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In this paper we study the Cauchy problem of doubly singular parabolic equations
ut = div��∇u�σ ∇um� + ts�x�θup with non-negative initial data. Here −1 < σ ≤ 0,
m > max	0� 1 − σ − �σ + 2�/N
 satisfying 0 < σ +m ≤ 1, p > 1, and s ≥ 0. We
prove that if θ > max	−�σ + 2�, �1 + s��N�1 − σ − m� − �σ + 2�
, then pc =
�σ +m� + �σ +m− 1�s + ��σ + 2��1 + s� + θ/N > 1 is the critical exponent; i.e,
if 1 < p ≤ pc then every non-trivial solution blows up in finite time. But for p > pc

a positive global solution exists. © 2001 Academic Press
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1. INTRODUCTION

In this paper we study critical exponent of quasilinear parabolic equations

ut = div
(�∇u�σ ∇um)+ ts�x�θup� x ∈ RN� t > 0�

u�x� 0� = u0�x� ≥� �≡ 0� x ∈ RN� (1.1)

where −1 < σ ≤ 0, m > max	0� 1 − σ − �σ + 2�/N
 satisfying 0 < σ +
m ≤ 1, p > 1, and s ≥ 0. u0�x� is a continuous function in RN . The
existence, uniqueness, and comparison principle for the solution to (1.1)
had been proved in [11] (for the definition of solution see [11]). Since
0 < σ +m ≤ 1, (1.1) is a doubly singular problem and does not have finite
speed of propagation. Therefore, u�x� t� > 0 for all x ∈ RN and t > 0.

1 This project was supported by PRC Grant NSFC 19831060.
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Because the main interests of this paper are to study the large-time behav-
ior of solution, we assume that the solution u of (1.1) has very mild regu-
larity. In this context, “u�x� t� blows up in finite time” means that w�t� =∫
� u�x� t�dx → +∞ as t → T− for some finite time T > 0, where � is a

bounded domain in RN .
Our main result reads as follows:

Theorem 1. Assume that s ≥ 0, p > 1, −1 < σ ≤ 0, m > max	0� 1 −
σ − �σ + 2�/N
 satisfying 0 < σ + m ≤ 1. If θ > max	−�σ + 2�,
�1 + s��N�1 − σ − m� − �σ + 2�
, then pc = �σ + m� + �σ + m − 1�s+
��σ + 2��1 + s� + θ/N > 1 is the critical exponent; i.e, if 1 < p ≤ pc then
every non-trivial solution of (1.1) blows up in finite time, whereas if p > pc

then (1.1) has a small non-trivial global solution.

The study of blow-up for nonlinear parabolic equations probably
originates from Fujita [8], where he studied the Cauchy problem of the
semilinear heat equation,

ut = �u+ up� x ∈ RN� t > 0�

u�x� 0� = u0�x� ≥ 0� x ∈ RN� (1.2)

where p > 1, and obtained the following results:

(a) If 1 < p < 1 + 2/N , then every nontrivial solution u�x� t� blows
up in finite time.

(b) If p > 1+ 2/N and u0�x� ≤ δe−�x�2�0 < δ � 1�, then (1.2) admits
a global solution.

In the critical case p = 1 + 2/N , it was shown by Hayakawa [10] for
dimensions N=1, 2 and by Kobayashi et al. [12] for all N ≥ 1 that (1.2)
possesses no global solution u�x� t� satisfying �u�·� t��∞ < ∞ for t ≥ 0�
Weissler [24] proved that if p = 1 + 2/N , then (1.2) possesses no global
solution u�x� t� satisfying �u�·� t��q < ∞ for t > 0 and some q ∈ �1�+∞�.
The value pc = 1 + 2/N is called the critical exponent of (1.2). It plays an
important role in studying the behavior of the solution to (1.2).

In the past couple of years there have been a number of extensions of
Fujita’s results in several directions. These include similar results for other
geometries (cones and exterior domains) [4, 5, 13, 15, 16], quasilinear
parabolic equations, and systems [1, 2, 5, 7, 9, 14, 18–20, 22, 23]. In
particular, the authors of [2] considered degenerate equations on domains
with non–compact boundary. There are also results for nonlinear wave
equations and nonlinear Schrödinger equations. We refer the reader to
the survey papers by Deng and Levine [5] and Levine [13] for a detailed
account of this aspect.
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When m = 1, (1.1) becomes p-Laplacian equations, and the critical
exponents were given by the authors of [19, 21, 22]. When σ = 0, (1.1)
becomes the porous media equations, and the critical exponents were
studied by the authors of [13, 17, 18, 22].

This paper is organized as follows. In Section 2 we discuss the qualitative
behaviors and give some estimates of solutions to the homogeneous
problem

ut = div
(�∇u�σ ∇um)� x ∈ RN� t > 0�

u�x� 0� = u0�x� ≥� �≡ 0� x ∈ RN� (1.3)

In Section 3, for convenience, we first discuss the special case of (1.1):
s = 0, i.e,

ut = div
(�∇u�σ ∇um)+ �x�θup� x ∈ RN� t > 0�

u�x� 0� = u0�x� ≥� �≡ 0� x ∈ RN� (1.4)

and prove that if 1 < p ≤ p̃c
�= σ + m + �σ + 2 + θ�/N then every

non-trivial solution of (1.4) blows up in finite time. In Section 4 we prove
Theorem 1.

