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Abstract. The weighted minimal surface problem in piecewise smooth media is studied in

this paper. The solution to the weighted minimal surface problem is continuous but the derivatives

have a jump across the interface where the medium property is discontinuous. The jump condition

of the derivatives derived in this paper generalized the Snell’s law in geometric optics to weighted

minimal surfaces of co-dimension one in any number of dimensions. A numerical method based on

the gradient flow and the maximum principal preserving immersed interface method is developed to

solve this nonlinear elliptic problem with jump conditions. Numerical computations are presented

to verify both the analysis and the numerical algorithm.

1. Introduction. The minimal surface problem, that is, the problem of finding
the surface of the least area among all surfaces having fixed boundary data, has been
extensively studied. Many phenomena that occur in nature relate to this problem
which has been a motivation for developing new mathematical theories and tech-
niques to solve the problem analytically and numerically. A recent workshop on
minimal surfaces presented the latest research on minimal surface applications in
chemistry and biology [5]. Minimal surfaces were shown to be important in various
chemical micro-structures and their corresponding phase transitions [5]. Computer
graphics and image analysis use minimal surfaces frequently for boundary detection,
and to construct surfaces that are visually appealing [2], [13]. Soap films and other
membranes passing through a fixed boundary provide mechanical examples of min-
imal surfaces [12]. A related concept is the idea of capillary surfaces, which result
from surface tension in liquids. These surfaces are closely related to minimal surfaces
[6]. For a precise mathematical description of the minimal surface problem we refer,
for example, to the classical treatises [7] and [14].

The minimal surface problem can be described in two different ways, using the
parametric or the non-parametric formulation. In the non-parametric setting the
candidate surfaces are graphs of functions, while in the parametric setting the surfaces
are treated as boundaries of sets [7]. The former is usually seen in more physically-
based treatments of the problem, whereas the later provides an excellent framework
for the mathematical analysis of minimal surfaces.

When the medium is homogeneous, the energy density at each point is constant,
and therefore the surface energy is equivalent to the surface area. This is the standard
minimal surface problem. In this paper, we consider the weighted minimal surface
problem in a heterogeneous medium in which the energy density is piecewise smooth.
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For example this is the case for capillary interfaces in porous media or composite
materials. In particular we derive a jump condition for the weighted minimal surface
at the interface between two different media. The jump condition can be regarded as
a generalized Snell’s law which describes the “refraction” of minimal surfaces instead
of light rays in geometric optics.

For simplicity, we restrict our discussion to a two dimensional surface in three
dimensions. Our results extend to minimal surfaces of co-dimension one in any number
of dimensions. Below we present the setup of the problem: given a two dimensional
domain Ω ⊂ R2, we want to find a function u(x, y) which minimizes the weighted
surface area of its graph with a prescribed Dirichlet boundary condition, i.e.,

min
u

E(u) =
∫∫

Ω

c(x, y, u)
√

1 + |∇u(x, y)|2 dxdy,

u(x, y)|∂Ω = u0(x, y),
(1.1)

where c(x, y, u) is a piecewise smooth function which has a finite jump across a surface
defined by

S = { (x, y, z), ϕ(x, y, z) = 0} , (1.2)

in three dimensional space, see Fig. 2.1 for an illustration. We assume that the
surface is smooth and ϕ(x, y, z) has up to second order continuous partial derivatives.
In this paper we consider the case c > 0. Mathematically, the case when c = 0
has been studied in [15] using standard arguments of the calculus of variations. In
[15], the minimal surfaces are treated as the boundary of sets of the finite perimeter
(not graphs of functions) and the case with weight zero inside the medium and one
outside is studied. In particular, minimal surfaces that always stay at a bounded
distance (universal) from a given plane are constructed. For this degenerate case it
can be proven ( [15]) that the minimal surfaces enter the medium inside orthogonally
which means, roughly speaking, that the intersection of the minimal surface and the
boundary that separates two mediums locally looks like two perpendicular hyper-
planes. Actually the orthogonality condition for the degenerate case c = 0 can be
formally derived through taking the limit of our generalized Snell’s law in this paper.

