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Abstract

We analyze overlapping Schwarz waveform relaxation for the heat equation in
n spatial dimensions. We prove linear convergence of the algorithm on unbounded
time intervals and superlinear convergence on bounded time intervals. In both
cases the convergence rates are shown to depend on the size of the overlap. The
linear convergence result depends also on the number of subdomains because it
is limited by the classical steady state result of overlapping Schwarz for elliptic
problems. However the superlinear convergence result is independent of the number
of subdomains. Thus overlapping Schwarz waveform relaxation does not need a
coarse space for robust convergence independent of the number of subdomains, if
the algorithm is in the superlinear convergence regime. Numerical experiments
confirm our analysis. We also briefly describe how our results can be extended to
more general parabolic problems.

1 Introduction

Overlapping Schwarz waveform relaxation is a class of parallel algorithms for evolu-
tion problems. The distribution of the computation is achieved by partitioning the
spatial domain into overlapping subdomains, like in the classical Schwarz method.
However on subdomains, time dependent problems are solved in the iteration and
thus the algorithm is of waveform relaxation type. Overlapping Schwarz waveform
relaxation algorithms have been introduced in [GZ97] for the solution of evolution
problems in a parallel environment with slow communication links, since they permit
to solve over several time steps before communicating information to the neighbor-
ing subdomains. These algorithms have been further studied in [Gan97, Gan98al,
[GS98], [Gan98b] and independently in [GK97].

Overlapping Schwarz waveform relaxation inherits convergence properties from
both the classical overlapping Schwarz method and from waveform relaxation meth-
ods. There are two classical convergence results for waveform relaxation algorithms
for ordinary differential equations (ODEs): (i) for linear systems of ODEs on un-
bounded time intervals one can show linear convergence of the algorithm under
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some dissipation assumptions on the splitting ([Nev89a, Nev89b], [MN87], [Bur95]
and [JP95]); (ii) for nonlinear systems of ODEs (including linear ones) on bounded
time intervals one can show superlinear convergence assuming a Lipschitz condi-
tion on the splitting function ([Nev89a, Nev89b], [BZ93] and [Bjg95]). If waveform
relaxation is applied to partial differential equations (PDEs) discretized in space,
the convergence results (i) and (ii) may depend on the discretization parameter for
classical matrix splittings. The convergence rates then deteriorate as one refines the
mesh. One possible remedy is to use a multi-grid splitting, proposed by Lubich and
Ostermann in [LO87] and further studied by Vandewalle and Horton in [VH95] and
by Janssen and Vandewalle in [JV96a, JV96b]. In a different approach Jeltsch and
Pohl propose in [JP95] a multi-splitting algorithm with overlap. They prove results
(i) and (ii) for their algorithm, but the convergence rates are again mesh dependent.
They show however numerically for a discretized one dimensional heat equation
that increasing the overlap accelerates the convergence of the waveform relaxation
algorithm. Similar observations were made by Burrage et al [BJNR96] in higher
dimensions. Gander and Stuart [GS98] relate the overlap in the multi-splitting al-
gorithm to physical overlap of subdomains for the one dimensional heat equation
thus linking waveform relaxation with overlapping splittings (or multi-splittings)
to domain decomposition. They quantify how the overlap affects the convergence
rate and prove result (i) independent of the mesh parameter, provided the physical
overlap is hold constant. Independently Giladi and Keller [GK97] proved result (ii)
for an overlapping domain decomposition approach and a one dimensional convec-
tion diffusion equation. Interestingly the superlinear convergence rate in that case
differs from the classical one, the diffusion leads to a faster superlinear rate.

From the domain decomposition side a different approach has been analyzed
for evolution problems. One discretizes time and solves at each time level elliptic
problems using domain decomposition. This algorithm can only converge linearly,
but the underlying evolution permits interesting additional properties. In special
cases Cai shows for example that a coarse grid is not needed in [Cai9l, Cai94].