Remark. We end this section with a simple but very useful reduction.
When we consider the blow-up case, by the comparison principle we need
only consider that u0�x� is radially symmetric and non-increasing, i.e,
u0�x� = u0�r� with r = �x�, and u0�r� is non-increasing in r. Therefore, the
solution of (1.1) is also radially symmetric and non-increasing in r = �x�.

2. ESTIMATES OF SOLUTIONS TO (1.3)

In this section we discuss (1.3) for the radially symmetric case; the main
results are three propositions.

Proposition 1. Assume that −1 < σ ≤ 0 and m > 1 − σ − �σ + 2�/N
satisfy 0 < σ +m ≤ 1.

(i) If σ +m < 1, then, for any c > 0, the equation (1.3) has a global
self-similar solution,

u�x� t� = ct−α�1 + hrν�−q�
where α = N/�N�σ +m− 1� + σ + 2� β = 1/�N�σ +m− 1� + σ + 2� ν =
�σ + 2�/�σ + 1�� q = �σ + 1�/�1 − σ − m�� r = �x�t−β, and h = h�c� =
1
qν
β1/�1+α�c�1−σ−m�/�σ+1�m−1/�σ+1�.
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(ii) If σ +m = 1, then, for any c > 0, the equation (1.3) has a global
self-similar solution,

u�x� t� = ct−α exp	−hrν
�

where α = N/�σ + 2�, β = 1/�σ + 2�, ν = �σ + 2�/�σ + 1�, r = �x�t−β, and
h satisfies �hν�σ+1 = β/m.

This proposition can be verified directly.

Proposition 2. Assume that −1 < σ ≤ 0, m > max	0� 1 − σ − �σ +
2�/N
, such that 0 < σ +m ≤ 1 and u0�x� is a non-trivial and non-negative
continuous function. If u0�x� is a radially symmetric and non-increasing
function, then the solution u�x� t� of (1.3) satisfies

ut ≥ −α

t
u for all x ∈ RN� t > 0� (2.1)

where α = N/�N�σ +m− 1� + σ + 2.
Proof. Denote k = �σ + m�/�σ + 1�, let f = �mk−�σ+1��1/�kσ+k−1�u

when σ + m < 1, and let f = u when σ + m = 1. Then (1.3) can be
rewritten as

ft = d div
(�∇f k�σ ∇f k)� x ∈ RN� t > 0�

f �x� 0� = f0�x� ≥� �≡ 0� x ∈ RN�

where d = 1 when σ + m < 1 and d = mk−�σ+1� when σ + m = 1. Let
g = f k; then g satisfies the following equation:

g
1/k
t = d div

(�∇g�σ ∇g)� x ∈ RN� t > 0�

g�x� 0� = f0
k�x� ≥� �≡ 0� x ∈ RN�

Denote µ = �1 + σ − 1/k�/�σ + 1� if σ +m < 1, and let

v =
{ 1

µ
gµ if 0 < σ +m < 1,

ln g if σ +m = 1.

Case 1. 0 < σ +m < 1. In this case, d = 1 and g satisfies

gt = kg div
(�∇v�σ ∇v)+ g−1/k�∇g�σ+2 ≥ kg div

(�∇v�σ ∇v)�
vt = g−1/k�σ+1�gt = kg−1/k�σ+1�g1−1/k div

(�∇g�σ ∇g)
= kµv div

(�∇v�σ ∇v)+ �∇v�σ+2� (2.2)
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Denote w = div��∇v�σ ∇v�� ∂/∂r = ′ and let z = −v; then z > 0� z′ > 0,
and

zt=−kµzdiv
(�∇z�σ∇z)−�∇z�σ+2

=−kµz
[
�σ+1��z′�σz′′+N−1

r
�z′�σ+1

]
−�z′�σ+2=kµzw−�z′�σ+2�

w=−
[
�σ+1��z′�σz′′+N−1

r
�z′�σ+1

]
�

−wt=�σ+1��z′�σz′′t +�σ+1�σ�z′�σ−1z′tz
′′+ �N−1��σ+1�

r
�z′�σz′t � (2.3)

z′t=kµ�z′w+zw′�−�σ+2��z′�σ+1z′′�

z′′t =kµ�wz′′+2w′z′+w′′z�−�σ+2�[�z′�σ+1z′′′+�σ+1��z′�σ�z′′�2]�
By a series of calculation we have

−wt = kµ�σ + 1�
[
z�z′�σ�w + 2�z′�σ+1w′ + �σ + 1��z′�σwz′′

+σ�z′�σ−1zz′′w′ + N − 1
r

�z′�σ+1w + N − 1
r

�z′�σzw′
]