In practice the computation of a weighted minimal surface in a piecewise smooth
medium is quite challenging due to the nonlinearity of the Euler-Lagrange equation
and the discontinuity of the coefficient across the interface. The intersection of the
minimal surface and the interface is a free boundary problem that is coupled with
the Euler-Lagrange equation through the generalized Snell’s law. In this paper, we
have developed an iterative numerical algorithm based on the gradient flow and the
immersed interface method to compute the weighted minimal surface. In particular
we represent the minimal surface as a graph function and formulate the generalized
Snell’s law as an interface condition for the graph function to reduce the computational
cost. We linearize the equation and jump condition by substituting the previous
approximation in the nonlinear terms and use the maximum principle preserving
scheme for parabolic interface problem [1, 10]. A smoothing technique and a re-
initialization process is used to regularize the problem numerically. Since the energy
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functional is not convex, there are local minima and hence the solution depends on
the initial condition u0(x, y) (see Fig. 4.4).

The paper is organized as follows. In §2, we derive the Euler-Lagrange equation
and the generalized Snell’s law at the interface of two mediums. In §3, we present a
general computational framework and outline the algorithm that is used to compute
the weighted minimal surface. Some numerical examples are presented in §4. The
paper is concluded in §5.

2. Derivation of the Euler-Lagrangian equation and the jump condi-
tion.

2.1. The Euler-Lagrangian Equation. When c ≡ 1 in the entire domain, the
minimal surface problem is commonly known as Plateau’s Problem [4]. In general,
there may be one, multiple, or no minimal surfaces satisfy the given boundary con-
dition. The existence of a solution to the general case proved by Douglas (1931 [4]),
and Radó (1933, [11]) could not exclude the possibility of singularities. In this paper,
we only consider the case that the minimal surface is smooth except at the interface.
Although our derivation of the Euler-Lagrangian equation is not new, we include it
in details not only because that the weight c is non-constant in our paper, but also
it is needed in the second half of this section where the jump condition across the
interface S is considered.

Assume that c(x, y, z) is a piecewise smooth function in R3:

c(x, y, z) =
{

c2(x, y, z), (x, y, z) ∈ B,

c1(x, y, z), (x, y, z) ∈ R3 −B,

where B = { (x, y, z) |ϕ(x, y, z) < 0 } is an open set in R3 with the smooth boundary
S = { (x, y, z) |ϕ(x, y, z) = 0 }. Since S is smooth, we can extend c1(x, y, z) and
c2(x, y, z) smoothly across S in a small neighborhood of S from one side to the other
for theoretical convenience.

Let Ω be an open set in R2 whose boundary ∂Ω is smooth. Assume that the
cylindrical region Ω× R contains B. A function u0(x, y) on ∂Ω is specified. We look
for a piecewise smooth function u(x, y) in Ω that satisfies u(x, y)|∂Ω = u0(x, y) and
minimizes E(u) in (1.1). Assume that the graph of u(x, y) intersects with the surface
S at a curve Γ, and the projection of Γ to the (x, y)-plane is a smooth curve γ, which
divides the domain Ω into two subsets Ω1 and Ω2. Assume also that the function
u(x, y) is smooth in each Ωj , j = 1, 2. Across γ, the function u(x, y) is continuous
but (ux, uy) usually has a finite jump.

Let γ(s) = { (x(s), y(s)) | a ≤ s ≤ b, x(a) = x(b), y(a) = y(b) } , and

F (x, y, z, zx, zy) = c(x, y, z)
√

1 + z2
x + z2

y . (2.1)

With z = u(x, y), the variational equation of E(u) is

δE(u) =
∫∫

Ω

(Fzδz + Fzx
δzx + Fzy

δzy) dxdy = 0,
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Fig. 2.1. A diagram of the weighted minimal surface problem. The solution u(x, y) is piecewise

smooth but has a finite jump in the partial derivatives across γ.

where δz is a variation of z and satisfies δz|∂Ω = 0.

We prove the main theorem in this subsection below.