In this paper we study overlapping Schwarz waveform relaxation for space de-
compositions in all generality for the heat equation in n dimensions. We prove both
results (i) and (ii) at the continuous level, which leads to algorithms that converge
independently of the mesh size if the overlap is hold constant. The superlinear rate
in (ii) is found to be faster than for classical waveform relaxation, generalizing the
result in [GK97] to n dimensions and arbitrary decompositions. In addition we show
why no method of global information propagation is needed in the evolution case,
thus generalizing results in [Cai91, Cai%4]. It is due to the fact that for evolution
problems, the initial conditions are known exactly for each subdomain and thus as
long as one does not evolve too far in time, the initial conditions determine mainly
the solution away from the artificial boundaries and thus the boundary conditions
become less important.

2 Problem Description

We are interested to solve a parabolic partial differential equation in n dimensions
using waveform relaxation. We consider the heat equation on a bounded domain
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Figure 1: Decomposition into overlapping subdomains such that an overlap of ¢ is guar-
anteed.

Q C IR™ with a smooth boundary 92 as our guiding example,

%—? = Au+ f(z,t) ze, 0<t<T
u(z,t) = g(x,t) zed), 0<t<T (2.1)
u(x,0) = wug(x) z e

We assume that the initial condition ug(x) and the boundary condition g(x,t) are
bounded piecewise continuous and f(a,t) is continuous. This gives existence and
uniqueness of a solution [Fri64, pp 40]. Central in our analysis is the maximum
principle satisfied by the solution u(x,t) of (2.1):

Theorem 2.1 (Maximum Principle) For f(xz,t) =0, if the weak solution u(z,t)
of (2.1) attains its mazimum or minimum value in the interior of Q x [0,T] then
u(zx,t) is a constant.

Proof The proof for piecewise continuous data can be found in Liberman [Lib96,
pp 128]. |

To construct an overlapping decomposition of the domain {2, we first decompose
Q into N non-overlapping subdomains Q with boundaries BQJ, j=12,...,N, as
shown in Figure 1 for a two dimensional example We denote the boundarles of the
subdomain Q] interior to the domain € by I‘ Then we construct an overlapping
decomposition £2; with boundary 0€2; by enlarglng each Q so that the boundaries of
the new subdomalns I'; interior to {2 are at least a dlstance ¢ away from F as shown
in Figure 1 for the two dimensional example. To solve the parabolic problem (2.1)
the overlapping Schwarz waveform relaxation iteration constructs iteratively u’c+1 on
each subdomain €2; using as the boundary condition the values from the nelghboring
subdomains uf at the previous iteration. To pass the boundary information, the
boundary of 2; is decomposed into disjoint subsets I'j;, [ = 1,..., N such that the
Euclidean distance of & € I'j; from the boundary of (2; is at least 6. This is possible
because of the way the overlapping decomposition was constructed: we simply use
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Figure 2: Information for 2; from the neighboring subdomain (2, is only used from within
Q.

the solutions obtained in €2; only within the smaller region ﬁl. An example for
this information exchange is shown in Figure 2. Doing this for each subdomain, we
define a complete solution at step k on the whole of 2 which can be used at step
k + 1 as boundary condition for the subdomain solves. We denote also by I'jo the
part of the boundary that €2; shares with Q.

3 Linear Convergence for Unbounded Time
Domains

We first consider the case where T' = oo. On each subdomain {2; we solve at each
step k + 1 of the waveform relaxation iteration the subproblem