−�σ + 1��σ + 2�
[
�z′�2σ+1z′′′ + �1 + 2σ��z′�2σ�z′′�2

+ N − 1
r

�z′�2σ+1z′′
]
� (2.4)

It follows from (2.3) that
−w′ = σ�σ + 1��z′�σ−1�z′′�2 + �σ + 1��z′�σz′′′

− N − 1
r2 �z′�σ+1 + �N − 1��σ + 1�

r
�z′�σz′′�

Denote ε = kµ�σ + 1� = k�1+σ − 1/k�; substituting the above expression
into (2.4) we get
−wt = εa�r� t��w + b�r� t�w′ − εw2 − �σ + 2�

×
[
N − 1
r2 �z′�2σ+2 − �σ + 1��z′�2σ�z′′�2

]

= εa�r� t��w + b�r� t�w′ − εw2 + �σ + 2�

×
[
�σ + 1�w�z′�σz′′ − N − 1

r2 �z′�2σ+2 + �σ + 1�N − 1
r

�z′�2σ+1z′′
]

= εa�r� t��w + b�r� t�w′ − εw2 − �σ + 2�

×
[
w2 + 2�N − 1�

r
�z′�σ+1w + N�N − 1�

r2 �z′�2σ+2
]
�
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where a�r� t�� b�r� t� are functions produced by z�r� t� and z′�r� t�. Taking
into account the Cauchy inequality

−2
N − 1

r
�z′�σ+1w ≤ N − 1

N
w2 + N�N − 1�

r2 �z′�2σ+2�

we have

−wt ≤ k�σ + 1 − 1/k�a�r� t��w + b�r� t�w′

+
[

1 − k�σ + 1� − σ + 2
N

]
w2�

i.e.,

wt ≥ k�−σ − 1 + 1/k�a�r� t��w − b�r� t�w′

+
[
σ + 2
N

− k�1/k− �σ + 1��
]
w2�

Noticing k = �σ +m�/�σ + 1�, we have

wt ≥ k�1/k− �σ + 1�a�r� t��w − b�r� t�w′

+ σ + 2 +N�σ +m− 1�
N

w2�

Let y�r� t� = −α/t. It is obvious that yt = k�1/k − �σ + 1�a�r� t��y −
b�r� t�y ′ + y2/α. Since y�r� 0� = −∞, it follows by the comparison principle
that w ≥ −α/t (see [3, 11]); i.e, div��∇v�σ ∇v� ≥ −α/t. By (2.2) we have
gt ≥ −kαg/t. Since g = f k, it follows that ft = −αf/t; i.e.

ut ≥ −α

t
u�

Case 2. σ + m = 1. Since this is easy to prove, we omit the details
here. Q.E.D.

Remark. For the porous media equation, the authors of [3] proved (2.1)
for first time, to our knowledge.

Proposition 3. Under the assumptions of Propositions 1 and 2, there exist
positive constants δ� b such that:

(i) When σ +m < 1, then

u�x� t� ≥ δ�t − ε�−α�1 + brν�−q ∀ �x� > 1� t > ε > 0� (2.5)

where r = �x��t − ε�−β, α, β, ν, and q are as in Proposition 1, and b is a
positive constant.
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(ii) When σ +m = 1, then

u�x� t� ≥ δ�t − ε�−α exp	−brν
 ∀ �x� > 1� t > ε > 0� (2.6)

where r = �x��t − ε�−β, α, β, and ν are as in Proposition 1, and b is a positive
constant.

Proof. In view of Propositions 1 and 2, and using a method similar to
that of [21], one can prove Proposition 3. Here we give only the sketch of
the proof for the case σ +m < 1.

Step 1. By use of the methods of Chap. 6 of [6] we can prove the
following comparison lemma:

Lemma 1. Let 0 ≤ τ < +∞ and S = 	x ∈ RN� �x� > 1
 × �τ� +∞��
Assume that v�w are non-negative functions satisfying

vt = div��∇v�σ ∇vm�� wt = div��∇w�σ ∇wm� in S�

v�x� t� ≤ w�x� t�� �x� = 1� τ < t < +∞�

v�x� τ� ≤ w�x� τ�� �x� ≥ 1�

Then

v�x� t� ≤ w�x� t� in S�

Step 2. From Proposition 1 we have that problem (1.3) has the similarity
solutions

Uµ�x� t� = µρU�µx� t�� ρ = �σ + 2�/�1 − σ −m��

where µ > 0 is a parameter, and

U�x� t� = U1�x� t� = t−α�1 + hrν�−q� r = �x�t−β�

In view of Proposition 2 and the expression of Uµ�x� t� we can prove that
for suitably small µ > 0, the following holds:

Uµ�1� t − ε� ≤ u�1� t� for t > ε�

Uµ�x� t − ε� = 0 ≤ u�x� t� for �x� ≥ 1� t = ε�

By Lemma 1 we see that (2.5) holds. Q.E.D.
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3. THE SPECIAL CASE s = 0, 1 < p ≤ p̃c

In this section we study problem (1.4) and prove a blow-up result.