Theorem 2.1. If u(x, y) is C2 in Ω1 ∪ Ω2 is a local minimum of (1.1), then it
satisfies the following Euler-Lagrangian equation in the open set Ω1 ∪ Ω2:

∂

∂x


 cux√

1 + u2
x + u2

y


 +

∂

∂y


 cuy√

1 + u2
x + u2

y


 = cz(x, y, u)

√
1 + u2

x + u2
y. (2.2)

Proof. Assume that the graph of u(x, y) passes through Γ, i.e., δz|γ = 0 . If u is
a local minimizer, we must have δE = 0 for such δz. Using the Green’s formula, we
have

δE =
∫∫

Ω1

+
∫∫

Ω2

(Fzδz + Fδzx
δzx + Fδzy

δzy) dxdy

=
∫∫

Ω1

+
∫∫

Ω2

(Fz − ∂

∂x
Fzx

− ∂

∂y
Fzy

)δz dxdy

= 0.

Since δz is arbitrary in Ω1 ∪ Ω2, we must have

Fz − ∂

∂x
Fzx

− ∂

∂y
Fzy

= 0, Ω1 ∪ Ω2. (2.3)

The Euler-Lagrangian equation (2.2) follows by plugging F into (2.3).

We will assume that z = u(x, y) satisfies the Euler-Lagrange equation (2.3) in the
rest of the paper.
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2.2. The jump condition across the interface. Let

Γ0 = {(x0(s), y0(s), z0(s)) |z0(s) = u(x0(s), y0(s))}

be the intersection of the minimal surface and S. Let Γ = Γ0 + δΓ be a closed curve
near Γ0. For every small perturbation δΓ, we assume that there is unique solution
u + δu to the Euler-Lagrangian equation in Ω1 and Ω2 that passes through Γ and
satisfies the boundary condition at ∂Ω. In this subsection we study the variation
δE(u) with respect to δΓ and derive the jump condition for the solution u across γ.
The result is summarized in the following theorem.

Theorem 2.2. Assume that, in a neighborhood of Γ, the surface S = {ϕ(x, y, z) =
0} can be expressed as z = φ(x, y). Let

pj =
(−ux,−uy, 1)√

1 + u2
x + u2

y

, q =
(−φx,−φy, 1)√

1 + φ2
x + φ2

y

,

be the unit normal directions of the surface u(x, y) in Ωj, and the unit normal direction
of S respectively, all pointing to the positive direction in z direction. Then if u(x, y)
is the solution of the weighted minimal surface problem, the jump of the derivatives
of u(x, y) across the surface S must satisfy the following generalized Snell’s Law:

c1 p1 · q|γ = c2 p2 · q|γ , (2.4)

where γ is the intersection of the minimal surface and the interface S.

Proof. To derive the jump condition for a minimizer u(x, y) across γ, we shall
compute the variation of E(u) due to the variation of Γ.

The variation of Γ naturally decomposes into the vertical and horizontal direc-
tions. We first assume the variation of Γ is vertical, i.e.

δΓ = {(0, 0, δz(s)}.

Let δE = δE1 + δE2 where δEj is the variation in Ωj , j = 1, 2,

δEj =
∫∫

Ωj

(Fzδz + Fzx
δzx + Fzy

δzy) dxdy.

Using the Euler-Lagrange equation in Ωj and the Green’s formula, we have the vari-
ational equation due to the vertical variation of Γ:

δEj = −
∮

γ

δz(s)(Fzx
, Fzy

) · nj(s) ds, j = 1, 2, (2.5)

where nj(s) is the inward unit normal vector of Ωj at γ(s).

Next, we consider the variation of Ej due to the variation in Γ on the surface of
the graph of u(x, y). To compute δE1, we will move γ into Ω1, and to compute δE2,
we will move γ into Ω2. Each δEj will be treated as a linear functional of δΓ and
will be obtained from a one-sided differentiation of Ej with respect to δΓ in function
spaces.
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Fig. 2.2. The variation of Γ and u near the interface S.

