/Fq′
(Q) = OE−} ∼= A(Fq′)

∩ ∩
E−(Fq) ∼= B(Fq′)

Note that the underlying four-dimensional abelian variety A is invisible in
the algorithms in §4.2.
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6 Cryptographic applications of algebraic tori and their
quotients

We give an exposition of some of the mathematics underlying torus-based cryp-
tography (i.e., the Tn-cryptosystems) and the cryptosystems discussed in §2. We
discuss how the latter schemes are based on quotients of tori by the actions of
symmetric groups.

6.1 Algebraic tori

Definition 9 An algebraic torus is an algebraic group that over some larger
field is a product of multiplicative groups. A field over which the torus becomes
isomorphic to a product of multiplicative groups is called a splitting field for the
torus; one says that the torus splits over that field. See [23, 30] for expositions.

Example 10 (i) For every positive integer r, Gr
m is an r-dimensional algebraic

torus.
(ii) ResFqn /Fq

Gm is an n-dimensional algebraic torus over Fq that splits over
Fqn .

By Proposition 2.6 of [26], the group Tn defined in §5.6 is a ϕ(n)-dimensional
torus.

6.2 Rationality and birational isomorphisms

If r is a positive integer, write Ar for affine r-space. For any field F , we have
Ar(F ) = F r, the direct sum of r copies of F .

Definition 11 A rational map between algebraic varieties is a function defined
by polynomials or quotients of polynomials that is defined almost everywhere.
A birational isomorphism between algebraic varieties is a rational map that
has a rational inverse (the maps are inverses wherever both are defined). A
d-dimensional variety is rational if it is birationally isomorphic to Ad.

Note that birational isomorphisms are not necessarily group isomorphisms.
Note also that rational maps are not necessarily functions — they might fail to
be defined on a lower dimensional set.

By (2), if Tn is rational (i.e., birationally isomorphic to Aϕ(n)), then almost
all elements of Tn can be represented by ϕ(n) elements of Fq.

The maps f and j in §3 are only birational. The sets Tn and Fϕ(n)
q are of size

approximately qϕ(n). The “bad” sets where f and j are not defined correspond to
algebraic subvarieties of dimension at most ϕ(n)−1, and therefore have at most
cqϕ(n)−1 elements for some constant c. Thus the probability that an element
lands in the bad set is at worst c/q, which will be small for large q. In any given
case the bad sets might be even smaller. For example, in §3.6 the bad sets have
2 and 0 elements, respectively.
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6.3 Obtaining the rational maps f and j

How were the maps in Examples 11 and 12 of [25] and in §3.6 above arrived at?
The idea is as follows.

Fq6

Fq2

�����
Fq3

?????

Fq

?????
�����

The one-dimensional torus T2,q3 is, by definition, the kernel of the norm map
NFq6/Fq3 . The torus

T := ResFq3/Fq
(T2,q3)

has dimension 3. As in §3.4, the torus T2,q3 is rational (i.e., is birationally iso-
morphic to A1), and thus the torus T is rational (i.e., birationally isomorphic to
A3). The two-dimensional torus T6 is the hypersurface cut out by the equation
NFq6/Fq2 = 1 inside the torus T . This hypersurface is defined by a quadratic
equation that can be used to parametrize the hypersurface. We gave examples
of this in Examples 11 and 12 of [25]. Section 3.6 gives an additional example.

6.4 A group action on the torus

Next, we define actions of symmetric groups on the tori Tn. Suppose e is a divisor
of n, and let d = n/e. Since n is square-free, we have gcd(e, d) = 1, so

Z/nZ ∼= Z/eZ× Z/dZ.

The symmetric group on e letters, Se, acts on Z/eZ. Extend this action to an
action of Se on Z/nZ, by acting trivially on Z/dZ. Now define an action of Se

on An (= AZ/nZ) as follows. For π ∈ Se,

(xi)i∈Z/nZ 7→ (xπ−1(i))i∈Z/nZ.

We have
An ∼=

Fqn

ResFqn /Fq
A1 ⊃ ResFqn /Fq

Gm ⊃ Tn.

The action of Se on An preserves ResFqn /Fq
Gm. However, it does not necessarily

preserve the torus Tn.