Theorem 2. Let σ�m�p� θ be as in Theorem 1. If 1 < p ≤ p̃c = σ +m+
�σ + 2 + θ�/N , then every non-trivial solution of (1.4) blows up in finite time.

Let φ�x� be a smooth, radially symmetric, and non-increasing function
which satisfies 0 ≤ φ�x� ≤ 1, φ�x� ≡ 1 for �x� ≤ 1, and φ�x� ≡ 0 for
�x� ≥ 2. It follows that for l > 1� φl�x� = φ�x/l� is a smooth, radially sym-
metric, and non-increasing function which satisfies 0 ≤ φl�x� ≤ 1, φl�x� ≡
1 for �x� ≤ l and φl�x� ≡ 0 for �x� ≥ 2l. It is easy to see that �∇φl� ≤ C/l,
��φl� ≤ C/l2� Let

wl�t� =
∫
�
uφl dx�

where � = RN\B1, with B1 being the unit ball with center at the origin.
We divide the argument into two cases.

Case 1. m ≤ 1. Let q = �m+ σ�/�σ + 1� and v = uq; then the equation
(1.4) can be written as

�v1/q�t =
m

qσ+1 div
(�∇v�σ ∇v)+ �x�θvp/q�

Therefore,
dwl

dt
= m

qσ+1

∫
�

div
(�∇v�σ ∇v)φl dx+

∫
�
�x�θvp/qφl dx

≥ − m

qσ+1ωN

∫ 2l

1
�v′�σ+1�φ′

l�rN−1 dr +
∫
�
�x�θvp/qφl dx�

By direct computation we have∫ 2l

1
�v′�σ+1�φ′

l�rN−1 dr ≤
(∫ 2l

1
�v′��φ′

l�rN−1 dr

)σ+1(∫ 2l

1
rN−1�φ′

l�dr
)−σ

�

∫ 2l

1
�v′��φ′

l�rN−1 dr = 1
ωn

∫
�
∇v · ∇φl dx ≤ 1

ωN

∫
�
v��φl�dx�

∫
�
v��φl�dx ≤

(∫
�
�x�θvp/qφl dx

)q/p
×
(∫

�
	��φl�pφ−q

l �x�−θq
1/�p−q� dx
)�p−q�/p

�

(∫
�
	��φl�pφ−q

l �x�−θq
1/�p−q� dx
)�p−q�/p

= C1l
�N�p−q�−θq−2p/p�

(∫ 2l

1
rN−1φ′

l dr

)−σ
= C2l

−�N−1�σ �

In view of m ≤ 1, we have q ≤ 1, and hence p/q > 1.
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Case 2. m > 1. In this case one has
dwl

dt
=

∫
�

div
(�∇u�σ ∇um)φl dx+

∫
�
�x�θupφl dx

=
∫
∂�

�∇u�σ ∂u
m

∂η
φl ds −

∫
�
�∇u�σ∇um · ∇φl dx+

∫
�
�x�θupφl dx

≥ −
∫
�
�∇u�σ ∇um · ∇φl dx+

∫
�
�x�θupφl dx

≥ −mωN

∫ 2l

1
�u′�σ+1um−1�φ′

l�rN−1 dr +
∫
�
�x�θupφl dx�

By direct computation and using Hölder’s inequality one has∫ 2l

1
�u′�σ+1um−1�φ′

l�rN−1 dr ≤
(∫ 2l

1
�u′�rN−1�φ′

l�dr
)σ+1

×
(∫ 2l

1
�φ′

l�u−�m−1�/σrN−1 dr

)−σ
�

∫ 2l

1
�φ′

l�u−�m−1�/σrN−1 dr =
∫
�
�∇φl�u−�m−1�/σ dx

≤
(∫

�
�x�θupφl dx

)−�m−1�/pσ(∫
�

{�x�θ�m−1�

× �∇φl�pσφm−1
l

}1/�m−1+pσ�
dx

)�m−1+pσ�/pσ
�

∫ 2l

1
�u′�rN−1�φ′

l�dr = − 1
ωN

∫
�
u��φl�dx ≤ 1

ωN

∫
�
u��φl�dx�

∫
�
u��φl�dx ≤

(∫
�
�x�θupφl dx

)1/p

×
(∫

�

{�x�−θ��φl�pφ−1
l

}1/�p−1�
dx

)�p−1�/p
�

(∫
�

{�x�θ�m−1��∇φl�pσφm−1
l

}1/�m−1+pσ�
dx

)�m−1+pσ�/pσ

= C ′
1 l

�θ�m−1�+N�m−1+pσ�−pσ/pσ�(∫
�

{�x�−θ��φl�pφ−1
l

}1/�p−1�
dx

)�p−1�/p
= C ′

2 l
�N�p−1�−2p−θ/p�

In view of m > 1, 0 < m+ σ ≤ 1, it follows that 0 < −�m− 1�/σ ≤ 1.
For the above two cases we always have

dwl

dt
≥ −C3

(∫
�
�x�θupφl dx

)�σ+m�/p
l−θ�m+σ�/p−2−σ+N−N�σ+m�/p

+
∫
�
�x�θupφl dx�
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i.e.,

dwl

dt
≥

{
−C3l

−θ�σ+m�/p−2−σ+N−N�σ+m�/p +
(∫

�
�x�θupφl dx

)�p−σ−m�/p}

×
(∫

�
�x�θupφl dx

)�σ+m�/p
� (3.1)