In each Ωj , in a small neighborhood of γ, we introduce a local coordinate system

x = x(s, n), y = y(s, n),

where s the the arc length along γ, and n is the distance to γ(s) along the inward
normal direction of Ωj at γ(s). Assume that n is sufficiently small, then the change
of coordinates (x, y) → (n, s) is nonsingular and dxdy ≈ dsdn. In fact, dxdy =∣∣∣∂(x,y)
∂(s,n)

∣∣∣ dsdn and the determinant is unity at n = 0. Therefore, we have

∣∣∣∣∂(x, y)
∂(s, n)

∣∣∣∣ = 1 + O(δn(s)).

Let δΓ(s) = (x(s, δn(s)), y(s, δn(s), δz(s)), where δn(s) ≥ 0 and δz(s) is chosen
so that Γ+δΓ is on the graph of u(x, y). Denoted the region bounded by γ and γ +δγ

as δΩj . We perform the following derivation

δEj = −
∫ ∫

δΩj

F dxdy

= −
∫ ∫

δΩj

F

∣∣∣∣∂(x, y)
∂(x, n)

∣∣∣∣ dsdn

= −
∮

γ

∫ δn(s)

0

(1 + O(δn(s)))Fdnds

= −
∮

γ

F (s)δn(s)ds + O((δn(s))2).

Dropping the higher order terms, we have

δEj = −
∮

γ

F (s)δn(s)ds. (2.6)

Note that

δEj =
∂Ej

∂n
δn +

∂Ej

∂z
δz. (2.7)

Here ∂Ej

∂n and ∂Ej

∂z are linear functionals on δn and δz.
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From (2.5), we have

∂Ej

∂z
δz = −

∮
γ

(
(Fzx

, Fzy
) · n

)
δz(s)ds.

Combining this with (2.6) and (2.7), we have

∂Ej

∂n
δn = −

∮
γ

F (s)δn(s)ds +
∮

γ

(
(Fzx

, Fzy
) · n

)
δz(s)ds.

Since we assume that Γ is on the surface of u(x, y), see Fig. 2.2(a), there is a
relation between the vertical and horizontal variation:

δz(s) =
∂u

∂n
δn(s).

Thus we have found the variational equation due to the horizontal variation of Γ:

∂Ej

∂n
δn =

∮
γ

(
−F (s) + (Fzx

, Fzy
) · n∂u

∂n

)
δn(s)ds. (2.9)

To keep Γ+δΓ on the surface S where c has a jump discontinuity, we assume that
δz(s) = ∂φ

∂nδn(s) in (2.5). So the total change in z direction due to the perturbation
δn(s) is (∂φ

∂n − ∂u
∂n )δn(s), see Fig. 2.2(b). Thus the total variation for Γ on S is

δEj =
∮

γ

(
−F (s) + (Fzx

, Fzy
) · n (

∂u

∂n
− ∂φ

∂n
)
)

δn(s)ds, j = 1, 2.

Define

F̃ (s, n, z, zs, zn) := F (x, y, z, zx, zy)

= F

(
x(s, n), y(s, n), z(s, n),

∂s

∂x
zs +

∂n

∂x
zn,

∂s

∂y
zs +

∂n

∂y
zn

)
.

Note that n = (∂n
∂x , ∂n

∂y ). Thus we have

F̃zn
= Fzx

∂n

∂x
+ Fzy

∂n

∂y
= (Fzx

, Fzy
) · n. (2.11)

Denoting F̃ by F if no confusion should arise, we have:

δEj = −
∮

γ

(F (s) + Fzn

(
∂φ

∂n
− ∂u

∂n
)
)

δn(s)ds, j = 1, 2. (2.12)

More generally, let δn(s) be an arbitrarily function of s, not necessarily nonnega-
tive as in the previous paragraphs. Since in Ω1 and Ω2, the inward normal directions
are opposite to each other, if δn(s) = ψ(s) in Ω1, then δn(s) = −ψ(s) in Ω2 where
ψ(s) is an arbitrarily smooth function of s. The total variation in Ω1 ∪ Ω2 must add
up to zero, therefore, we have the jump condition across the surface S:(

F (s) + Fzn
(
∂φ

∂n
− ∂u

∂n
)
)∣∣∣∣

j=1

=
(

F (s) + Fzn
(
∂φ

∂n
− ∂u

∂n
)
)∣∣∣∣

j=2

. (2.13)
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We now apply (2.13) to the minimal surface problem with F given in (2.1). Using
(2.11), we have

Fzn
=


 cux√

1 + u2
x + u2

y

,
cuy√

1 + u2
x + u2

y


 · n

=
cun√

1 + u2
x + u2

y

.

