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Abstract. In this paper we propose a surface reconstruction method for
highly noisy and non-uniform data based on minimal surface model and
tensor voting method. To deal with ill-posedness, noise and/or other
uncertainties in the data we processes the raw data first using tensor
voting before we do surface reconstruction. The tensor voting procedure
allows more global and robust communications among the data to ex-
tract coherent geometric features and saliency independent of the surface
reconstruction. These extracted information will be used to preprocess
the data and to guide the final surface reconstruction. Numerically the
level set method is used for surface reconstruction. Our method can han-
dle complicated topology as well as highly noisy and/or non-uniform
data set. Moreover, improvements of efficiency in implementing the ten-
sor voting method are also proposed. We demonstrate the ability of our
method using synthetic and real data.

1 Introduction

Surface reconstruction is to retrieve the original surface from the partial informa-
tion of that surface. The partial information can include points, pieces of curves
and surfaces. In our paper, we mainly consider reconstruction from unorganized
point clouds. Surface reconstruction is an important task in many applications
such as computer vision, computer graphics, medical imaging, computer aided
design and scientific computing.

The main difficulties of surface reconstruction from point clouds include un-
known connection or ordering information among the data points, unknown
topology of the original surface, and noise and/or non-uniformity in the data.
Based on different representations of reconstructed surfaces, most previous re-
construction approaches can be classified as parametric or non-parametric (im-
plicit surfaces). One parametric approach is NURBS (Non-Uniform Rational
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B-Spline) [1] in which the reconstructed surface is smooth, and the data set can
be non-uniform. However, this method require a nice parameterization of the
surface and possible patching of different pieces for the reconstruction, which
can be difficult for an arbitrary data set. Also, it is difficult to treat noisy data.
Another popular computational geometry algorithm is based on Delaunay trian-
gulations and Voronoi diagrams to construct triangulated surfaces [2, 3, 4, 5, 6].
For this kind of method, it is challenging to find the right connections among
all data points in three and higher dimensions, especially for noisy and highly
non-uniform data. Implicit surface methods try to find an implicit function such
that a particular level set of this function fits the data best and is extracted as
the reconstructed surface [7, 8, 9, 10, 11, 12, 13, 14, 15]. Implicit methods usu-
ally have topological flexibility, a simple data structure and depth/volumetric
information. However it is a challenge to deal with open surfaces.

To deal with noisy data a variational formulation is usually used and is
composed of both a fitting term for the data and a regularization term for
the reconstructed surface. There are two issues for this approach: (1) all data
points, even outliers, are treated equally and can affect the final reconstruction;
(2) there is a lack of effective communications among all data points and the
balance of the fitting term and the regularization term is usually local during
the reconstruction/evolution which can cause the evolving surface trapped into
local minimum easily. For highly noisy data, these approaches will likely to fail.

Tensor voting method, proposed by Medioni et al. [16], is a nice feature ex-
traction algorithm. By designing an appropriate voting procedure among all data
points a tensor field and an associated saliency field can be constructed. Coherent
geometric information can be extracted from the tensor field and the saliency
field. However, using tensor voting method alone is difficult to reconstruct a
smooth and well-represented surface.

In this paper, we propose a surface reconstruction method combining the
minimal surface model [17, 18] and the tensor voting method for highly noisy
and/or non-uniform data. We use tensor voting method to preprocess the noisy
data as well as to provide coherent information for the minimal surface model.
We show that our model can handle significant noise in the data.

2 New Surface Reconstruction Model

2.1 Minimal Surface Model

In [13] the following weighted minimal surface model is proposed: let S denote
the data set which can include points, pieces of curves and surfaces. Define

d(x) = dist(x,S) (1)

to be the distance function to S. Then define the surface energy functional as:

E(Γ ) =

[
∫

Γ

dp(x)ds

]1/p

. (2)



Here Γ is an arbitrary surface and ds is the surface area. Thinking of d(x) as
a potential function for S, this energy is the Lp norm of potential on Γ . The
purpose is to try to find a local minimizer of the energy functional that behaves
like a minimal surface or an elastic membrane attached to the data set.