Oubtl
—%t— = AUt 4 f(m,t) xEeQ;, 0<t<T
zH(w,t) = uf(a,1) zxely, 0<t<T (3.1)
uiti@,t) = g(a,1) zelj, 0<t<T
u(z,0) = wo(x) x €,

for j = 1,2,..., N, using the boundary information from the neighboring subdo-
mains at step k. This corresponds to an additive Schwarz or Jacobi iteration which
can be done in parallel. One can also consider a multiplicative Schwarz or Gauss
Seidel iteration which would need a special coloring of subdomains to remain a par-
allel algorithm. If subdomains with the same color do not touch each other, then
subdomains of the same color can be solved in parallel using the boundary val-
ues coming from subdomains with different colors. We focus in the analysis on the
additive versior}c, tlhe results for the multiplicative versions can be obtained similarly.
+

The error e; " (x,t) between the real solution u(z,t) of (2.1) and the iterates
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;" (@) of (3.1) satisfies the homogeneous equation

dektl

g = Agtt weQ; 0<t<T
ft(z,t) = ef(x,t) xely, 0<t<T (3.2)
e{?"'l(a:,t) = 0 zelj, 0<t<T
ef"’l(m,O) = 0 x € Q.

Define the integer distance quantity m; for each subdomain ; to be the least
number of subdomains one has to pass through to touch the boundary 0f2, and
define m := max; m;. Furthermore define the index sets I; := {j : m; = I} so that
the index set I; contains the indices of all the subdomains which are within distance
[ of the boundary. Defining for bounded functions g(x,t) : © x [0,00) — IR the
norm

11g(s)|oo := sup |g(z,t)|
TEQES0

we have the following

Lemma 3.1 The error of the waveform relaxation algorithm decays at the rate

m;\XII6§+m+2(-, Moo < v(m, ) max €5 ()l (3-3)

where y(m, 6) is a number strictly less than one, independently of k.

Proof The idea of the proof is to construct a sequence of elliptic upper bounds
on the iterates and then to apply the convergence analysis based on the maximum
principle for the elliptic upper bounds in Lions [Lio88]. Fix k and define E* :=
max; ||e§(-, )||oc and note that on each subdomain the solution é?“ of the elliptic
problem

0 = AT zeq
é’i“(w) = EF z el (3.4)
etl@) = 0 x €Ty
is an upper bound on the modulus of e?“. Now éf"'l satisfies a maximum principle

and for j € I éf“ < E* in the interior of (NZJ-, since é?"'l satisfies on part of the

boundary of ©; a homogeneous boundary condition. Note that for j ¢ I, we have

éf"'l not necessarily strictly less than E* since éf“ might have the value E* on all

its boundaries and thus by the maximum principle éf“ = EF. Define

EFl= sup & < y(6)EF
meﬁl,lelo

for some constant y;(d) < 1. Note that ; depends on the size of the overlap, but
not on k since the error é?“ is a linear function of the boundary condition. Now for
the next iteration by definition part of the boundary of subdomains 2; with j € I
lie strictly within Q, with [ € Iy and therefore for j € I; the solution é;“'z of the

elliptic problem

0 = A& zeq
é’i“(m) = EF xeTly, ¢l (3.5)
& (x) = EF! zeTly, lel



is an upper bound on the modulus of e?”. Since E¥*! < v, (0)E* we have by the
maximum principle é§+2 < EF in S~2j and defining E¥*? similarly to E**! before,
we find E¥t2 < 45(8)E* for some constant v1(8) < 72(0) < 1 independent of k. By
induction we find at step k +m + 1 for the error in the subdomains Q; with j € I,
the elliptic upper bound

0 = Aé§+m+1 Tc Qj
éz+m+1(w) = EF z €Ty, 1 ¢ 1 (3.6)
éj+m+1(il?) = Ek+m T € le; le Im—l

and é;?"'mﬂ < E* in Q;. Defining EFt™+1 as before we find EFT™+1 < 1 (8) E*
for some constant v1(6) < y2(d) < ... < ym+1(6) < 1 independent of k. Now for the
next iteration step k + m + 2 all the errors e§+m+2 have boundary values less than
or equal to E¥t™m+! <~ 1 (§)EF, since they come from iteration step k 4+ m + 1
in the interior of neighboring subdomains. Defining y(m, §) := Y,,11(d) the result

follows. u

Note that the above estimate for y(m, ¢) is quite conservative. In a practical im-
plementation the measured convergence rate is expected to be better, since (m, d)
was derived assuming worst case behavior of the error. «(m,d) will also depend on
the shape of the subdomains, which is hidden in the above argument because of the
generality of the domain decomposition employed.