Theorem 12 (Lemma 3.5 of [26]) If p is a prime divisor of n, then the above
action of Sp on An preserves the torus Tn.



20 K. Rubin and A. Silverberg

6.5 Interpreting the other systems in terms of quotients of tori

– The Lucas-based cryptosystems are “based on” the quotient variety T2/S2.
– The Gong-Harn system is based on the quotient variety T3/S3.
– XTR is based on the quotient variety T6/S3.
– Conjectural “Looking beyond XTR” systems would rely on the quotient

variety T30/(S3 × S5) or T30/(S2 × S3 × S5).

These quotient varieties are not groups. This is why the Lucas-based systems
and XTR do not do straightforward multiplication.

– The T2-cryptosystem is based on the group (and torus) T2.
– CEILIDH is based on the group (and torus) T6.
– The (sometimes conjectural) Tn-cryptosystems are based on the group (and

torus) Tn.

We therefore call the Tn-cryptosystems “torus-based cryptosystems”.
What do we mean when we say that these systems are “based on” certain

algebraic varieties?
XTR works because the variety T6/S3 is rational, and the trace map Fp6 →

Fp2 induces a birational isomorphism:

T6/S3
//___ A2 = ResFq2/Fq

A1.

Similarly for the Lucas-based cryptosystems, the trace map Fp2 → Fp induces
a birational isomorphism:

T2/S2
//___ A1.

More precisely, let B(d,e) denote the image of Tn in (ResFqn /Fq
Gm)/Se (where

n = de). By Theorem 3.7 of [26], B(d,e) is birationally isomorphic to Tn/(Sp1 ×
· · · × Spr

) where e = p1 · · · pr is the prime factorization of e. Note that the
quotient map Tn → Tn/Se induces a (non-surjective) map on Fq-points:

Tn = Tn(Fq) → (Tn/Se)(Fq).

Let
XTR(d, e) = {TrFqn /F

qd
(α) : α ∈ Tn} ⊂ Fqd .

When (d, e) = (1, 2) or (2, 3), then XTR(d, e) is the set of traces that occur in the
Lucas-based systems and XTR, respectively. In these two cases, XTR(d, e) can
be naturally identified with the image of Tn(Fq) in (Tn/Se)(Fq). More precisely
(see Theorem 13 of [25]), when (d, e) = (1, 2) or (2, 3), the trace map TrFqn /F

qd

induces a birational embedding

Tn/Se ↪→ ResF
qd/F

q
A1

such that XTR(d, e) is the image of the composition

Tn = Tn(Fq) −→ (Tn/Se)(Fq) ↪→ (ResF
qd/F

q
A1)(Fq) ∼= Fqd .
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6.6 “Looking beyond XTR”

The paper “Looking beyond XTR” [6], building on a conjecture in [8], asks
whether, for n > 6, some set of elementary symmetric polynomials can be used
in place of the trace. In particular, [6] asks whether, when d | n and d | ϕ(n),
one can recover the values of all the elementary symmetric polynomials (i.e., the
entire characteristic polynomial) for Gal(Fpn/Fpd) from the first ϕ(n)/d of them
(this was already answered in the affirmative in some cases in [8, 13]). If this
were true, one could use the first ϕ(n)/d elementary symmetric polynomials on
the set of Gal(Fpn/Fpd)-conjugates of an element h ∈ Tn to represent h by ϕ(n)
elements of Fq. More generally, [6] asks whether, for d | n, one can recover the
entire characteristic polynomial over Fpd from its first dϕ(n)/de coefficients.

The answer is no. In particular, in [25] we show that when n = 30 and p = 7,
then:

– for d = 1, no 8 (= ϕ(n)/d) elementary symmetric polynomials determine
any of the remaining ones (except those determined by the symmetry of the
characteristic polynomial),

– for d = 1, no 10 elementary symmetric polynomials determine all of them;
– for d = 2, no 4 (= ϕ(n)/d) elementary symmetric polynomials determine all

of them.