Level set method [19] is used to evolve an initial guess to the steady state.
Define the corresponding level set function to be φ(x, t). The energy functional
can be reformulated as:

E(φ) =

[
∫

dp(x)δ(φ(x))|∇φ(x)|dx

]1/p

, (3)

where the integration domain can be any open set (e.g., the computation domain)
that contains the zero level set of φ.

The gradient flow for the level set function φ(x, t) ([13, 20]) is:

∂φ

∂t
=|∇φ|

[
∫

dp(x)δ(φ)|∇φ|dx

]1/p−1

×dp−1(x)

[

∇d(x)·
∇φ

|∇φ|
+

1

p
d(x)∇·

∇φ

|∇φ|

]

. (4)

By neglecting a scaling factor we can simplify (4) as:

∂φ

∂t
= |∇φ|

[

∇d(x)·
∇φ

|∇φ|
+

1

p
d(x)∇·

∇φ

|∇φ|

]

. (5)

The term ∇d(x) · ∇φ
|∇φ| corresponds to the attraction by the distance field and

the term d(x)∇ · ∇φ
|∇φ| corresponds to a minimal surface regularization weighted

by the distance function, where ∇ · ∇φ
|∇φ| is the mean curvature of the surface.

The parameter 1/p balance the potential force and surface tension. Since the
nonlinear regularization due to surface tension has a desirable scaling d(x), the
membrane is more flexible close to the data and is more rigid away from the
data. Fast implementations were discussed in [14]. The minimal surface model
can handle complicated topologies and construct a surface that is smoother than
triangulated surface in three dimensions. It can deal with noisy and non-uniform
data to some extent by balancing the attraction of the data (fitting) and the
surface area regularization. However, the minimal surface model can not deal
with highly noisy data because (1) The distance field is the distance to all data
set. If there are many outliers, the evolution surface will be attracted by all these
points and get stuck. (2) There is a lack of global communications or denoising
for the noisy data set. The surface regularization (the curvature) term is very
local and is only related to the evolution surface not to the data set.

2.2 Tensor Voting Method

Tensor voting method [16] allows more effective and robust communications
among the data to extract coherent geometric features and saliency. A second
order symmetric tensor is used to store geometric information, orientation in-
formation and saliency. The tensor can be visualized as an ellipse in 2D, and an



ellipsoid in 3D. The shape of the tensor defines the geometric information (point,
curve, or surface element), and its size represents the saliency. In 3D, a surface
is represented by a tensor in the shape of an elongated ellipsoid (stick tensor)
with its major axis along the surface normal. A curve is represented by a tensor
in the shape of a flat ellipsoid (plate tensor) that is perpendicular to the curve’s
tangent. An isolated point has no orientation preference and is represented by
a tensor in the shape of a spherical ellipsoid (ball tensor). The tensor field is
generated by a voting procedure.

We give a brief review of the basic idea behind tensor voting in 2D. Suppose
there exists a smooth curve connecting the origin O and a point P and suppose
that the normal to the curve at O is known. Then what is the most likely
normal direction at P? Fig. 1 illustrates the situation. It can be argued [16]
that the osculating circle connecting O and P is the most likely connection since
it keeps the curvature constant along the hypothesized circular arc. So the most
likely normal is given by the normal to the circular arc at P (thick black arrow
in Fig. 1). This normal at P is oriented such that its inner product with the
normal at O is nonnegative. The length of this normal, which represents the
voting strength, is inversely proportional to the arc length s and curvature k. So
the decay function of vote strength is defined as:

DF (s, κ, σ) = e−
s
2+cκ

2

σ2 , (6)

where σ controls smoothness, which also determines the effective neighborhood
size [21]. c is a constant which controls the decay with high curvature, and about
its value we refer readers to [22]. We here set c = 3.57. If we vote for all locations
of P , we get a 2D stick voting field from O.

s =
lθ

sin θ

κ =
2 sin θ

l

l

2 sin θ

2θ

θ

l

s

vote directionP

C

O

Fig. 1. Voting between two points

We denote the stick vote at P receiving from O as [vx vy]T . Other points cast
votes to P as well. So at P we can get a symmetric positive tensor by summing
all votes received:

S =

[ ∑

v2

x

∑

vxvy
∑

vyvx

∑

v2

y

]

. (7)



Let the two eigenvalues of S be λ1 ≥ λ2 ≥ 0 and two corresponding eigen-
vectors be ê1 and ê2. S can be rewritten as

S = (λ1 − λ2)ê1ê
T
1

+ λ2(ê1ê
T
1

+ ê2ê
T
2
) . (8)

ê1ê
T
1

is called a 2D stick tensor ê1ê
T
1

+ ê2ê
T
2

is called a 2D ball tensor. The stick
saliency field λ1 − λ2 indicates the saliency of curve. The larger the difference
the more likely P is on a curve whose normal is ê1. Here we give an example
of stick saliency field in 2D for eight points from a circle in Fig. 2. The saliency
field gives a good indication of the circle.
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Fig. 2. The stick saliency field for eight points from a circle

If the input is discrete points, each point has a ball tensor initially. A tensor
field is generated by a tensor voting procedure. For every pair of points, for
example O voting on P in the previous example, since no direction information
is available initially, a discrete set of uniformly distributed directions are used
as possible normals at O and vote on P with the weight function in (6). By
summing votes from all directions at all other points we can get a tensor at each
data point and we can further generate a tensor field.

In 3D a tensor field can be decomposed as

S = (λ1 − λ2)ê1ê
T
1

+ (λ2 − λ3)(ê1ê
T
1

+ ê2ê
T
2
) + λ3(ê1ê

T
1

+ ê2ê
T
2

+ ê3ê
T
3
) , (9)

where ê1ê
T
1

is a 3D stick tensor, ê1ê
T
1

+ ê2ê
T
2

is a 3D plate tensor, ê1ê
T
1

+ ê2ê
T
2

+
ê3ê

T
3

is a 3D ball tensor. The stick saliency field λ1−λ2 represents the saliency of
surface with normal ê1, the field of λ2 −λ3 represents the saliency of curve with
tangent direction orthogonal to both ê1 and ê2, and λ3 represents the saliency
of junction or isolated point. We denote the stick saliency field λ1 − λ2 as s(x)
which will play an important role in our new model.

In summary, we use the following tensor voting procedure for our data points:
1. Tensor calculus. Generate the initial stick tensor information at every original
data point.
2. Voting process. Every data point propagates its tensor information to neigh-
boring grid points and generate a tensor field in the computation domain.



3. Feature extraction. Extract the geometric features and saliency field at each
grid point.

Although tensor voting method can reveal coherent geometric features and
saliency for data points, to use the method directly for surface reconstruction has
the following disadvantages: (1) The tensor information is not very accurate or
sharp, especially in the case of complicated topology and/or geometry. Surface
regularization after reconstruction is needed [23]. (2) To extract the surface from
the saliency field directly the algorithm is quite complex, and need to tune
parameters of threshold empirically [16, 23].