(2.14)

Note that along the line Γ where u(s, n) and φ(s, n) meet, u(s, 0) = φ(s, 0), us =
φs and 1 + u2

x + u2
y = 1 + u2

s + u2
n. From (2.14), on the line Γ, for j = 1, 2, we have,

F (s) + Fzn

(
∂φ

∂n
− ∂u

∂n

)
=

c(x, y, u)(1 + usus + unφn)√
1 + u2

s + u2
n

=
c(x, y, u)(1 + usφs + unφn)√

1 + u2
s + u2

n

.

(2.15)

If we multiply both sides of (2.13) by 1/
√

1 + φ2
s + φ2

n, which is continuous across
the interface, and use uxφx + uyφy = usφs + unφn, we have finally arrived at (2.4).

Remarks

1. If the interface S is expressed in terms of the zero level surface ϕ(x, y, z) = 0,
then the jump condition is equivalent to[

c (ux ϕx + uy ϕy)
|∇ϕ|√1 + |∇u|2

]
=

[
c ϕz

|∇ϕ|√1 + |∇u|2

]
, (2.16)

where (ϕx, ϕy, ϕz) /|∇ϕ| is the unit normal direction of the surface S.
2. The jump condition (2.4) is a local condition and can be written in a coor-

dinate free form. Define the dihedral angle θ between two surfaces to be the
angle between their normals. Then the generalized Snell’s law (2.4) can be
expressed as

c1 cos(θ1) = c2 cos(θ2), (2.17)

where θj is the dihedral angle between the interface S and the surface uj(x, y).
Our derivations and the generalized Snell’s law extend to weighted minimal
surfaces of co-dimension one in any number of dimensions.

3. A numerical method. Numerical computation of weighted minimal surfaces
in heterogeneous media in three dimensions is not easy. First of all the Euler-Lagrange
equation is nonlinear. Moreover, we need to incorporate the generalized Snell’s law
across a free boundary, the intersection of the minimal surface and the interface
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between two different media. The main difficulty is that tracking the free boundary,
enforcing the jump condition across the free boundary, and solving the nonlinear
partial differential equation in separated regions have to be handled simultaneously
and consistently.

In this paper, we propose an iterative approach based on the gradient flow. We
represent the minimal surface as a graph and reformulate the the generalized Snell’s
law as a two dimensional interface condition for the graph function so that we only
need to solve the Euler Lagrange equation in two space dimensions, and takes advan-
tage of the maximum principle preserving scheme for linear elliptic interface problems
[10].

In this section, we assume that c is a piecewise constant with a finite jump across
the interface S. We would like to compute the solution to the Euler-Lagrange equation

∂

∂x

(
c ux√

1 + |∇u|2

)
+

∂

∂y

(
c uy√

1 + |∇u|2

)
= 0, (x, y) ∈ Ω1 ∪ Ω2 − γ (3.1)

with the jump condition (2.16) directly. Due to the difficulties mentioned earlier,
a direct solver to the elliptic non-linear problem is very challenging. Moreover, the
solution may not be unique, and may be very sensitive to the boundary conditions and
the geometric configuration of the interface, see Section 4. To prevent the approximate
solution from jumping from one solution to another, we solve the following gradient
flow, a parabolic equation, to steady state

ut =
∂

∂x

(
c ux√

1 + |∇u|2

)
+

∂

∂y

(
c uy√

1 + |∇u|2

)

u(x, y, t)|∂Ω = u0(x, y),

(3.2)

where u0(x, y) is the boundary condition. An initial guess that satisfies the boundary
condition has to be chosen and the time step can be adjusted depending on the
geometry of the problem.