Theorem 3.2 (Linear Convergence) The waveform relazation algorithm con-
verges linearly on unbounded time intervals in the infinity norm. The error decays
like

max |65 () oo < (0, 6))" max €5, o (37)

where y(m,d) < 1 as in Lemma 3.1.

Proof The proof follows by induction from Lemma 3.1. |

Note that the convergence result on unbounded time domains depends on the
number of subdomains. The more subdomains one uses, the longer it takes for
information to propagate from the outer boundary of €2 to the inner subdomains.
This is because the steady state solution is limiting the convergence rate, and the
steady state solution does not see the zero initial condition. This is different in the
superlinear convergence analysis of the next section.

4 Superlinear Convergence for Bounded Time
Domains

We now consider a bounded time interval, T' < oo. Like in the unbounded time
domain case we are solving at each step k+1 of the waveform relaxation iteration the
subproblem (3.1) using the boundary information from the neighboring subdomains

at step k. We are interested in estimating the decay of the error e?+1 in (3.2) for



short time ¢. Define the infinity norm of a function g(,t) on the boundary T'; of
subdomain €2; by

||g(a)||FJ = sup |g(:1:,t)|
TET; 0<t<T

We first estimate the decay of the error on the boundary of the subdomains over
one step of the iteration.

Lemma 4.1 In n dimensions, the mazimum error ef“ on the boundary of all

subdomains §); decays in the infinity norm at the rate

max [ 1|, < 2nerfel ) max | lr.

0
2v/nT
Proof Define Fj(t) := max;(supgcr, |e§(:c, t)|). Because of the overlapping prop-
erty we are interested in the magnitude of e?(az, t) at distance ¢ from the boundary
I'; for short time. An upper bound for all ef can be obtained from the decay of €
which satisfies 8
% _ Ae xeB(), 0<t<T
e(x,t) = Ei(t) x€dB(d), 0<t<T (4.1)
e(z,0) = 0 x € B(9)

where B(d) denotes a ball with radius § in IR". To get an explicit bound, inscribe
a hypercube Q(¢) in IR™ with side \2/—% into the ball B(d) and consider the decay of

€ in the hypercube Q(4),

% = Aée zxeQ(), 0<t<T
é(x,t) = Eip(t) zedQ(), 0<t<T (4.2)
é(x,0) = 0 x € Q(9).

Evaluating € at the center of the hypercube Q(J) we obtain an upper bound on the
error e;? at distance ¢ from the boundary I';. An upper bound on € at the center
of the hypercube Q(d) can be obtained by summing the half space solution v of the
heat equation for each of the 2n faces of the hypercube,

%% = Av zeR", z1>0, 0<t<T
v(w,t) = Ep(t) #€R", z1=0, 0<t<T (4.3)
v(z,0) = 0 zeR", x>0,

where z; denotes the first component of € IR". The solution of (4.3) is [Can84]

t
v(®@,t) = / Ko (21, t — 7) By (r)dr, (4.4)
0
with the kernel )
T _z
Kz(.fﬂ,t) = WC 4t (45)

Hence an upper bound on e? at distance ¢ from the boundary I'; is given by 2n
times (4.4). This value is by the formulation of the iteration an upper bound on

the boundary values for e;?"'l and thus

9

N t — 1) Ex(7)dr. (4.6)

t
Brsa(t) i= max( sup |e ! (2, 1)) < 20 [ Ko
J (EEF]' 0

7



Now take the supremum of Ej(t), 0 < ¢ < T out of the integral and apply the
variable transform

]

VS R

to the integral. This leads to

Ej11(t) < 2nerfe( )m]ax ||e§||pj.