2.3 Our New Model

The above discussions show that the stick saliency field from tensor voting among
all data points contains more global and robust information for our surface re-
construction. The strength of the saliency field gives a good likelihood indication
of surface at each point. Therefore we incorporate the stick saliency field and
combine it with the distance field for surface reconstruction. Let

k(x) = 1 −
s(x)

M
, M = max{s(x)} (10)

be the normalized stick saliency field. Then we define our new evolution as:

∂φ

∂t
= α∇d(x) · ∇φ+ β∇k(x) · ∇φ+ γd(x)|∇φ|∇ ·

∇φ

|∇φ|
. (11)

The term ∇d(x) · ∇φ corresponds to the attraction of the data set through the
distance field. The term ∇k(x) · ∇φ corresponds to attraction of saliency field.
These two terms advect the surface closer to the data set as well as to high
saliency region. The term d(x)|∇φ|∇ · ∇φ

|∇φ| corresponds to a weighted surface

tension which regularizes the reconstructed surface. Tuning the parameters α, β
can balance the effect of two fields, and the value of γ affect the smoothness of
the reconstructed surface. For highly non-uniform data, the saliency field can
provide more useful information than the distance field.

For highly noisy data sets, we first use tensor voting to remove outliers, i.e.,
those points that are not likely on the surface. After we get the normalized stick
saliency field we remove those points whose saliency value is smaller than a
threshold. This procedure can be repeated if necessary. This preprocessing step
allows us to clean up the data substantially even for very noisy data, which will
be shown later by examples. After this step we redo the tensor voting procedure
for the remaining data set and generate a new tensor and saliency field. Then
we use the above model for surface reconstruction.

We do not advocate of only using saliency field to propagate the surface.
In some situations with simple topological structure and surface details, we can
solely use saliency field, e.g., Fig. 5(c). However, the global tensor voting process
usually results in a quite smeared saliency field, i.e., the gradient of the saliency
field is not sharp, especially if the data set is sparse or has noise or complicated
topological or geometric structures. Moreover, this makes the evolution slow too.



3 Numerical Implementation

3.1 The Level Set Method for Surface Evolution

Since we do not know a priori the topology of the final surface, we use level
set method for surface evolution according to (11). This equation is of the same
type of the minimal surface model used in [17]. The two convection terms ∇k(x)·
∇φ(x) and ∇k(x) · ∇φ(x) are treated in the same way. We refer readers to [17]
for implementation details. Here is our implementation procedure:
1. If the original data is noisy, we first use tensor voting method to remove
outliers in the data set.
2. Get distance function d(x) and normalized saliency field k(x).
3. Start with an initial guess of Γ and evolve it to steady state using (11).

The distance field is computed using the fast sweeping method which is of
O(N + M) complexity, where N is the number of grid point and M is the
number of data point [13, 17]. Local level set method [24] is used to cut down
the computation cost.

To further accelerate the computation, we can neglect the curvature term
and just use the two convection terms initially to evolve the surface as suggested
in [18]. This allows us to remove more strict CFL condition due to the curvature
term. When the evolution is near steady state, we can put in the curvature term
to make the final surface smoother.

3.2 Some Improvements in Implementing the Tensor Voting

Method

Generating the Initial Stick Tensor. In Sect. 2.2, we give out the origi-
nal method of generating the initial stick tensor. However using stick tensor to
simulate ball tensor or plate tensor is time-consuming and is not very accurate.

We consider the communication of two data points P, Q in Fig. 3. Without
any prior information, the most likely relationship of these two points is that
they are on the straight line connecting them. So they give each other a plate
tensor. Let êPQ = (tx, ty, tz) be the unit vector pointing from P to Q. Taking
into account the decay with the increasing distance, we define the plate tensor
as:

e
l
2

σ2 (I − êPQê
T
PQ) = e

l
2

σ2 ·





1 − t2x −txty −txtz
−txty 1 − t2y −tytz
−txtz −tytz 1 − t2z



 , (12)

where l is the distance between P, Q. When l is bigger than a threshold we can
ignore their communication. For every data point, summing up the contribution
from all neighbors gives it the initial tensor.