Reinterpreted in terms of algebraic tori, the conjectures in [6] imply (see
[26]) that the first eight elementary symmetric polynomials induce a birational
isomorphism over Fp:

T30/(S2 × S3 × S5) //___ A8,

and the first four elementary symmetric polynomials on the Gal(Fp30/Fp2)-
conjugates of an element in T30 induce a birational isomorphism over Fp:

T30/(S3 × S5) //___ ResFp2/Fp
A4 ∼= A8.

In [26] we prove that these statements are both false, for all but possibly finitely
many primes p.

More generally, we have

Tn � B(d,e) ↪→ (ResF
qd/F

q
A1)e ∼= An,

where the middle map ⊕e
i=1si is induced by the e elementary symmetric poly-

nomials s1, . . . , se on Gal(Fqn/Fqd)-conjugacy classes. (Recall that B(d,e) was
defined at the end of §6.5, and de = n.)

The conjectures in [6] would imply that, when d divides ϕ(n), then the first
ϕ(n)/d functions s1, . . . , sϕ(n)/d induce a birational isomorphism

B(d,e) //___ (ResF
qd/F

q
A1)ϕ(n)/d ∼= Aϕ(n).
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This is true when the pairs (d, e) are (1, 1) (this is Diffie-Hellman), (1, 2)
(Lucas-based systems), (1, 3) (Gong-Harn), and (2, 3) (XTR). It is also true (see
[8]) when ` is a prime and (d, e) = (1, `) or (2, `). As noted above, we showed in
[25, 26] that this is false for (d, e) = (1, 30) and (2, 15) (in all but at most finitely
many characteristics).

When (d, e) = (n, 1), the underlying variety B(d,e) is Tn itself, corresponding
to the Tn-cryptosystems.

In summary, elementary symmetric polynomials are not the correct functions
to use. In the next section we state a conjecture (of Voskresenskii) that seems
to be closer to the truth.

6.7 Voskresenskii’s Conjecture

Conjecture 13 (Voskresenskii) Tn is rational; i.e., for every n, there is a
birational isomorphism

Tn
//___ Aϕ(n).

The conjecture is true, and not difficult to prove, if n is a prime power [30].
The conjecture was proved by Klyachko [16] when n is a product of two prime
powers. Explicit birational isomorphisms are given in §5 of [25] and §3.6 above
(see also §3.4 above), in the cases n = 2 and 6. A Tn-cryptosystem arises for
every n for which Voskresenskii’s Conjecture is true with efficiently computable
birational maps.

When n is divisible by more than two distinct primes, Voskresenskii’s Con-
jecture is still an open question. In particular, the conjecture is not known when
n = 30 = 2 · 3 · 5. We have tried unsuccessfully to construct a birational isomor-
phism between T30 and A8. It would be interesting to know whether Voskresen-
skii’s Conjecture is true or false when n = 30. We have been able to construct
explicit rational maps of low degree in this case, which might be useful if no
birational map exists. For example, an s-to-1 map from T30 to A8 would provide
a lossy compression scheme, and would allow one to represent elements of T30

in F8
q × {1, . . . , s}.
Rationality of the varieties B(1, n) (or more generally the varieties B(d, e))

would imply the conjecture in [8].

6.8 Stable rationality

One reason that Voskresenskii’s Conjecture would be difficult to disprove is that
the tori Tn are known to always be stably rational over Fq (see the Corollary on
p. 61 of [30]).

Definition 14 A variety V over k is called stably rational over k if for some r
and s, V ×Ar is birationally isomorphic over k to As (i.e., V ×Ar is rational for
some r ≥ 0).

Although the stable rationality of Tn does not allow one to represent elements
of Tn in Fϕ(n)

q , it does allow one to represent elements of Tn×Fr
q in Fs

q for suitable
r and s, and this might be useful.
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7 Open problems

Some goals for the future are:

– Improve the efficiency of CEILIDH.
– Obtain more efficient key agreement, encryption, and signature schemes, by

generalizing to T30-cryptosystems:
• find explicit and efficient birational isomorphisms f and j between T30

and A8, if such exist,
• look for special attacks on the discrete log problem in F×q30 .

– Use non-supersingular (i.e., ordinary) abelian varieties to further improve
pairing-based cryptography.

Progress has been made on the last point in the case of elliptic curves; see
for example [7].
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