By Hölder’s inequality we have∫
�
�x�θupφl dx ≥

(∫
�
uφl dx

)p(∫
�
�x�−θ/�p−1�φl dx

)−�p−1�
�

Hence

∫
�
�x�θupφl dx ≥



c w

p
l l

θ−N�p−1� if θ < N�p− 1�,
c w

p
l �ln l�−�p−1� if θ = N�p− 1�,

c w
p
l if θ > N�p− 1�.

(3.2)

We now prove Theorem 2.

(i) First we consider the case θ < N�p − 1�. It follows from (3.1)
and (3.2) that

dwl

dt
≥ {−C3l

−θ�σ+m�/p−2−σ+N−N�σ+m�/p

+C4wl
p−�σ+m�l�θ−N�p−1��p−�σ+m��/p}

×
(∫

�
�x�θupφl dx

)�σ+m�/p
� (3.3)

(a) p < p̃c = σ +m+ �σ + 2 + θ�/N . Under this assumption, one
has

	θ−N�p−1�
	p−�σ+m�
/p>N−2−σ−	N�σ+m�+θ�m+σ�
/p�
and consequently

l	θ−N�p−1�
	p−�σ+m�
/p/lN−2−σ−	N�σ+m�+θ�m+σ�
/p → +∞
as l → +∞� (3.4)

Using the fact that wl is an increasing function of l, we find from (3.3) and
(3.4) that there exist δ > 0, l � 1 such that

dwl

dt
≥ δ

∫
�
�x�θupφl dx ≥ δwl

p�t�lθ−N�p−1� ∀ t > 0�

Thus wl, and consequently u, blows up in finite time, since p > 1.
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(b) p = p̃c = σ +m + �σ + 2 + θ�/N . In this case, 	θ − N�p −
1�
	p− �σ +m�
/p = N − 2 − σ − 	N�σ +m� + θ�m+ σ�
/p < 0. If we
can prove that ∫

�
uφl dx

is a unbounded function of t for some l, then it can be shown that, as
in the above case, wl, and hence u, blows up in finite time. Otherwise,
u�·� t� ∈ L1��� for all t > 0 and there exists an M > 0 such that

�u�t��L1��� ≤ M for all t > 0� (3.5)

We will prove (3.5) is impossible. Suppose the contrary; it is clear
from (3.1) that, for the large l, if

∫
� �x�θup dx < +∞ then dwl/dt ≥

1
2

∫
� �x�θupφl dx� and if

∫
� �x�θup dx = +∞ then w′

l�t� ≥ 1. Therefore,

w′
l�t� ≥ kl�t� �= min

{
1�

1
2

∫
�
�x�θupφl dx

}
� l � 1�

wl�t� −wl�0� ≥
∫ t

0
kl�τ�dτ�

Let w�t� = ∫
� u�x� t�dx and take l → +∞ in the above inequality. We

obtain

w�t� −w�0� ≥
∫ t

0
k�τ�dτ� (3.6)

where k�t� = min	1� 1
2

∫
RN �x�θup dx
. When σ +m < 1, using (2.5) and by

direct computation we have∫
�
�x�θup dx ≥ δp�t − ε�−1

∫
�y�≥�t−ε�−β

�y�θ�1 + b�y�ν�−qpdy

≥ c�t − ε�−1� t � 1�

When σ +m = 1, using (2.6) and by direct computation we have∫
�
�x�θup dx ≥ δp�t − ε�−1

∫
�y�≥�t−ε�−β

�y�θ exp	−b�y�ν
dy

≥ c�t − ε�−1� t � 1�

In view of (3.6) it yields

lim
t→+∞w�t� = +∞�

i.e.,

lim
t→+∞

∫
�
u�x� t�dx = +∞�

This shows that (3.5) is impossible. And hence u�x� t� blows up in
finite time.
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(ii) Next we consider the case θ ≥ N�p − 1�. Since m > 1 − σ −
�σ + 2�/N , it follows that N − 2 − σ − 	N�σ + m� + θ�m + σ�
/p < 0.
Combining (3.2) and (3.1) we find that, for the case θ = N�p− 1�,

dwl

dt
≥

(
−C3l

N−2−σ−	N�σ+m�+θ�m+σ�
/p + Cwl
p−�σ+m��ln l� �σ+m−p��p−1�

p

)

×
(∫

�
�x�θupφl dx

)�σ+m�/p
�

and for the case θ > N�p− 1�
dwl

dt
≥

(
−C3l

N−2−σ−	N�σ+m�+θ�m+σ�
/p + Cwl
p−�σ+m�

)

×
(∫

�
�x�θupφl dx

)�σ+m�/p
�

Similar to the arguments of (i) one can prove that wl, and consequently u,
blows up in finite time.

