MATH 280B WINTER 2016 HOMEWORK 5

Due date: Friday March 18 before 12:00noon

Rules: Write as efficiently as possible - and think carefully what to write and what not. Each problem indicates maximum allowed length; this is usually much more than needed. If you type, do not use font smaller than 10 pt . I will not grade any text that exceeds the specified length.

1. (1/2 page) let $R\left(z, x_{1}, \ldots, x_{\ell}\right)$ be a Σ_{1}-relation. Prove that the relation R^{\prime} defined by

$$
R^{\prime}\left(y, x_{1}, \ldots, x_{\ell}\right) \Longleftrightarrow(\forall z<y) R\left(z, x_{1}, \ldots, x_{\ell}\right)
$$

is also a Σ_{1}-relation.
2. (1 page) Prove that all basic functions are Σ_{1}-definable and the operations composition and the μ-operator, when applied to Σ_{1}-definable partial functions, give Σ_{1}-definable partial functions.
3. (5 lines) The Chinese remainder theorem says that if a_{0}, \ldots, a_{n-1} are positive integers which are relatively prime in pairs, that is, $\operatorname{gcd}\left(a_{i}, a_{j}\right)=1$ whenever $i, j<n$ and $i \neq j$, then the function

$$
s \mapsto\left\langle\mathrm{rm}\left(s, a_{0}\right), \ldots, \mathrm{rm}\left(s, a_{n-1}\right)\right\rangle
$$

is a bijection of $a_{0} \cdot a_{1} \cdots a_{n-1}$ onto $\prod_{i<n} a_{i}$. Here $\mathrm{rm}(a, q)$ is the remainder of the division of a by q.

Notice also that if $b \in \mathbb{N}$ then the numbers

$$
1+1 \cdot b!\quad 1+2 \cdot b!\quad \ldots \quad 1+(b+1) b!
$$

are relatively prime in pairs.
The above observations give a tool for coding finite sequences of numbers by numbers which has simpler definition than the coding based on exponentiation.

Show that the function $\beta: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$
\beta(s, d, i)=\operatorname{rm}(s, 1+(1+i) \cdot d)
$$

is Σ_{0}-definable.
The function β is called the Gödel β-function.
4. (1 page) Assume $f\left(x_{1}, \ldots, x_{\ell}\right)$ and $g\left(u, v, x_{1}, \ldots, x_{\ell}\right)$ are partial Σ_{1}-definable functions and $h\left(y, x_{1}, \ldots, x_{\ell}\right)$ is a partial function constructed from f and g in terms of primitive recursion, that is,

$$
\begin{aligned}
h\left(0, x_{1}, \ldots, x_{\ell}\right) & \simeq f\left(x_{1}, \ldots, x_{\ell}\right) \\
h\left(y+1, x_{1}, \ldots, x_{\ell}\right) & \simeq g\left(h\left(y, x_{1}, \ldots, x_{\ell}\right), y, x_{1}, \ldots, x_{\ell}\right)
\end{aligned}
$$

Prove that h is Σ_{1}-definable.

Remark. You will need the above exercises for this task. In particular, use the Gödel β-function to code the sequence of calculations leading to the calculation of $h\left(y, x_{1}, \ldots, x_{\ell}\right)$.
5. (1/2 page) Prove that there is a primitive recursive relation $\operatorname{FR}(x, y)$ such that for every $s, v \in \mathbb{N}$, if s codes a formula and v codes a variable then

$$
\mathrm{FR}(s, v) \Longleftrightarrow \quad \begin{aligned}
& \text { the variable coded by } v \text { has a free occur- } \\
& \text { rence in the formula coded by } s .
\end{aligned}
$$

For this, use the primitive recursive functions and relations we developed in the lecture.

