MATH 280B WINTER 2016 HOMEWORK 4

Due date: Wednesday, March 2

Rules: Write as efficiently as possible – and think carefully what to write and what not. Each problem indicates maximum allowed length; this is usually much more than needed. If you type, do not use font smaller than 10pt. I will not grade any text that exceeds the specified length.

1. (1page) We sketched an argument, using the back-and-forth construction, showing that the theory DLO of dense linear orderings without endpoints is \aleph_0 -categorical, that is, has precisely one model up to isomorphism. Recall hat the language of DLO consists of a single binary relation symbol $\dot{<}$.

For $n \in \mathbb{N}^+$ let

$$\mathcal{L}_n = \{ \dot{<} \} \cup \{ c_i \mid i \in \mathbb{N} \} \cup \{ D_i \mid i < n \}$$

where c_i are new constant symbols and D_i are unary relation symbols, and

 $\begin{aligned} T_n = \mathsf{DLO} \cup \{c_i \dot{<} c_j \mid i < j\} & \cup \quad \{\text{``Each } D_i \text{ is a dense subset of the model''}\} \\ & \cup \quad \{\text{``The family } \{D_i \mid i < n\} \text{ partitions the model''}\} \\ & \cup \quad \{c_i \in D_0 \mid i \in \mathbb{N}\} \end{aligned}$

Show that T_n is an \mathcal{L}_n -theory. Then show that T_n has precisely (n+2) countable models up to isomorphism.

2. (2/3 page) Let \mathcal{U} be an ultrafilter over I and $(\mathcal{M}_i \mid i \in I)$ be an indexed system of \mathcal{L} -structures. Let \mathcal{M} be the ultraproduct of $(\mathcal{M}_i \mid i \in I)$ by \mathcal{U} .

Show by induction on the complexity of terms that if $t(v_1, \ldots, v_\ell)$ is a term and $a_1, \ldots, a_\ell \in \prod_{i \in I} M_i$ then

$$t^{\mathcal{M}}([a_1],\ldots,[a_\ell]) = [i \mapsto t^{\mathcal{M}_i}(a_1(i),\ldots,a_\ell(i))].$$

3. (10 lines) Let \mathcal{U} be a principal ultrafilter over I and $(\mathcal{M}_i \mid i \in I)$ be an indexed system of \mathcal{L} -structures. Let \mathcal{M} be the ultraproduct of $(\mathcal{M}_i \mid i \in I)$ by \mathcal{U} . Describe how \mathcal{M} compares to the structures \mathcal{M}_i .

4. (2/3 page) Let $\mathcal{L} = \{\dot{R}\}$ be the language with a single binary relation symbol R. Let \mathcal{U} be an ultrafilter over I. We say that \mathcal{U} is ω -complete iff

for every countable family $\{A_{\ell} \mid \ell \in \mathbb{N}\} \subseteq \mathcal{U}$ we have $\bigcap_{\ell \in \mathbb{N}} A_{\ell} \in \mathcal{U}$.

Let $(\mathcal{M}_i \mid i \in I)$ be an indexed system of \mathcal{L} -structures and let \mathcal{M} be the ultraproduct of $(\mathcal{M}_i \mid i \in I)$ by \mathcal{U} . Assume that for every $i \in I$, the relation $R^{\mathcal{M}_i}$ is well-founded and for each $i \in \mathbb{N}$ the relation $R^{\mathcal{M}_i}$ has an infinite chain

(1)
$$a_0^i R^{\mathcal{M}_i} a_1^i R^{\mathcal{M}_i} \dots a_n^i R^{\mathcal{M}_i} a_{n+1}^i R^{\mathcal{M}_i} \dots$$

Prove:

 $R^{\mathcal{M}}$ is well-founded iff \mathcal{U} is ω -complete.

If you want more challenge, assume instead of (1) that for each $i \in \mathbb{N}$ there is a finite chain

(2)
$$a_0^i R^{\mathcal{M}_i} a_1^i R^{\mathcal{M}_i} \dots R^{\mathcal{M}_i} a_{n(i)}^i$$

such that $\lim_{i\to\infty} n(i) = \infty$.

5.(2/3 page) Prove the compactness theorem using ultraproducts. Given a language \mathcal{L} let Σ be a finitely satisfiable set of \mathcal{L} -sentences. Let

I = the set of all finite subsets of Σ

and to each $i \in I$ assign some \mathcal{L} -structure \mathcal{M}_i such that

 $\mathcal{M}_i \models \sigma$ whenever $\sigma \in i$.

For each $i \in I$ let

$$A_i = \{ j \in I \mid i \subseteq j \}.$$

Show that

 $\{A_i \mid i \in I\}$

is a centered system. Argue that there is an ultrafilter \mathcal{U} over I such that

$$\{A_i \mid i \in I\} \subseteq \mathcal{U}$$

and look at the ultraproduct of $(\mathcal{M}_i \mid i \in I)$ by \mathcal{U} .

6. (2/3 page) Let \mathcal{L} be a countable language, $(\mathcal{M}_i \mid i \in \mathbb{N})$ be an indexed system of \mathcal{L} -structures, and let \mathcal{U} be a non-principal ultrafilter on \mathbb{N} . Let \mathcal{M} be the ultraproduct of $(\mathcal{M}_i \mid i \in \mathbb{N})$. Prove that \mathcal{M} is \aleph_1 -saturated. (We are not assuming anything about the structures \mathcal{M}_i !)