Remark 2�3. The reason for using � = RN\B1 rather than RN itself is
that if θ > 0, then

∫
B1
�x�−θ/�p−1� dx may not converge.

4. PROOF OF THEOREM 1

(i) If p ≤ pc = σ +m+ �σ +m− 1� + ��σ + 2��1+ s� + θ/N , using
the methods similar to those of the last section and the papers [19, 21], it
can be proved that every non-trivial solution of (1.1) blows up in finite time.
We omit the details.

(ii) If p > pc = σ +m+ �σ +m− 1�s + ��σ + 2��1 + s� + θ/N , we
shall prove that (1.1) has global positive solutions for the small initial data.
By the comparison principle, it is enough to prove this conclusion for the
problem (since s ≥ 0)

ut = div��∇u�σ ∇um� + �1 + t�s�x�θup� x ∈ RN� t > 0�

u�x� 0� = u0�x� ≥ 0� x ∈ RN� (4.1)

where the constants m�σ� s� θ� p are as in problem (1.1). We shall deal with
the global solutions of (4.1) by using the similarity solutions which take the
form

u�x� t� = �1 + t�−αw�r� with r = �x��1 + t�−β�
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where α = 	1 + s + θ
σ+2
/	p − 1 − 1−σ−m

σ+2 θ
� β = 	�1 − σ −m��1 + s� +
p− 1
/	�p− 1 − 1−σ−m

σ+2 θ��σ + 2�
, and w satisfies the following ODE:

m�σ+1��w′�σw′′wm−1+m�m−1�wm−2�w′�σ+2

+m
N−1
r

�w′�σw′wm−1+αw+βrw′+rθwp=0� r>0�

w�0�=η>0� �w′�σw′�0�=− lim
r→0+

{
rθ+1wp+1−m�r�/��N−1�m}� (4.2)

We call w�r� a solution of (4.2) in �0� R�η�� for some R�η� > 0 if w�r� > 0
in �0� R�η��� w ∈ C2�0� R�η��, and w satisfies the initial condition of (4.2).
Under our assumptions it follows that p > 1+�1−σ −m�θ/�σ + 2�, α > 0,
β > 0. We observe that a function ū�x� t� = �1 + t�−αv��x��1 + t�−β� is an
upper solution of the equation (4.1) if and only if v�r� satisfies the following
inequality:

m�σ + 1��v′�σv′′vm−1 +m�m− 1�vm−2�v′�σ+2

+m
N − 1

r
�v′�σv′vm−1 + αv + βrv′ + rθvp ≤ 0� r > 0� (4.3)

(1) We first discuss the case θ ≥ 0. In this case, we try to find an
upper solution of (4.1), i.e., the solution of (4.3).

When σ +m < 1, let v�r� = ε�1 + brk�−q, where k=�σ + 2�/�σ + 1�,
q = �σ + 1�/�1 − σ −m�, and ε and b are positive constants to be deter-
mined later. By direct computation we have

v′ = −εqbkrk−1�1 + brk�−q−1�

v′′ = εq�q+ 1�b2k2r2k−2�1 + brk�−q−2 − εqbk�k− 1�rk−2�1 + brk�−q−1�

v�r� satisfies (4.3) if and only if

ε�1 + brk�−q[α−mNεσ+m−1�bqk�σ+1]+ εqbkrk�1 + brk�−q−1

× [
mεσ+m−1�bqk�σ+1 − β

]+ εprθ�1 + brk�−qp ≤ 0� (4.4)

Under our assumptions it follows that θ+ q�1−p�k = θ+ �1−p��σ + 2�/
�1 − σ −m� < 0. There exists a > 0, such that

rθ�1 + brk�q�1−p� ≤ a for all r ≥ 0� since θ ≥ 0� (4.5)

Choose b = b�ε� such that

β = mεσ+m−1�bqk�σ+1�
i.e.,

b = �qk�−1(βm−1ε1−σ−m)1/�σ+1�
�
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For this choice of b, (4.4) is equivalent to

α−Nβ+ rθεp−1�1 + brk�q�1−p� ≤ 0� (4.6)

By (4.5) we see that (4.6) is true if the following inequality holds:

α−Nβ+ aεp−1 ≤ 0� (4.7)

In view of p > pc = σ +m + �σ +m − 1�s + ��σ + 2��1 + s� + θ/N , it
follows that α < Nβ. Hence, there exists ε0 > 0 such that (4.7) holds for
all 0 < ε ≤ ε0. These arguments show that v�r� = ε�1 + brk�−q satisfies
(4.3) for all 0 < ε ≤ ε0. Using the comparison principle we get that the
solution u�x� t� of (4.1) exists globally provided that u�x� 0� ≤ v��x�� =
ε�1 + b�x�k�−q. And hence, so does the solution of (1.1).