3.1. The outline of the algorithm. We express the boundary S between the
two different mediums as the zero level set of a function ϕ(x, y, z):

ϕ(x, y, z)




< 0, if (x, y, z) S,

= 0, if (x, y) is on S,

> 0, if (x, y) is outside of S.

(3.3)

The actual computation is done on a two dimensional domain [a, b] × [c, d]. We
use a uniform Cartesian grid

xi = a + ihx, i = 0, 1, · · · ,M ; yj = c + jhy, j = 0, 1, · · · , N, (3.4)
9



where hx = b−a
m and hy = d−c

n . We need to carefully choose an initial guess u0(x, y)
that satisfies the boundary condition in order to get the intended solution. We use
the substitution method, see [8] for example, to find an approximate solution to the
weighted minimal surface problem. The main procedure from uk(x) to get uk+1(x) is
outlined below:

• Step 1: Regularize the numerical solution by the following modified Helmholtz
equation

u∗ −∆t1 ∆u∗ = uk (3.5)

where ∆t1 is a regularization factor and is of order h2, and the Laplacian
operator is discretized in the standard way:

∆hu∗ij =
u∗i−1,j − 2u∗ij + u∗i+1,j

(hx)2
+

u∗i,j−1 − 2u∗ij + u∗i,j+1

(hy)2
. (3.6)

The purpose of this step is to smooth the intermediate approximation uk(x, y)
without changing it too much. This step is introduced because the interme-
diate solution to the interface problem usually has non-smooth second order
derivatives, and this may affect the convergence of our method. We use the
fast solver from the Fishpack which is available through the Netlib to solve
the above equation.

• Step 2: Set ϕk
2(xi, yj) = ϕ(xi, yj , u

∗
ij). If ϕk

2(x, y) = 0 is non-empty, that is

max
ij
{ϕk

2(xi, yj)} min
ij
{ϕk

2(xi, yj)} < 0,

we use a re-initialization scheme so that ϕk
2(x, y) is a good approximation

to the signed distance function ϕk
2(x, y) = 0, and has up to second order

partial derivatives in the neighborhood of its zero level set. This is a stan-
dard technique in the level set method. The re-initialization is essential to
the algorithm because ϕ(x, y, u∗(x, y)) is usually a non-differentiable function
across the curve ϕ(x, y, u∗(x, y)) = 0.

• Step 3: Update uk+1 from

uk+1 = u∗ + ∆t2

{
∂

∂x

(
c uk+1

x√
1 + |∇u∗|2

)
+

∂

∂y

(
c uk+1

y√
1 + |∇u∗|2

)}

uk+1(x, y)
∣∣∣
∂Ω

= u0(x, y)

(3.7)
where ∆t2 is the time step. If the zero level set ϕk

2(x, y) = 0 is non-empty,
we reformulate the jump condition (2.16) across ϕk

2(x, y) = 0 as

[uk+1] = 0,[
c uk+1

n√
1 + |∇u∗|2

]
=

[
c√

1 + |∇u∗|2
ϕz

|∇ϕ|

]

+

[
c√

1 + |∇u∗|2
(

(nk
x −

ϕx

|∇ϕ| )u
∗
x + (nk

y −
ϕy

|∇ϕ| )u
∗
y

)]
,

(3.8)
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where nk = (nk
x, nk

y) is the unit normal direction of the plane curve ϕk
2(x, y) =

ϕ(x, y, u∗(x, y)) = 0 pointing outward. The gradient∇ϕ is computed at (x, y, u∗(x, y)).
It is obvious that if uk converges, the modified jump condition (3.8) converges to the
true jump condition (2.16). Since we are only interested in the steady state solution
of (3.2), the accuracy in time variable is unimportant. We use the maximum principal
preserving scheme to discretize the elliptic part, that is the right hand side of equation
(3.2), see [10, 1]. The discrete implicit finite difference equation is solved using the
multigrid solver [3].