0
2v/nt
Since erfc(6/(2v/nt)) is monotonically increasing with ¢ we can replace ¢ with the
upper bound T on the right. Now the bound is independent of ¢ so we can take the
supremum over ¢ on the left and the result follows. |
Note that Lemma 4.1 can be used to derive an arbitrary fast linear upper bound
on the convergence rate by shortening the time interval [0,7") appropriately, since
lim,_, o erfc(z) = 0. We derive however an upper bound on the decay of the error
over k steps of the iteration which leads to a superlinear convergence result.

Lemma 4.2 In n dimensions, the mazimum error e;? on the boundary of all sub-

domains €); decays in the infinity norm at least at the rate

max lleX ||, < (2n)* erfe( ) max 1€l -

ké
2v/nT
Proof By iteration of inequality (4.6) in Lemma 4.1 we get a bound in form of a
convolution, namely

t )
< k/ o(—, t —
E(t) < (2n) OK;ﬁ,t 1)
Sk—1
/0 Kw(%, Sp—1 — Sk)dsg - - - dsy m]axHe?Hrj.

To unfold the convolutions, note that the Laplace transform of a convolution is the
product of the Laplace transformed kernels. In our case the Laplace transform of

the kernel is [AS64]

st 0 —5=/s
K (—— —¢ Wm
/0 e w(\/ﬁ,t)dt e

and thus the k-fold convolution is the product of identical exponentials in the
Laplace transformed domain,
6_% 5
Back-transforming this expression, we find
B4(t) < 0 [ Ko B2t~ 7y max )
k_nom\/ﬁ,TTjaxejpj.
Using a similar variable transform as in Lemma 4.1 the result follows. |
Defining for bounded functions g(z,t) : Q x [0,7) — R the norm
lg(; )z == sup |g(a,1)|
TEQ,0<t<T

we have the following



Theorem 4.3 (Superlinear Convergence) The waveform relazation algorithm
converges superlinearly on bounded time intervals in the infinity norm. The error
decays like

)

k k 0

max ||e7 (-, - < (2n)%erfc max ||e5 (-, )| - 4.7
: |lej (-, )7 < (2n) f(2 ,—nT) jX|| 5 ()T (4.7)
Proof The proof follows from Lemma 4.2 and the maximum principle. |

Note that this superlinear convergence rate is faster than the superlinear conver-
gence rate found for classical waveform relaxation algorithms. The classical result
gives a contraction governed by a factorial [MN87] with asymptotic expansion

k
(C]Z;) _ ( 1 +O(k1)) e—knk+(1+In(CT))k—F nk , ,~kInk

Vor

whereas the new result (4.7) gives a contraction with asymptotic expansion

Cok VT L o
C{“erfc(\/zT): (Cgﬁ+0(k 2)>e k2 4In(Cy)k-Ink |, K2

The numerical experiments in the next section show that it is indeed the second
result which is observed numerically.

5 Numerical Experiments

We show three sets of numerical experiments. First a one dimensional experiment
to show that the bounds we derived are sharp in one dimension. Then a two
dimensional experiment on a square with 2 x 2 subdomains to illustrate the linear
and superlinear convergence behavior of the algorithm depending on the length of
the time interval. Finally we show a scaling experiment in the number of subdomains
which confirms that the superlinear convergence rate is indeed independent of the
number of subdomains. We also illustrate this fact graphically with a sequence of
iterates which shows the intuitive reason for the independence of the number of
subdomains when the algorithm is in the superlinear convergence regime.