When σ +m = 1, let v�r� = ε exp	−brk
, where k=�σ + 2�/�σ + 1�,
and ε and b are positive constants to be determined later. By direct com-
putation we know that v�r� satisfies (4.3) if and only if

ε
[
α−mN�bk�σ+1]e−brk

+ εbk
[
m�bk�σ+1 − β

]
rke−br

k + εprθe−pbr
k ≤ 0� (4.8)

Since θ ≥ 0, there exists a > 0 such that

rθ exp
{−�p− 1�brk} ≤ a for all r ≥ 0�

Choose b such that β = m�bk�σ+1. Then (4.8) holds provided that

α−Nβ+ aεp−1 ≤ 0�

Similar to the case σ +m < 1, we have that the solution u�x� t� of (4.1)
exists globally provided that ε � 1 and u�x� 0� ≤ v��x�� = ε exp	−b�x�k
.
And hence, so does the solution of (1.1).

(2) Next we consider the case θ < 0. If m = 1, this problem was
discussed by [19] for σ = 0, and by [21] for σ < 0. In the following we
always assume that m �= 1. Our main purpose is to prove that (4.2) has
ground state for the small η > 0. By the standard arguments one can prove
that for any given η > 0, there exists a unique solution w of (4.2), which is
twice continuously differentiable in where w′�r� �= 0.

Denote R�η� = max	R �w�r� > 0 ∀ r ∈ �0� R�
. So 0 < R�η� ≤ +∞,
and w�R�η�� = 0 when R�η� < ∞�

We divide the proof into several lemmas.

Lemma 2. The solution w�r� of (4.2) satisfies w′�r� < 0 in �0� R�η��. In
addition, if R�η� = +∞ then w�r� → 0 as r → +∞.
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Proof. We first prove that w′�r� < 0 for 0 < r < R�η� when θ + 1 ≤ 0.
Since �w′�σw′�0� = − limr→0+	rθ+1wp+1−m�r�/��N − 1�m
 < 0, one has
w′�r� < 0 for r � 1. If there exists r0 � 0 < r0 < R�η� such that w′�r� < 0
in �0� r0� and w′�r0� = 0, then ��w′�σw′�′wm−1�r0� ≥ 0. But by the equation
(4.2) we see that

m��w′�σw′�′wm−1�r0� = −(
αw�r0� + r0

θwp�r0�
)
< 0�

a contradiction. When θ + 1 > 0, it follows that w′�0� = 0. Using the
equation (4.2) one has

mN��w′�σw′�′�r=0 = −(
αw2−m�0� + lim

r→0+
rθwp+1−m�r�) < 0�

Hence �w′�σw′�r� < 0, and consequently w′�r� < 0� for all r � 1. Similar
to the case of θ + 1 ≤ 0 it follows that w′�r� < 0 for all 0 < r < R�η�.
If R�η� = +∞, since w′�r� < 0 and w�r� > 0 in �0�+∞�� one has
limr→+∞w�r� = L. If L > 0, an integration of (4.2) gives

rN−1(m�w′�σw′wm−1 + rβw
) = −

∫ r

0

{
α−Nβ+ sθwp−1�s�}sN−1w�s�ds�

lim
r→+∞

m�w′�σw′wm−1

r
= − α

N
L− A

N
�

where

A =
{
Lp if θ = 0,
0 if θ < 0,
+∞ if θ > 0.

It follows that limr→+∞w′�r� = −∞, a contradiction. Thus w�r� → 0 as
r → +∞� Q.E.D.

Lemma 3. Let w�r� be the solution of (4.2). Then for any given small
η > 0 there exists R0�η� > 0 which satisfies limη→0+ R0�η� = +∞ and such
that

w�r� > 0� m�w′�σw′�r�wm−1 + βrw�r� > 0� r ∈ �1� R0�η��� (4.9)

Proof. Let z = η− w; then z′�r� = −w′�r� > 0� 0 < z�r� < η, and z�r�
satisfies

m�σ+1��z′�σz′′�η−z�m−1−m�m−1��η−z�m−2�z′�σ+2

+m
N−1
r

�z′�σ+1�η−z�m−1=α�η−z�−βrz′+rθ�η−z�p� r>0�

z�0�=0� �z′�σz′�0�= lim
r→0+

	rθ+1�η−z�p+1−m�r�/��N−1�m
� (4.10)
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Since p > pc , one has Nβ > α. An integration of (4.10) gives

mrN−1�z′�σ+1�η− z�m−1 + βrNz

=
∫ r

0

[�Nβ− α�sN−1z + αηsN−1 + sN+θ−1�η− z�p]ds
≤ αη

N
rN + �β− α

N
�rNz�r� + 1

N + θ
ηprN+θ� (4.11)

Since m �= 1 and −1 < σ ≤ 0, we know that if σ + m = 1 then σ < 0
and 1 < m < 2. Denote R0�η� = min	R � z�R� = η − ηa
, where a =
1
2 min	1− σ

m−1 � p+ 1
 if σ +m < 1 and m > 1, a = �p+ 1�/2 if σ +m < 1
and m < 1, and a = 1

2 min	p+2m−3
m−1 � p+ 1
 if σ +m = 1. Then R0�η� > 0

and z�r� ≤ η− ηa < η for all 0 < r ≤ R0�η�.
We first consider the case σ + m < 1. From (4.11) it follows that for