Note that we have re-written the jump condition to fit perfectly into our numer-
ical scheme for elliptic interface problems described in [10]. The crucial part in the
algorithm is to compute the gradient ∇u∗ at staggered grid points (xi±hx/2, yj) and
(xi, yj±hy/2), and certain points on the interface ϕk

2(x, y) = 0. The detailed descrip-
tion can be found in [8] and is not going to be repeated here. The main methodology
is the least square interpolation techniques, see [8, 9].

4. Numerical examples. We first present an example in which the interface is
a cylinder. In this case, we have a fixed projected interface in the x-y plane and a
homogeneous jump condition across the interface because ϕz ≡ 0, nk

x = ϕx/|∇ϕ|, and
nk

y = ϕy/|∇ϕ|. There is a unique solution and the substitution method converges,
see [8] for the details. We omit the step 1 and take ∆t2 = ∞ meaning that we solve
the elliptic equation in (3.7) directly. Given an initial guess u0(x, y), the substitution
method simply is(

∂

∂x

c uk+1
x√

1 + |∇uk|2

)
+

∂

∂y

(
c uk+1

y√
1 + |∇uk|2

)
= 0, uk+1(x, y)

∣∣∣
∂Ω

= u0(x, y)

[uk+1] = 0,

[
c uk+1

n√
1 + |∇uk|2

]
= 0

In Fig. 4.1 (a)-(b), we show the mesh and contour plots of the minimal surface
with c− = 0.01 and c+ = 1 given the initial guess

u0(x, y) = −1
2

+
x + 1

2
, Ω = [−1, 1]× [−1, 1]. (4.1)

The Dirichlet boundary condition is u(x, y)|∂Ω = u0(x, y)|∂Ω. The interface is the
cylinder defined by ϕ(x, y, z) = x2

0.62 + y2

0.52 − 1. If the two mediums are the same,
that is c+ = c−, then u0(x, y) is the unique solution. This has been confirmed by
our code to check the consistency. When c+ is bigger than c− which is the case in
Fig. 4.1 (a)-(b), the minimal surface would try to avoid to pass outside the cylinder
as much as possible to decrease the contribution from outside. The large area inside
the cylinder was balanced by the smaller weight c−.

In Fig. 4.1 (c)-(d), we show the results of an opposite case with c− = 1 and
c+ = 0.01. The cylinder is more complicated and is given by r = 0.5 + 0.2 sin(4θ),
0 ≤ θ ≤ 2π in polar coordinates, where r =

√
x2 + y2. Now the weighted minimal
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surface tries to avoid inside as much as possible that is the case in Fig. 4.1 (c).
In Fig. 4.1 (b) and (d), the dotted line is the intersection of the cylinder and the
minimal surface. The number of iterations of the substitution method is typically
between 10 ∼ 20 iterations with the tolerance 10−6.

(a)
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0

0.5

C−=0.01, C+=1, φ
3
=x2/0.62 + y2/0.52−1,tol=10−6, No.=5

(b)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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0.4

0.6

0.8
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C−=0.01, C+=1, φ
3
=x2/0.62 + y2/0.52−1,tol=10−6, No.=5

(c)
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(d)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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0.2

0.4

0.6

0.8

1

Fig. 4.1. Computed results with different coefficients c and different cylinders. (a)-(b): Mesh

and contour plots of the computed minimal surface z = u(x, y) with c− = 0.01, c+ = 1. The

interface that separates the two mediums is the elliptic cylinder x2

0.62 + y2

0.52 = 1. In (b), the dotted

line is the intersection of ϕ(x, y, z) = 0 and ϕ(x, y, u(x, y)) = 0. (c)-(d): Mesh and contour plots of

the computed minimal surface z = u(x, y) with c− = 1, c+ = 0.01. The interface that separates the

two mediums is the cylinder r = 0.5 + 0.2 sin(4θ) in polar coordinates.