5.1 One Dimensional Example

We solve the one dimensional heat equation

2
%% _ g_% +5e 2@ 0<cg<1, 0<t<T
z
u(0,t) = 0 O0<t<T (5.1)
’U,(l,t) — e_t O <t< T
u(z,0) = z? 0<z<1

splitting the domain Q = [0,1] x [0, 7] into the two subdomains ©; = [0, 8] x [0,T]
and Q9 = [, 1] x [0,7] and applying the overlapping Schwarz waveform Relaxation
algorithm for for three pairs of values (o, 8) € {(0.4,0.6), (0.45,0.55), (0.48,0.52)}.
We obtain from Theorem 3.2 for this special case the
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Figure 3: Theoretical and measured decay rate of the error for two subdomains and three
different sizes of the overlap.

Corollary 5.1 The Qverlapping Schwarz waveform relazation iteration for the one
dimensional heat equation with two subdomains Q1 = [0,a] x[0,T] and Qg = [5,1] x
[0,T] converges at least at the linear rate

k
2k a(l - pB) 0
ma 2 e < (G ) xSl
Proof The proof follows from Theorem 3.2 using the special overlap structure in
one dimension. A direct proof can be found in [GS98]. ]

As a numerical scheme on the subdomains we use centered finite difference in
space with Az = 0.01 and backward Euler in time with Af = 0.01. Figure 3 shows
the convergence of the algorithm in the maximum norm for a long time interval T' =
3. The solid line is the predicted convergence rate according to Corollary 5.1 and
the dashed line is the measured one. The measured error displayed is the difference
between the numerical solution on the whole domain and the solution obtained from
the domain decomposition algorithm. Clearly it is the steady state which limits the
convergence of the overlapping Schwarz waveform relaxation algorithm, the steady
state convergence bounds are sharp.

To see the algorithm in the superlinear convergence regime, we shorten the time
interval to [0,0.05] and apply the same overlapping Schwarz waveform relaxation
algorithm to the above problem. We get for this special one dimensional example
from Theorem 4.3 the

Corollary 5.2 The overlapping Schwarz waveform relazation iteration for the one
dimensional heat equation with two subdomains Q1 = [0,a] x[0,T] and Qg = [5,1] x
[0,T] converges superlinearly on bounded time intervals t € [0,T] with at least the

10
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Figure 4: Superlinear decay of the error for a small time interval and two different sizes
of overlap.

rate

k(6 — o)

k 0
s lley ()l < enfe( =77 max ey (e

Proof The proof follows from Theorem 4.3 without the geometric factor from the
sphere and inscribed hypercube. |

Note that the algebraic term 2* is absent in the one dimensional result because
we can directly estimate the decay in one dimension which leads to a sharp upper
bound on the convergence rate. We use the first and second of the splittings of the
previous experiment, namely («, 3) € {(0.4,0.6), (0.45,0.55)}. Figure 4 shows the
convergence of the algorithm, where again the solid line is the predicted convergence
rate and the dashed line is the measured one. Clearly now the algorithm converges
superlinearly, as predicted by our analysis.

As a last example we perform the computation on a medium time interval [0, 0.5]
to see what happens between the linear and the superlinear convergence regime.
We chose for the overlap (a,3) = (0.4,0.6) as in the previous experiments. Since
both the linear and the superlinear convergence result are upper bounds on the
convergence of the algorithm, the actual convergence behavior needs to stay below
both bounds. Figure 5 shows both the linear and the superlinear bounds as solid
lines and the actual computation as a dashed line. The algorithm is first in the
linear convergence regime, but once the superlinear bound becomes dominant, it
goes through a transition into the superlinear convergence regime. To benefit from
the superlinear convergence, it is therefore important to choose time windows such
that the algorithm converges superlinearly.

11
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Figure 5: Transition from the linear to the superlinear convergence regime. The conver-
gence rate of the algorithm is first dominated by the linear convergence regime and after
some iterations by the superlinear convergence regime.