0 < r ≤ R0�η�

mrN−1�z′�σ+1�η− z�m−1 <
αη

N
rN + �β− α

N
�ηrN + 1

N + θ
ηprN+θ

= βηrN + 1
N + θ

ηprθ+N�

Denote b = a when m > 1, and b = 1 when m < 1. Using ηa ≤ η− z ≤ η
one has that

rN−1�z′�σ+1 <
1
m

{
βη1+�1−m�br + ηp+�1−m�b 1

N + θ
rθ+1

}
�

Since σ + 1 ≤ 1, it follows that

z′�r� <
{
β

m
η1+�1−m�br + 1

m�N + θ�η
p+�1−m�brθ+1

}1/�σ+1�

≤ C1

{
�η1+�1−m�br�1/�σ+1� + �ηp+�1−m�br1+θ�1/�σ+1�

}
�

Integrating this inequality from 0 to R0�η� we have

η ≤ ηa + C2

{
η�1+�1−m�b�/�σ+1�(R0�η�

)�σ+2�/�σ+1�

+η�p+�1−m�b�/�σ+1�(R0�η�
)�σ+θ+2�/�σ+1�}

�

In view of a > 1 and �p+ �1−m�b/�σ + 1� > �1+ �1−m�b/�σ + 1� > 1,
it follows that R0�η� −→ +∞ as η −→ 0+.
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Using w�R0�η�� = ηa and w�r� ≥ ηa for all 0 ≤ r ≤ R0�η�, an
integration of (4.2) gives, for 0 ≤ r < R0�η�,

mrN−1�w′�σw′wm−1 + βrNw�r�
=

∫ r

0
�Nβ− α�sN−1w�s�ds −

∫ r

0
sN+θ−1wp�s�ds

≥ �Nβ− α�w(R0�η�
) ∫ r

0
sN−1 ds − ηp

∫ r

0
sN+θ−1 ds

= ηarN
(
β− α

N
− 1

N + θ
ηp−arθ

)
�

Since θ < 0�Nβ > α� and p > a, it follows that

mrN−1�w′�σw′wm−1 + βrNw�r� > 0� ∀ r ∈ (
1� R0�η�

)
� (4.12)

Second, we consider the case σ +m = 1. From (4.11) it follows that, for
0 < r ≤ R0�η�,

mrN−1�z′�σ+1�η− z�m−1 <
α

N
rN�η− z� + 1

N + θ
ηprN+θ�

Using σ + 1 = 2 −m and 1 < m < 2 we have that

z′�r� ≤ C
{�η− z�r1/�σ+1� + η�p+�1−m�a�/�σ+1�r�1+θ�/�σ+1�}� (4.13)

Denote γ = �p+ �1 −m�a/�σ + 1�. Integrating (4.13) from 0 to R0�η� we
have

η−ηa≤C

{
ηa σ+1

σ+2
(
R0�η�

)�σ+2�/�σ+1�+ηγ σ+1
σ+2+θ

(
R0�η�

)�σ+2+θ�/�σ+1�

+σ+1
σ+2

∫ R0�η�

0
r�σ+2�/�σ+1�z′

}
� (4.14)

Substituting (4.13) into (4.14) and using the inductive method we have that

η−ηa≤ηa
+∞∑
n=1

1
n!
An+C�σ+1��R0�η���σ+2+θ�/�σ+1�ηγ

×
+∞∑
n=0

1(�n+1��σ+2�+θ
)
n!
An� (4.15)

where A=C σ+1
σ+2 �R0�η���σ+2�/�σ+1�. In view of a>1 and γ=�p+�1−m�a/

�σ+1�>1, it follows from (4.15) that R0�η�−→+∞ as η−→0+. Similar
to the case σ+m<1, we have that (4.12) holds. The proof of Lemma 2 is
completed. Q.E.D.
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Now we prove that, for the case θ<0, (4.2) has ground state for
small η. Choose η0 �ηp−1

0 <Nβ−α such that (4.9) holds for all 0<η≤η0.
Since p>pc , which implies Nβ>α, using θ<0� R0�η�>1�w�s�<η and
integrating (4.2) from R0�η� to r�R0�η�<r<R�η�� we have

mrN−1�w′�σw′wm−1+βrNw�r�
=(

mrN−1�w′�σw′wm−1+βrNw�r�)�r=R0�η�

+�Nβ−α�
∫ r

R0�η�
sN−1w�s�[Nβ−α−sθwp−1�s�]ds

≥
∫ r

R0�η�
sN−1w�s�[Nβ−α−ηp−1]ds≥0� (4.16)

In view of w�r�>0 and w′�r�<0 for 0<r<R�η�, it follows that R�η�=+∞
by (4.16). Therefore (4.2) has a ground state.
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