Now we present a numerical example in which the interface is a closed surface in
three dimensional space. We take the interface that separates the two mediums as
a sphere x2 + y2 + z2 = 0.752. This is a much tougher example than the cylinder
case because the intersection of the minimal surface and the interface becomes a free
boundary which changes with the solution in each iteration, so does the the projected
curve ϕ(x, y, u(x, y)) = 0. The final solution depends on both the boundary condition
and the initial guess. The weighted minimal surface may or may not pass through or
touch the interface that separates the two media. In order to avoid rapid changes in
the solution, we choose ∆t1 = h2/4 and ∆t2 = h2/4.
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In Fig. 4.2 (a) and (b), we show the computed weighted minimal surface with
c− = 2 and c+ = 1 in (a), and c− = 1 and c+ = 5 in (b). The Dirichlet boundary
condition is taken from the function u(x, y) = −0.4 + x+1

2 . The difference in c is
small and the numerical method can always give convergent results independent of
the initial guess.
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Fig. 4.2. Computed results with different coefficients c with a sphere that separates the two

mediums. The numerical results are independent of the initial guess. (a) c− = 2, c+ = 1. (b)

c− = 1, c+ = 5.

As we increase the weight c− using the same boundary condition as in Fig. 4.2 (a),
there is more contribution to the energy from inside of the medium. As a result, the
minimal surface will move up within the inside medium. If c− is large enough, then
the minimal surface will move up further until it is eventually barely touches the
interface. However, once an intermediate solution does not touch the interface, it will
not feel the difference of the mediums and the next iteration will move it towards the
solution in the homogeneous medium which is a plane in our example. Because the
plane passes the medium inside, it will move up again. For this case, the weighted
minimal surface barely touches the medium inside, see Fig. 4.3 (b). To prevent the
intermediate approximation from jumping back and forth, we solve the parabolic
equation (3.7) so that the solution will not change too much at one iteration. In
Fig. 4.3 (a), we show the result of an intermediate approximation to the solution
while Fig. 4.3 (b) is the computed approximation which barely touches the interface.
Note that, once the surface cuts through a small portion of the sphere, the curve,
which is the intersection of the sphere and the surface, and its projection on the x-y
plane have large curvature. This may lead to numerical difficulties in resolving the
curve and result in large errors of the computed solution to the parabolic equation
which is visible from Fig. 4.3 (b).

As a last test, we show the solution depends on the initial condition as well. The
boundary condition is taken as a constant u(x, y)|∂Ω = −0.65. The weights are c− = 1
and c+ = 10 so the minimal surface will try to avoid outside as much as possible. If
the initial condition is taken as the same constant u0(x, y)|∂Ω = −0.65, then it stays
there because it is one of the local minimum and satisfies the Euler Lagrange equation
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Fig. 4.3. Computed results with c− = 20 and c+ = 1. The initial guess is u0(x, y) = −0.4+(x+

1)/2 (a) An intermediate solution in which the surface moves upwards to avoid large contribution

from inside of the medium. (b) The accepted solution which is almost tangent of the sphere.

plus the jump condition. However, it may not be the global minimum which is given
in Fig. 4.4. In order to get the global minimum, the initial guess has to be carefully
chosen. In Fig. 4.4, the initial guess is chosen as a piecewise linear function

u0(x, y) =




−0.65 +
0.65(x + 1)

0.4
, if −1 ≤ x ≤ −0.6,

0, if −0.6 < x ≤ 0.6,

−0.65 +
0.65(x− 1)

0.4
, if 0.6 < x ≤ 1.

(4.2)
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−0.45

−0.4

c−=1, c+=10, u
max

=−0.4825

Fig. 4.4. Computed results with c− = 1 and c+ = 10. The initial guess is given in (4.2). The

initial condition is important to get the global minimum. Another obvious local minimum is the

plane u(x, y) = −0.65.

5. Conclusion. In this paper, the weighted minimal surface problem involving
two media has been studied both analytically and numerically. A generalized Snell’s
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law for the weighted minimal surface at the interface between two different media is
derived. A numerical method is developed to compute the weighted minimal surface
which satisfies a non-linear elliptic equation with jump conditions at a free boundary,
the intersection of the minimal surface and the interface between two media.
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