5.2 Two Dimensional Example

We solve the heat equation in two dimensions

% — Au, (w1,30) € 0,1] x [0,1], ¢ € [0,T] (5.2)
with homogeneous initial and boundary conditions which means we are looking for
the zero solution and thus are simulating directly the error equations in the analysis.
We decompose the unit square into four smaller squares which form overlapping
subdomains of equal size. We run the overlapping Schwarz waveform relaxation
algorithm in its additive version. For the overlap parameter § we chose two values,
0 € {0.1,0.06}. We solve the subdomain problems using a centered finite difference
scheme with Az = 0.02 and integrate in time using backward Euler. Figure 6 shows
the algorithm in the linear convergence regime, integrating up to 7' = 3.

Figure 7 shows the algorithm in the superlinear convergence regime, integrating
over a shorter time interval, T = 0.05. Note the different scale which shows how
much faster the superlinear convergence is compared to the linear convergence in
the previous experiment.

5.3 Scaling in the Number of Subdomains

We finally analyze the scaling behavior of overlapping Schwarz waveform relaxation
numerically. We solve again the heat equation in two dimensions (5.2) but now
vary the number of subdomains. We use a discretization in space with Az = 1/30.
Table 1 shows the number of iterations needed to decrease the error below a given
tolerance for different numbers of subdomains and the two time intervals [0, 5] and
[0,0.01] with fixed overlap parameter 6 = 1/30. The table shows that over long

12
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Figure 6: Two dimensional model problem with four subdomains, algorithm in the linear
convergence regime for 7' = 3.
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Figure 7: Two dimensional model problem with four subdomains, algorithm in the super-
linear convergence regime for 7' = 0.05.

2x2|13x3|4x4|6x6
T=5 12 15 19 28
T =0.01 5 5 5 6

Table 1: Number of iterations needed to reach a certain tolerance for different numbers
of subdomains and two different time intervals. While the algorithm does not scale in the
linear convergence regime with respect to the number of subdomains, it does scale in the

superlinear convergence regime.
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time intervals, the overlapping Schwarz waveform relaxation algorithm does not
scale with respect to the number of subdomains. This is due to the fact that the
convergence rate is limited by the steady state solution and corresponds to the
m factor in Theorem 3.2. For elliptic problems it is well known that overlapping
Schwarz needs a coarse mesh to exhibit convergence independent of the number of
subdomains [CM94]. Such a coarse mesh could also be added to the overlapping
Schwarz waveform relaxation algorithm. This is however not necessary when the
algorithm is in the superlinear convergence regime. Here the algorithm converges
independently of the number of subdomains, as predicted by Theorem 4.3 and
shown in Table 1 experimentally. This can be understood intuitively by noting
that it is the initial condition which determines over short time intervals mainly
the solution of a parabolic evolution problem and thus we have error decay away
from the interior boundaries even if they are far away from the real boundary, since
the initial conditions are known for all subdomains. This is illustrated in Figure
8 which shows the error of three consecutive iterates for 4 x 4 subdomains at the
end of the time interval on the left for T = 5 where the algorithm is in the linear
convergence regime and on the right for T = 0.01 where the algorithm is in the
superlinear convergence regime. One can clearly see how the error is diminished
in all subdomains on the right due to the initial condition, whereas it has to be
eliminated from the original boundaries on the left.

6 Conclusions

Although we used the linear heat equation as our guiding example, the techniques
introduced here can be generalized. The linear convergence rate is derived using a
maximum principle. Hence similar results can be obtained for more general equa-
tions satisfying a maximum principle, like equations with variable coefficients and
convection terms. However for evolution problems the important property of the
algorithm is the superlinear convergence rate. In our analysis we rely only on a
one dimensional result, so that convergence results obtained in [Gan98b] for the one
dimensional reaction diffusion equation lead to similar results in higher dimensions
using the techniques presented here. Similarly an estimate for a convection diffusion
equation is possible as well using the result of [GK97].

Acknowledgment: We would like to thank Joe Keller for suggesting the es-
timate of the decay within a ball in the overlap and Andrew Stuart for fruitful
discussions.
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