Suppose the number of data points is N , and every point has M neighbors.
Then if we use k stick tensor to represent a ball tensor, the original method needs
O(kNM) operations and the value of k can be large to represent all directions
well. While our new algorithm needs O(NM) operations.
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Fig. 3. Communication between two data points

Voting Process. In the second step of tensor voting, every data point prop-
agates its tensor information to its neighboring grid points like in Fig. 1. But
every time a data point votes on a grid point, we need to compute the weight
DF (s, κ, σ). It is a time-consuming process. In fact, to reduce the computation
cost, we can first establish an index table of the weight function, then when we
need to compute the contribution from a point to another point we can refer to
the table which significantly speed up the computation. Moreover, the higher res-
olution the index table has, the better we approximate the true weight function.
In our implementation, we use an index table whose resolution is three times
of that of our computation grids. As showed in Fig. 4, suppose we know the
coordinates of point P, Q, and know the unit stick vector êP at P , we look up
the index table to get the value of DF (s, κ, σ). We demonstrate this in 2D. First,
we can determine the unit stick vector êQ at Q voted from P by the formula:

êQ = êP − 2

−−→
QP

‖
−−→
QP ‖

(−−→
QP · êP

‖
−−→
QP ‖

)

. (13)

P

Q

êP

êQ

lx

ly

lx

ly

P

Q

Fig. 4. Use the index table instead of computing DF (s, κ, σ)

Then we find the corresponding weight from the index table by lx and ly.
Times this weight with the stick saliency value at P gives the stick saliency value
at Q voted from P . Here,

lx =‖
−−→
QP ‖

√

1 − c2, ly =‖
−−→
QP ‖ |c|, c =

−−→
QP · êP

‖
−−→
QP ‖

. (14)

The establishment of the index table is relatively simple, we only need to
store the contributions from a unit stick tensor to its neighboring points.



Tune the Range of θ. In the original tensor voting method, a point vote on
another point only if θ ≤ π/4 (see Fig. 1). However, for our surface reconstruction
purpose it seems that two nearby points on a smooth surface (relative to the
grid size) are not likely to form a large angle. In our experiments for real data,
we get better results if we restrict θ in a smaller interval. In our experiments,
we set θ ≤ π/12. In the following, we use θ = ψ to mean the range of θ is [0, ψ].

4 Experimental Results

In this section we present experimental results for our method. All results are
displayed using OpenDX.

The computations are carried out on a CPU of AMD Athlon XP 3200+
and 1GB memory. All the reconstructions are on a 61 × 61 × 61 grid. We use
both synthetic and real data to show the ability of handling highly noisy and
non-uniform data.

In Fig. 5 we show the case of non-uniform data. The data set is 100 random
points on a sphere. We can see from the result that the reconstructed surface
(d) using our new model is better than (b) reconstructed from minimal surface
model or (c) which only uses stick saliency field for reconstruction.

(a) 100 random
points on a ball

(b) Recon-
struction using
minimal sur-
face model.
α = 1, β =
0, γ = 0.5

(c) Recon-
struction only
using stick
saliency field.
α = 0, β =
10, γ = 0.5

(d) Recon-
struction using
the new model.
α = 1, β =
10, γ = 0.5

Fig. 5. Surface reconstruction from non-uniform data

In Fig. 6, Fig. 7, we demonstrate the ability of dealing with highly noisy
data for the new model. We add points randomly in the box that contain the
original data. The noise ratio is the ratio between the number of added points
and the number of original data points. The original data sets for the two tori
and the bunny have 1200 and 35947 points respectively. Some experimental data
are displayed in Table 1 from which we can see that when the number of data
points is large, the most expensive step is tensor voting.



(a) Two tori data with
500% noise

(b) Removing outliers for
(a). The threshold is 0.5

(c) Reconstructed sur-
face from (b). α=1, β=
5, γ=0.05

(d) Two tori data with
1000% noise

(e) Removing outliers for
(d). The threshold is 0.5

(f) Reconstructed sur-
face from (e). α=1, β=
11, γ=0.05

Fig. 6. Surface reconstruction from noisy two tori data. σ = 3, θ = π/18
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